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Abstract We study the existence and uniqueness of positive solutions of the nonlinear
fractional differential equation

{
C Dαx (t) = f (t, x(t)) +C Dα−1g (t, x (t)), 0 < t ≤ T,

x (0) = θ1 > 0, x ′ (0) = θ2 > 0,

where 1 < α ≤ 2. In the process we convert the given fractional differential equa-
tion into an equivalent integral equation. Then we construct appropriate mapping and
employ Schauder fixed point theorem and the method of upper and lower solutions
to show the existence of a positive solution of this equation. We also use the Banach
fixed point theorem to show the existence of a unique positive solution. The results
obtained here extend the work of Matar (AMUC 84(1):51–57, 2015 [7]). Finally, an
example is given to illustrate our results.
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1 Introduction

The history of the fractional derivatives of non-integer order turned out to be
very attractive to mathematicians as well as physicists, biologists, engineers and
economists. It as spreads from the end of seventh century until now. The number
of publications and scientific meetings in the recent period devoted to, demonstrates
the importance of the problems of this concept has raised both; more theoretical than
applied.We can say that it has become a whole discipline. Specialists agree to raise the
beginning of this story at the end of the year 1695 when Leibniz, issuing a letter to the
Hospital, initiating a reflection on a possible theory of not entire fractional derivative
of a function. In its response, the Hospital has questioned about the significance we
could give to the derivative of order 1/2 (see [5,8,9]).

Fractional differential equations arise from a variety of applications including in
various fields of science and engineering. In particular, problems concerning quali-
tative analysis of the positivity of such solutions for fractional differential equations
(FDE) have received the attention of many authors, see [1–4,6,7,11–14] and the ref-
erences therein.

Recently, Zhang in [14] investigated the existence and uniqueness of positive solu-
tions for the nonlinear fractional differential equation

{
Dαx (t) = f (t, x(t)), 0 < t ≤ 1,
x (0) = 0,

where Dα is the standard Riemann Liouville fractional derivative of order 0 < α < 1,
and f : [0, 1]×[0,∞) → [0,∞) is a given continuous function. By using themethod
of the upper and lower solution and cone fixed-point theorem, the author obtained the
existence and uniqueness of a positive solution.

The nonlinear fractional differential equation boundary value problem

{
Dαx (t) + f (t, x(t)) = 0, 0 < t < 1,
x (0) = x (1) = 0,

has been investigated in [1], where 1 < α ≤ 2, and f : [0, 1] × [0,∞) → [0,∞) is
a given continuous function. By means of some fixed-point theorems on cone, some
existence and multiplicity results of positive solutions have been established.

In [7], Matar discussed the existence and uniqueness of the positive solution of the
following nonlinear fractional differential equation

{
C Dαx (t) = f (t, x(t)), 0 < t ≤ 1,
x (0) = 0, x ′ (0) = θ > 0,
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where C Dα is the standard Caputo’s fractional derivative of order 1 < α ≤ 2, and
f : [0, 1]×[0,∞) → [0,∞) is a given continuous function.By employing themethod
of the upper and lower solutions and Schauder and Banach fixed point theorems, the
author obtained positivity results.

In this paper, we are interested in the analysis of qualitative theory of the problems
of the positive solutions to fractional differential equations. Inspired and motivated by
theworksmentioned above and the papers [1–4,6,7,11–14] and the references therein,
we concentrate on the positivity of the solutions for nonlinear fractional differential
equation

{
C Dαx (t) = f (t, x(t)) +C Dα−1g (t, x (t)), 0 < t ≤ T,

x (0) = θ1 > 0, x ′ (0) = θ2 > 0,
(1.1)

where 1 < α ≤ 2, g, f : [0, T ]× [0,∞) → [0,∞) are given continuous functions, g
is non-decreasing on x and θ2 ≥ g (0, θ1). To show the existence and uniqueness of the
positive solution, we transform (1.1) into an integral equation and then by the method
of upper and lower solutions and use Schauder and Banach fixed point theorems.

