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Abstract The paper aims to study two classes of linear positive operators represent-
ing modifications of Picard and Gauss operators. The new operators reproduce both
constants and a given exponential function. Approximation properties in polynomial
weighted spaces are investigated and the speed of convergence is measured using a
certain weightedmodulus of smoothness. Also, the asymptotic behavior of the integral
operators are established. Finally, aspects on generalized convexity are analyzed.
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1 Introduction

The study of the linear methods of approximation, which are given by sequences of
linear positive operators, became a strongly ingrained part of Approximation Theory.
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Due to their special properties, over time, these approximation processes have been
proved very useful in approximating various signals. Our paper will bring into light
two sequences of integral operators known in the literature as Picard (Pn, n ≥ 1),
respectively Gauss (Wn, n ≥ 1) operators. Their classical forms are described by the
following formulas

(Pn f )(x) = n

2

∫
R

f (x + t)e−n|t |dt, x ∈ R, (1)

(Wn f )(x) =
√

n

π

∫
R

f (x + t)e−nt2dt, x ∈ R, (2)

where the function f is selected such that the integrals are finite.
These operators have been investigated in several works. We mention the

monograph [2] and the references therein. By using probabilistic schemes, Gauss-
Weierstrass operators are reconstructed in [1, Section 5.2.9]. For each n ∈ N, both
operators are linear and positive. Moreover,

(Pne0)(x) = (Wne0)(x) = 1, x ∈ R, (3)

where e0 represents the constant function on R of constant value 1.
Throughout the paper e j stands for monomial of j-degree, e j (t) = t j , t ∈ R.
We amend the classical operators defined by (1) and (2), such that they will be

able to reproduce not only e0 but also a certain exponential function. The proposed
generalizations of the above operators are defined as follows:

(P∗
n f )(x) =

√
n

2

∫
R

f (αn(x) + t)e−√
n|t |dt, n ≥ na, x ∈ R, (4)

and

(W ∗
n f )(x) =

√
n

π

∫
R

f (βn(x) + t)e−nt2dt, n ∈ N, x ∈ R, (5)

where

αn(x) = x − 1

2a
log

(
n

n − 4a2

)
, n ≥ na, (6)

βn(x) = x − a

2n
, n ≥ 1, (7)

and a > 0. In the above na = [4a2]+1, [·] indicating the integer part function or the so-
called floor function. The domains of the sequences P∗ = (P∗

n )n≥na ,W
∗ = (W ∗

n )n≥1
are denoted by F(P∗) and F(W ∗), respectively.

Also, we introduce the function ϕa given by formula

ϕa(x) = e2ax , x ∈ R. (8)
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For a tending to zero, the original versions of the operators are reobtained.
Relating to operators defined by (4) and (5) we study their approximation proper-

ties in polynomial weighted spaces including Voronovskaja-type formulas. The final
section is devoted to bringing to light properties of these operators that spring from
the notion of generalized convexity.

2 Preliminary results

At first we calculate all the moments of both classes of operators.

Lemma 1 Let P∗
n , n ≥ na, be the operators given at (4) and (6). For each integer p,

p ≥ 0, we have

(P∗
n ep)(x) =

[p/2]∑
s=0

(2s)!
ns

(
p

2s

)
α
p−2s
n (x), x ∈ R. (9)

Proof Setting Ik = ∫
R
tke−√

n|t |dt , for k odd we deduce Ik = 0. For k even, k = 2s,
we obtain

I2s = 2
(2s)!(√
n
)2s+1 , 0 ≤ 2s ≤ p. (10)

Further,

(P∗
n ep)(x) =

√
n

2

∫
R

p∑
k=0

(
p

k

)
α
p−k
n (x)tke−√

n|t |dt

= √
n

[p/2]∑
s=0

(
p

2s

)
α
p−2s
n (x)

(2s)!(√
n
)2s+1 ,

and thus we arrive at relation (9). ��
As particular cases we obtain

P∗
n e0 = e0, P∗

n e1 = αn, P∗
n e2 = α2

n + 2

n
. (11)

Lemma 2 Let W ∗
n , n ≥ 1, be the operators given at (5) and (7). The moments of these

operators have the following values

(W ∗
n e0)(x) = 1, (W ∗

n e1)(x) = βn(x), (12)