This paper is organized as follows. In Sect. 2, we introduce some notations and
lemmas, and state some preliminaries results needed in later section. Also, we present
the inversion of (1.1) and the Banach and Schauder fixed point theorems. For details
on Banach and Schauder theorems we refer the reader to [10]. In Sect. 3, we give
and prove our main results on positivity, and we provide an example to illustrate our
results. The results presented in this paper extend the main results in [7].

2 Preliminaries

Let X = C ([0, T ]) be the Banach space of all real-valued continuous functions
defined on the compact interval [0, T ], endowed with the maximum norm. Define the
subspaceA = {x ∈ X : x(t) ≥ 0, t ∈ [0, T ]} of X . By a positive solution x ∈ X , we
mean a function x(t) > 0, 0 ≤ t ≤ T .

Let a, b ∈ R
+ such that b > a. For any x ∈ [a, b], we define the upper-

control function U (t, x) = sup { f (t, λ) : a ≤ λ ≤ x}, and lower-control function
L(t, x) = inf { f (t, λ) : x ≤ λ ≤ b}. Obviously, U (t, x) and L(t, x) are monotonous
non-decreasing on the argument x and L(t, x) ≤ f (t, x) ≤ U (t, x).

We introduce some necessary definitions, lemmas and theorems which will be used
in this paper. For more details, see [5,8,9].

Definition 2.1 ([5,9])The fractional integral of orderα > 0of a function x : R+ → R

is given by

I αx(t) = 1

�(α)

∫ t

0
(t − s)α−1x(s)ds,

provided the right side is pointwise defined on R
+.
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Definition 2.2 ([5,9]) The Caputo fractional derivative of order α > 0 of a function
x : R+ → R is given by

C Dαx(t) = I n−αx (n)(t) = 1

�(n − α)

∫ t

0
(t − s)n−α−1x (n)(s)ds,

where n = [α] + 1, provided the right side is pointwise defined on R
+.

Lemma 2.3 ([5,9]) Let�(α) > 0. Suppose x ∈ Cn−1 [0,+∞) and x (n) exists almost
everywhere on any bounded interval of R+. Then

(
I α C Dαx

)
(t) = x(t) −

n−1∑
k=0

x (k)(0)

k! tk .

In particular, when 1 < �(α) < 2,
(
I α C Dαx

)
(t) = x(t) − x(0) − x ′(0)t .

The following lemma is fundamental to our results.

Lemma 2.4 Let x ∈ C1 ([0, T ]), x (2) and ∂g
∂t exist, then x is a solution of (1.1) if and

only if

x(t) = θ1 + (θ2 − g (0, θ1)) t +
∫ t

0
g (s, x (s)) ds

+ 1

�(α)

∫ t

0
(t − s)α−1 f (s, x(s))ds. (2.1)

Proof Let x be a solution of (1.1). First we write this equation as

I α C Dαx (t) = I α
(
f (t, x(t)) +C Dα−1g (t, x (t))

)
, 0 < t ≤ T .

From Lemma 2.3, we have

x(t) − x(0) − x ′(0)t = I α C Dα−1g (t, x (t)) + I α f (t, x(t))

= I I α−1 C Dα−1g (t, x (t)) + I α f (t, x(t))

= I (g (t, x (t)) − g (0, x (0))) + I α f (t, x(t))

=
∫ t

0
g (s, x (s)) ds − g (0, θ1) t

+ 1

�(α)

∫ t

0
(t − s)α−1 f (s, x(s))ds,

then, we obtain (2.1). Since each step is reversible, the converse follows easily. This
completes the proof. 	


Lastly in this section, we state the fixed point theorems which enable us to prove
the existence and uniqueness of a positive solution of (1.1).
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Definition 2.5 Let (X, ‖.‖) be a Banach space and � : X → X . The operator � is a
contraction operator if there is an λ ∈ (0, 1) such that x, y ∈ X imply

‖�x − �y‖ ≤ λ ‖x − y‖ .

Theorem 2.6 (Banach [10]) Let C be a nonempty closed convex subset of a Banach
space X and � : C → C be a contraction operator. Then there is a unique x ∈ C with
�x = x.

Theorem 2.7 (Schauder [10]) Let C be a nonempty closed convex subset of a Banach
space X and � : C → C be a continuous compact operator. Then � has a fixed point
in C.

3 Main results

In this section, we consider the results of existence problem for many cases of the FDE
(1.1). Moreover, we introduce the sufficient conditions of the uniqueness problem of
(1.1).

To transformEq. (2.1) to be applicable toSchauder fixedpoint,wedefine anoperator
� : A −→ X by

(�x) (t) = θ1 + (θ2 − g (0, θ1)) t +
∫ t

0
g (s, x (s)) ds

+ 1

�(α)

∫ t

0
(t − s)α−1 f (s, x(s))ds, t ∈ [0, T ], (3.1)

where the figured fixed point must satisfy the identity operator equation �x = x .
The following assumptions are needed for the next results.
(H1) Let x∗, x∗ ∈ A, such that a ≤ x∗(t) ≤ x∗(t) ≤ b and

{
C Dαx∗(t) −C Dα−1g (t, x∗(t)) ≥ U (t, x∗(t)),
C Dαx∗(t) −C Dα−1g (t, x∗(t)) ≤ L(t, x∗(t)),

for any t ∈ [0, T ].
(H2) For t ∈ [0, T ] and x, y ∈ X , there exist positive real numbers β1, β2 < 1

such that

|g(t, y) − g(t, x)| ≤ β1 ‖y − x‖ ,

| f (t, y) − f (t, x)| ≤ β2 ‖y − x‖ .

The functions x∗ and x∗ are respectively called the pair of upper and lower solutions
for Eq. (1.1).

Theorem 3.1 Assume that (H1) is satisfied, then the FDE (1.1) has at least one
solution x ∈ X satisfying x∗(t) ≤ x(t) ≤ x∗(t), t ∈ [0, T ].
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Proof Let C = {x ∈ A : x∗(t) ≤ x(t) ≤ x∗(t), t ∈ [0, T ]}, endowed with the norm
‖x‖ = maxt∈[0,T ] |x(t)|, then we have ‖x‖ ≤ b. Hence, C is a convex, bounded, and
closed subset of the Banach space X . Moreover, the continuity of g and f implies the
continuity of the operator � on C defined by (3.1). Now, if x ∈ C, there exist positive
constants c f and cg such that

max{ f (t, x(t)) : t ∈ [0, T ], x(t) ≤ b} < c f ,

and

max{g(t, x(t)) : t ∈ [0, T ], x(t) ≤ b} < cg.

Then

|(�x) (t)| ≤ |θ1 + (θ2 − g (0, θ1)) t | +
∫ t

0
|g (s, x (s))| ds

+ 1

�(α)

∫ t

0
(t − s)α−1 | f (s, x(s))| ds

≤ θ1 + (
θ2 + c0 + cg

)
T + c f T α

�(α + 1)
,

where c0 = |g (0, θ1)|. Thus,

‖�x‖ ≤ θ1 + (
θ2 + c0 + cg

)
T + c f T α

�(α + 1)
.

Hence, �(C) is uniformly bounded. Next, we prove the equicontinuity of �(C). Let
x ∈ C, ε > 0, δ > 0, and 0 ≤ t1 < t2 ≤ T such that |t2 − t1| < δ. If

δ = min

{
1,

ε�(α + 1)

2
((

θ2 + c0 + cg
)
�(α + 1) + 2c f

) ,

(
ε�(α + 1)

4c f

) 1
α

}
,

then

|(�x) (t1) − (�x) (t2)|
≤ (θ2 + c0) (t2 − t1) +

∣∣∣∣
∫ t1

0
g(s, x(s))ds −

∫ t2

0
g(s, x(s))ds

∣∣∣∣
+

∣∣∣∣ 1

�(α)

∫ t1

0
(t1 − s)α−1 f (s, x(s))ds − 1

�(α)