(W ∗
n ep)(x) = β

p
n (x) +

[p/2]∑
s=1

(2s − 1)!!
(2n)s

(
p

2s

)
β
p−2s
n (x), p ≥ 2,

where x ∈ R.
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Proof For p = 0 and p = 1 identities are established immediately. Let p ≥ 2 be
fixed. Setting Jk = ∫

R
tke−nt2dt , for k odd we get Jk = 0. For k even, k = 2s, we

have

J2s = (2s − 1)!!
(2n)s

J0 and J0 =
√

π

n
, (13)

where s ∈ N, 1 ≤ 2s ≤ p.
Further we can write

(W ∗
n ep)(x) =

√
n

π

⎛
⎝β

p
n (x)J0 +

[p/2]∑
s=1

(
p

2s

)
β
p−2s
n (x)J2s

⎞
⎠

which leads us to the desired relation. ��

As particular case we obtain

W ∗
n e2 = β2

n + 1

2n
. (14)

Denoting byμr (Ln; ·) the central moment of r order of the operator Ln , this means
μr (Ln, x) = Ln((· − x)r ; x), r = 0, 1, 2, . . ., we can enunciate

Lemma 3 Let P∗
n and W ∗

n be the operators defined by (4) and (5), respectively.

(i) μ0(P∗
n ; x) = 1,μ1(P∗

n ; x) = αn(x)−x,μ2(P∗
n ; x) = (αn(x)−x)2+ 2

n
, n ≥ na,

(ii) μ0(W ∗
n ; x) = 1, μ1(W ∗

n ; x) = βn(x) − x, μ2(W ∗
n ; x) = (βn(x) − x)2 + 1

2n
,

n ≥ 1,

where αn and βn are defined by (6) and (7), respectively.

Proof All the above identities are implied by relations (11), (12) and (14). ��

Lemma 4 Let P∗
n and W ∗

n be the operators defined by (4) and (5), respectively. The
following relations take place:

(i) μ6(P∗
n ; x) = (αn(x) − x)6 + 30

n
(αn(x) − x)4 + 360

n2
(αn(x) − x)2 + 720

n3
,

(ii) μ6(W ∗
n ; x) = (βn(x) − x)6 + 15

2n
(βn(x) − x)4 + 45

4n2
(βn(x) − x)2 + 15

8n3
,

(iii) lim
n→∞

μ6(P∗
n ; x)

μ2(P∗
n ; x) = 0, lim

n→∞
μ6(W ∗

n ; x)
μ2(W ∗

n ; x) = 0.
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Proof (i)

μ6(P
∗
n ; x) =

√
n

2

∫
R

((αn(x) − x) + t)6e−√
n|t |dt

= (αn(x) − x)6(P∗
n e0)(x) +

√
n

2
(15(αn(x) − x)4 I2

+15(αn(x) − x)2 I4 + I6),

where I2s , s ∈ N, are indicated at (10).
(ii) μ6(W ∗

n ; x) is computed in the same manner taking into account the relation (13).
(ii) For the sake of simplicity, we denote αn(x) − x = an , where

an = − 1

2a
log

(
n

n − 4a2

)
, n ≥ na .

We get

μ6(P∗
n ; x)

μ2(P∗
n ; x) = a6n + 30n−1a4n + 360n−2a2n + 720n−3

a2n + 2n−1 , n ≥ na .

Since limn→∞ an = 0 and limn→∞ na2n = 0, the shown identity occurs. Similarly
we proceed to second limit.

��

3 Weighted approximation

For proceed further, we need a result due to Gadzhiev [3]. The author considered a
continuous and strictly increasing function ϕ defined onR and ρ(x) = 1+ϕ2(x) such
that limx→±∞ ρ(x) = ∞.

Set

Bρ(R) = { f : R → R : | f (x)| ≤ M f ρ(x)},

where M f is a constant depending on f ,

Cρ(R) = Bρ(R) ∩ C(R),

C∗
ρ(R) =

{
f ∈ Cρ(R) : lim|x |→∞

f (x)

ρ(x)
exists and it is finite

}
.