∫ t2

0
(t2 − s)α−1 f (s, x(s))ds

∣∣∣∣
≤ (θ2 + c0) (t2 − t1) +

∣∣∣∣
∫ t2

t1
g(s, x(s))ds

∣∣∣∣
+

∣∣∣∣ 1

�(α)

∫ t1

0

(
(t1 − s)α−1 − (t2 − s)α−1

)
f (s, x(s))ds

∣∣∣∣
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+
∣∣∣∣ 1

�(α)

∫ t2

t1
(t2 − s)α−1 f (s, x(s))ds

∣∣∣∣
≤ (

θ2 + c0 + cg
)
(t2 − t1) + c f

�(α + 1)

(
tα2 − tα1 + 2 (t2 − t1)

α
)

≤
(

θ2 + c0 + cg + 2c f

�(α + 1)

)
δ + 2c f δ

α

�(α + 1)

< ε.

Therefore, �(C) is equicontinuous. The Arzelè-Ascoli Theorem implies that � :
C −→ X is compact. The only thing to apply Schauder fixed point is to prove that
�(C) ⊆ C. Let x ∈ C, then by hypotheses, we have

(�x) (t) = θ1 + (θ2 − g (0, θ1)) t +
∫ t

0
g (s, x (s)) ds

+ 1

�(α)

∫ t

0
(t − s)α−1 f (s, x(s))ds

≤ θ1 + (θ2 − g (0, θ1)) t +
∫ t

0
g

(
s, x∗ (s)

)
ds

+ 1

�(α)

∫ t

0
(t − s)α−1U (s, x(s))ds

≤ θ1 + (θ2 − g (0, θ1)) t +
∫ t

0
g

(
s, x∗ (s)

)
ds

+ 1

�(α)

∫ t

0
(t − s)α−1U (s, x∗(s))ds

≤ x∗(t),

and

(�x) (t) = θ1 + (θ2 − g (0, θ1)) t +
∫ t

0
g (s, x (s)) ds

+ 1

�(α)

∫ t

0
(t − s)α−1 f (s, x(s))ds

≥ θ1 + (θ2 − g (0, θ1)) t +
∫ t

0
g (s, x∗ (s)) ds

+ 1

�(α)

∫ t

0
(t − s)α−1 L(t, x(s))ds

≥ θ1 + (θ2 − g (0, θ1)) t +
∫ t

0
g (s, x∗ (s)) ds

+ 1

�(α)

∫ t

0
(t − s)α−1 L(t, x∗(s))ds

≥ x∗(t).
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Hence, x∗(t) ≤ (�x) (t) ≤ x∗(t), t ∈ [0, T ], that is, �(C) ⊆ C. According to
Schauder fixed point theorem, the operator � has at least one fixed point x ∈ C.
Therefore, the FDE (1.1) has at least one positive solution x ∈ X and x∗(t) ≤ x(t) ≤
x∗(t), t ∈ [0, T ]. 	


Next, we consider many particular cases of the previous theorem.

Corollary 3.2 Assume that there exist continuous functions k1, k2, k3 and k4 such that

0 < k1(t) ≤ g(t, x(t)) ≤ k2(t) < ∞, (t, x(t)) ∈ [0, T ] × [0,+∞),

θ2 ≥ k1(0), θ2 ≥ k2(0), (3.2)

and

0 < k3(t) ≤ f (t, x(t)) ≤ k4(t) < ∞, (t, x(t)) ∈ [0, T ] × [0,+∞). (3.3)

Then, the FDE (1.1) has at least one positive solution x ∈ X. Moreover,

θ1 + (θ2 − k1(0)) t +
∫ t

0
k1(s)ds + I αk3(t)

≤ x(t)

≤ θ1 + (θ2 − k2(0)) t +
∫ t

0
k2(s)ds + I αk4(t). (3.4)

Proof By the given assumption (3.3) and the definition of control function, we have
k3(t) ≤ L(t, x) ≤ U (t, x) ≤ k4(t), (t, x(t)) ∈ [0, T ] × [a, b]. Now, we consider the
equations {

C Dαx(t) = k3(t) +C Dα−1k1 (t) , x(0) = θ1, x ′(0) = θ2,

C Dαx(t) = k4(t) +C Dα−1k2 (t) , x(0) = θ1, x ′(0) = θ2.
(3.5)

Obviously, Eq. (3.5) are equivalent to

x(t) = θ1 + (θ2 − k1(0)) t +
∫ t

0
k1(s)ds + I αk3(t),

x(t) = θ1 + (θ2 − k2(0)) t +
∫ t

0
k2(s)ds + I αk4(t).

Hence, the first implies

x(t) − θ1 − (θ2 − k1(0)) t −
∫ t

0
k1(s)ds = I αk3(t) ≤ I α(L(t, x(t))),

and the second implies

x(t) − θ1 − (θ2 − k2(0)) t −
∫ t

0
k2(s)ds = I αk4(t) ≥ I α(U (t, x(t))),
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which are the upper and lower solutions of Eq. (3.5), respectively. An application of
Theorem 3.1 yields that the FDE (1.1) has at least one solution x ∈ X and satisfies
Eq. (3.4). 	

Corollary 3.3 Assume that (3.2) holds and 0 < σ < k(t) = limx→∞ f (t, x) < ∞
for t ∈ [0, T ]. Then the FDE (1.1) has at least a positive solution x ∈ X.

Proof By assumption, if x > ρ > 0, then 0 ≤ | f (t, x) − k(t)| < σ for any t ∈ [0, T ].
Hence, 0 < k(t) − σ ≤ f (t, x) ≤ k(t) + σ for t ∈ [0, T ] and ρ < x < +∞. Now
if max { f (t, x) : t ∈ [0, T ], x ≤ ρ} ≤ ν, then k(t) − σ ≤ f (t, x) ≤ k(t) + σ + ν

for t ∈ [0, T ], and 0 < x < +∞. By Corollary 3.3, the FDE (1.1) has at least one
positive solution x ∈ X satisfying

θ1 + (θ2 − k1 (0)) t +
∫ t

0
k1(s)ds + I αk(t) − σ tα

�(α + 1)

≤ x(t)

≤ θ1 + (θ2 − k2 (0)) t +
∫ t

0
k2(s)ds + I αk(t) + (σ + ν) tα

�(α + 1)
.

	

Corollary 3.4 Assume that 0 < σ < f (t, x(t)) ≤ γ x(t) + η < ∞ for t ∈ [0, T ],
and σ , η and γ are positive constants. Then, the FDE (1.1) has at least one positive
solution x ∈ C ([0, δ]), where 0 < δ < 1.

Proof Consider the equation

{
C Dαx(t) −C Dα−1g (t, x(t)) = γ x(t) + η, 0 < t ≤ T,

x(0) = θ1 > 0, x ′(0) = θ2 > 0.
(3.6)

Equation (3.6) is equivalent to integral equation

x(t) = θ1 + (θ2 − g (0, θ1)) t +
∫ t

0
g (s, x (s)) ds

+ 1

�(α)

∫ t

0
(t − s)α−1 (γ x(s) + η) ds

= θ1 + (θ2 − g (0, θ1)) t +
∫ t

0
g (s, x (s)) ds

+ ηtα

�(α + 1)
+ γ

�(α)

∫ t

0
(t − s)α−1 x(s)ds.

Let ω and φ be positive real numbers. Choose an appropriate δ ∈ (0, 1) such that

0 <
γδα

�(α+1) < φ < 1 and ω > (1 − φ)−1
(
θ1 + (

θ2 + c0 + cg
)
δ + ηδα

�(α+1)

)
. Then

if 0 ≤ t ≤ δ, the set Bω = {x ∈ X : |x(t)| ≤ ω, 0 ≤ t ≤ δ} is convex, closed, and
bounded subset of C ([0, δ]). The operator F : Bω −→ Bω given by
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(Fx) (t) = θ1 + (θ2 − g (0, θ1)) t +
∫ t

0
g (s, x (s)) ds

+ ηtα

�(α + 1)
+ γ

�(α)

∫ t

0
(t − s)α−1 x(s)ds,

is compact as in the proof of Theorem 3.1. Moreover,

|(Fx) (t)| ≤ θ1 + (
θ2 + c0 + cg

)
T + ηT α

�(α + 1)
+ γ T α

�(α + 1)
‖x‖ .