If the space Bρ(R) is endowed with the norm ‖ · ‖ρ defined by

‖ f ‖ρ = sup
x∈R

| f (x)|
ρ(x)

, (15)

then the same norm is considered in the other two spaces defined above.
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Theorem 1 [3, Theorem 2] Let (An)n≥1 be a sequence of linear positive operators
mapping Cρ(R) into Bρ(R). If

lim
n→∞ ‖Anϕ

ν − ϕν‖ρ = 0, ν = 0, 1, 2, (16)

then, for any f ∈ C∗
ρ(R) we have

lim
n→∞ ‖An f − f ‖ρ = 0. (17)

Our aim is to study the approximation property of P∗
n and W ∗

n operators on some
weighted spaces. We consider a weight commonly used in defining spaces of function
with polynomial growth. We choose

ϕ(x) = x and ρ(x) = 1 + x2, x ∈ R. (18)

This choice meets the conditions specified formerly.

Theorem 2 Let P∗
n , n ≥ na, be the operators defined by (4) and (6). For each f ∈

C∗
ρ(R) the following relation

lim
n→R

‖P∗
n f − f ‖ρ = 0 (19)

holds, where ρ is stated at (18).

Proof Based on (15), for linear positive operators P∗
n defined on Cρ(R), we have

|(P∗
n f )(x)| ≤ ‖ f ‖ρ(P∗

n ρ)(x), x ∈ R.

Lemma 1 guarantees that our operators map Cρ(R) into Cρ(R) ⊂ Bρ(R).
We check the three conditions of relation (16).
Since P∗

n e0 = e0, for ν = 0 the condition is fulfilled.
For ν = 1, on the basis of (11), we have

‖P∗
n e1 − e1‖ρ = sup

x∈R
|(P∗

n e1)(x) − x |
1 + x2

= sup
x∈R

∣∣∣ 1
2a log

n
n−4a2

∣∣∣
1 + x2

≤ 1

2a
log

n

n − 4a2
.

Consequently, limn→∞ ‖P∗
n e1 − e1‖ρ = 0.
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Finally, for ν = 2, on the basis of (11), we get

‖P∗
n e2 − e2‖ρ = sup

x∈R

∣∣∣∣
(
x − 1

2a log
n

n−4a2

)2 + 2
n − x2

∣∣∣∣
1 + x2

= sup
x∈R

∣∣∣− x
a log

n
n−4a2

+ 1
4a2

log2 n
n−4a2

+ 2
n

∣∣∣
1 + x2

≤ 1

a
log

n

n − 4a2
+ 1

4a2
log2

n

n − 4a2
+ 2

n
.

Again, limn→∞ ‖P∗
n e2 − e2‖ρ = 0.

In view of Theorem 1, relation (19) follows. ��
Following the same route and using relations (12) and (14) we can formulate

Theorem 3 Let W ∗
n , n ≥ 1, be the operators defined by (5) and (7). For each f ∈

C∗
ρ(R) the following relation

lim
n→∞ ‖W ∗

n f − f ‖ρ = 0

holds, where ρ is stated at (18).

4 Quantitative Voronovskaja formulas

In this section we establish the asymptotic behavior for our operators.
In order to measure the rate of convergence on C∗

ρ(R) we use a weighted modulus
of smoothness. Following [4] we consider

�( f, δ) = sup
x∈R|h|≤δ

| f (x + h) − f (x)|
(1 + h2)(1 + x2)

, f ∈ C∗
ρ(R). (20)

Among its properties we recall the following: limδ→0+ �( f, δ) = 0, �( f, ·) is an
increasing function and for each λ > 0

�( f, λδ) ≤ 2(1 + λ)(1 + δ2)�( f, δ). (21)

Lemma 5 For each f ∈ C∗
ρ(R) let�( f, ·) be defined by (20). For any (t, x) ∈ R×R

and any δ > 0 the following relation

| f (t) − f (x)| ≤ 4

(
1 + (t − x)4

δ4

)
(1 + δ2)2(1 + x2)�( f, δ). (22)

holds.
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Proof Let δ > 0 be arbitrary fixed and (x, t) ∈ R × R. Set t − x = h.

| f (t) − f (x)|
(1 + (t − x)2)(1 + x2)

≤ sup
x∈R|h|=|t−x |

| f (x + h) − f (x)|
(1 + h2)(1 + x2)

≤ sup
x∈R

|̃h|≤|t−x |

| f (x + h̃) − f (x)|
(1 + h̃2)(1 + x2)

= �( f, |t − x |)

≤ 2

(
1 + |t − x |

δ

)
(1 + δ2)�( f, δ).

In the last increase we used (21) with λ := |t − x |/δ. We got

| f (t) − f (x)| ≤ 2

(
1 + |t − x |

δ

)
(1 + (t − x)2)(1 + x2)(1 + δ2)�( f, δ).

If we prove

(
1 + |t − x |

δ

)
(1 + (t − x)2) ≤ 2

(
1 + (t − x)4

δ4

)
(1 + δ2), (23)

i.e., (1 + y)(1 + (t − x)2) ≤ 2(1 + y4)(1 + δ2), where y = |t − x |/δ, then (22) is
true. We justify (23) on two cases.

For y ≤ 1, (1 + y)(1 + (t − x)2) ≤ 2(1 + δ2) and (23) is evident.
For 1 < y, (1 + y)(1 + (t − x)2) ≤ 2y(y2 + δ2y2) = 2y3(1 + δ2) and again (23)

is true. The proof is completed. ��
Theorem 4 Let P∗

n , n ≥ na, be given by (4) and (6). Let f ∈ C∗
ρ(R) such that f is

twice differentiable and f ′, f ′′ belong to C∗
ρ(R). For any x ∈ R we have

(i)

|n((P∗
n f )(x) − f (x)) + 2a f ′(x) − f ′′(x)| ≤ |An(x)|| f ′(x)|

+|Bn(x)|| f ′′(x)| + 16n(1 + x2)μ2(P
∗
n ; x)�

(
f ′′; 4

√
μ6(P∗

n ; x)
μ2(P∗

n ; x)

)
,

where

An(x) = nμ1(P
∗
n ; x) + 2a and Bn(x) = n

2
μ2(P

∗
n ; x) − 1.

(ii) lim
n→∞ n((P∗

n f )(x) − f (x)) = −2a f ′(x) + f ′′(x).

Proof (i) Let x be arbitrarily fixed and t ∈ R. By Taylor’s formula with Lagrange
form of the remainder, we have

f (t) = f (x) + (t − x) f ′(x) + (t − x)2

2
f ′′(x) + (t − x)2

2
h(ξt,x ), (24)
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where ξt,x is a certain real number between t and x . In the above

h(ξt,x ) = f ′′(ξt,x ) − f ′′(x) (25)

is a continuous function. If t → x , then ξt,x → x and h vanishes at x . Applying
the operator P∗

n to both sides of identity (24), knowing that P∗
n e0 = e0, we obtain

(P∗
n f )(x) − f (x) = μ1(P

∗
n ; x) f ′(x) + μ2(P

∗
n ; x) f ′′(x)

2
+ 1

2
P∗
n ((· − x)2h; x).

This identity can be rewritten in the following way

|n((P∗
n f )(x) − f (x)) + 2a f ′(x) − f ′′(x)|

≤ |An(x)|| f ′(x)| + |Bn(x)|| f ′′(x)| + n

2
P∗
n ((· − x)2|h|, x). (26)

By using both (24) and (22) applied for f ′′, we get

|h(ξt,x )| = | f ′′(ξt,x ) − f ′′(x)| ≤ 4

(
1 + (t − x)4

δ4

)
(1 + δ2)(1 + x2)�( f ′′; δ)

and, in the factor (1 + δ2)2 considering δ ≤ 1, we can write

nP∗
n ((· − x)2|h|; x) ≤ 16n(1 + x2)μ2(P

∗
n ; x)

(
1 + μ6(P∗

n ; x)
δ4μ2(P∗

n ; x)
)

�( f ′′; δ).

Further, a rank N1 ≥ na exists such that for any n ≥ N1 we can choose
δ4 = μ6(P∗

n ; x)/μ2(P∗
n ; x) ≤ 1. This choice is allowed because of Lemma 4(iii).