If x ∈ Bω, then

|(Fx) (t)| ≤ (1 − φ) ω + φω = ω,

that is ‖Fx‖ ≤ ω. Hence, the Schauder fixed theorem ensures that the operator F
has at least one fixed point in Bω, and then Eq. (3.6) has at least one positive solution
x∗(t), where 0 < t < δ. Therefore, if t ∈ [0, T ] one can asserts that

x∗(t) = θ1 + (θ2 − g (0, θ1)) t +
∫ t

0
g

(
s, x∗(s)

)
ds

+ ηtα�(α + 1)

+
γ

�(α)

∫ t

0
(t − s)α−1 x∗(s)ds.

The definition of control function implies

U (t, x∗(t)) ≤ γ x∗(t) + η =C Dαx∗(t) −C Dα−1g
(
t, x∗(t)

)
,

then x∗ is an upper positive solution of the FDE (1.1). Moreover, one can consider

x∗(t) = θ1 + (θ2 − g (0, θ1)) t +
∫ t

0
g (s, x∗(s)) ds + σ tα

�(α + 1)

as a lower positive solution of Eq. (1.1). By Theorem 3.1, the FDE (1.1) has at least
one positive solution x ∈ C ([0, δ]), where 0 < δ < 1 and x∗(t) ≤ x(t) ≤ x∗(t). 	


The last result is the uniqueness of the positive solution of (1.1) using Banach
contraction principle.

Theorem 3.5 Assume that (H1) and (H2) are satisfied and

(
Tβ1 + β2T α

�(α + 1)

)
< 1. (3.7)

Then the FDE (1.1) has a unique positive solution x ∈ C.
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Proof FromTheorem3.1, it follows that the FDE (1.1) has at least one positive solution
in C. Hence, we need only to prove that the operator defined in (3.1) is a contraction
on X . In fact, for any x, y ∈ X , we have

|(�x) (t) − (�y) (t)|
≤

∫ t

0
|g (s, x (s)) − g (s, y (s))| ds

+ 1

�(α)

∫ t

0
(t − s)α−1 | f (s, x(s)) − f (s, y(s))| ds

≤
(
Tβ1 + β2T α

�(α + 1)

)
‖x − y‖ .

Hence, the operator� is a contraction mapping by (3.7). Therefore, the FDE (1.1) has
a unique positive solution x ∈ C. 	


Finally, we give an example to illustrate our results.

Example 3.6 We consider the nonlinear fractional differential equation

{
C D

5
4 x(t) −C D

1
4

x(t)
3+x(t) = 1

1+t

(
1 + t x(t)

2+x(t)

)
, 0 < t ≤ 1,

x(0) = 1, x ′(0) = θ2 ≥ 1,
(3.8)

where θ1 = 1, T = 1, g (t, x) = x
3+x and f (t, x) = 1

1+t

(
1 + t x

2+x

)
. Since g is

non-decreasing on x ,

lim
x−→∞

x

3 + x
= lim

x−→∞
1

1 + t

(
1 + t x

2 + x

)
= 1,

and

1

3
≤ g(t, x) ≤ 1,

1

2
≤ 1

2

(
1 + t x

2 + x

)
≤ f (t, x) ≤ 1 + t x

2 + x
≤ 1 + t ≤ 2,

for (t, x) ∈ [0, 1]× [0,+∞), hence by any of the above Corollaries, the Eq. (3.8) has
a positive solution. Also, we have

Tβ1 + β2T α

�(α + 1)
= 5

6
< 1,

then by Theorem 3.5, the Eq. (3.8) has a unique positive solution.
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