Returning at (26) the required inequality is proved.
(ii) Easily obtain

lim
n→∞ An(x) = 0, lim

n→∞ Bn(x) = 0, lim
n→∞ nμ2(P

∗
n ; x) = 2

and taking into account Lemma 4(iii), the statement follows.
��

Theorem 5 Let W ∗
n , n ≥ 1, be given by (5) and (7). Let f ∈ C∗

ρ(R) such that f is
twice differentiable and f ′, f ′′ belong to C∗

ρ(R). For any x ∈ R we have

(i)

∣∣∣∣n((W ∗
n f )(x) − f (x)) + a

2
f ′(x) − 1

4
f ′′(x)

∣∣∣∣ ≤ |Cn(x)|| f ′(x)|

+|Dn(x)|| f ′′(x)| + 16n(1 + x2)μ2(W
∗
n ; x)�

(
f ′′; 4

√
μ6(W ∗

n ; x)
μ2(W ∗

n ; x)

)
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where

Cn(x) = nμ1(W
∗
n ; x) + a

2
and Dn(x) = n

2
μ2(W

∗
n ; x) − 1

4
.

(ii) lim
n→∞ n((P∗

n f )(x) − f (x)) = −a

2
f ′(x) + 1

4
f ′′(x).

For achieving the proof we appeal, inter alia, at relation (24), the central moments
μk(W ∗

n ; ·), k ∈ {1, 2}, Lemmas 4 and 6. Actually, the technique proceed with argu-
ments identical with those used in the proof of Theorem 4, consequently we omit
it.

5 A property implied by generalized convexity

Lemma 6 The operators P∗
n , n ≥ na, and W ∗

n , n ≥ 1, reproduce the function ϕa

defined by (8).

Proof We have

(P∗
n ϕa)(x) = e2aαn(x)

√
n

2

∫
R

e2at−
√
n|t |dt

= e2aαn(x) n

n − 4a2
= ϕa(x).

Similarly, relation (W ∗
n ϕa)(x) = ϕa(x) is deduced by direct calculation. ��

This way, we infer that besides the function e0, function ϕa is also a fixed point for
all operators P∗

n , n ≥ na , and W ∗
n , n ≥ 1. Further, we use the couple (e0, ϕa).

On the basis of [5, Definition 2] and taken in view Ziegler’s remark [5, page 426]
we present the following

Definition A function f defined on R is said to be convex with respect to (e0, ϕa),
provided

∣∣∣∣∣∣
1 1 1

ϕa(x1) ϕa(x2) ϕa(x3)
f (x1) f (x2) f (x3)

∣∣∣∣∣∣ ≥ 0, −∞ < x1 < x2 < x3 < ∞. (27)

The set of functions satisfying (27) is denoted by C(e0, ϕa).

Theorem 6 Let the operators P∗
n , n ≥ na, W ∗

n , n ≥ 1, be given. For every function
f ∈ C(R) ∩ C(e0, ϕa), we have

(P∗
n f )(x) ≥ f (x) and (W ∗

n f )(x) ≥ f (x), x ∈ R.

Proof Since our operators reproduce the functions e0 and ϕa , we can apply Theorem
2 of the paper [5]. We are considering the fact that this result of Ziegler also works
for functions defined on unbounded intervals. We emphasize that the condition to be
e0 and ϕa fixed points for our operators are indispensable [5, Theorem 3]. ��



On two classes of approximation processes of integral type 1199

References

1. Altomare, F., Campiti, M.: Korovkin-type Approximation Theory and its Applications, de Gruyter
Studies in Mathematics, vol. 17. Walter de Gruyter, Berlin (1994)

2. Butzer, P.L., Nessel, R.J.: Fourier Analysis and Approximation, Vol. I: One-Dimensional Theory.
Birkhäuser, Basel (1971)

3. Gadzhiev, A.D.: Theorems of Korovkin type. Math. Notes 20(5), 995–998 (1676)
4. Ispir, N.: On modified Baskakov operators on weighted spaces. Turkish J. Math. 25, 355–365 (2001)
5. Ziegler, Z.: Linear approximation and generalized convexity. J. Approx. Theory 1, 420–443 (1968)


	On two classes of approximation processes of integral type
	Abstract
	1 Introduction
	2 Preliminary results
	3 Weighted approximation
	4 Quantitative Voronovskaja formulas
	5 A property implied by generalized convexity
	References




