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Abstract We consider interval valued functions with values in a Banach lattice E .
Certain notions of continuity introduced earlier for real interval valued functions are
generalised to the more general case considered here. As an application, we charac-
terise the Dedekind completion of the space of continuous, E-valued functions on a
paracompact T1-space, extending a result of Anguelov.
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1 Introduction

The field of interval analysis, more accurately the analysis of interval valued functions,
was initiated in the 1960s by Moore [27]. While this field is traditionally associated
with numerical analysis and validated computing [27,28], it has found a number of
applications in other branches ofmathematics. Indeed,methods of interval analysis are
widely used in approximation theory [7,30], nonsmooth and nonlinear analysis [9,13],
differential equations and inclusions [3,8,12,17,21], convex analysis [13,29], nonlin-
ear partial differential equations [4], functional analysis [1,5] and optimization and
optimal control theory [13,21]. Furthermore, interval analysis, and set-valued analysis
in general, provide useful methods for the design and analysis of mathematical mod-
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els in the life sciences. Markov [23] argues that biological dynamic systems typically
involve uncertain data and / or parameters, numerical and / or inherent sensitivity, and
structural uncertainties which necessitate model validation. Problems related to these
issues of uncertainty and sensitivity, including computing enclosures for sets of solu-
tions [23] and estimation of parameter ranges [15], essentially belong to set-valued
analysis in general and are often addressed within the setting of interval analysis. We
refer the reader to [23] for more details.

A recent, nontrivial application of interval analysis to functional analysis concerns
the characterisation of the Dedekind completion of the Riesz space C(X) of all con-
tinuous, real valued functions on a completely regular topological space X , see [1,15].
The aim of this paper is to generalise this characterisation of the Dedekind comple-
tion of C(X) by showing that, for a paracompact T1-space X and a Banach lattice
E with order continuous norm, the Dedekind completion of C(X, E) is represented
concretely as the setH(X, E) of Hausdorff continuous E-interval valued functions on
X . In order to do so, some of the fundamental concepts and results of interval analysis
are extended to the setting of Banach lattice valued functions. In particular, central
notions of continuity of real interval valued functions are considered in the setting of
functions with values closed order intervals in a Banach lattice.

The paper is organised as follows. In Sect. 2, we extend a result of Ercan and
Wickstead [16] on semi-continuous functions with values in a Banach lattice, and
obtain some new results which are used in subsequent sections. These results are
mostly simple generalisations of well known results for real valued functions. Section
3 deals with the generalisation of the so called Upper and Lower Baire Operators to the
setting of vector valued functions. Thebasic properties of these operators are discussed,
in particular their relation to semi-continuity of vector valued functions. Vector valued
interval functions are considered in Sect. 4. We pay special attention to the space of
Hausdorff continuous functions, and generalise some of the important properties of
these functions to the vector valued context. The space H(X, E) is shown to be a
Dedekind complete Riesz space in Sect. 5. This is nontrivial, even in the scalar valued
case, asH(X, E) is not closed under pointwise operations on functions (addition, finite
infima and suprema). The main result of this paper, namely, a characterisation of the
Dedekind completion of C(X, E), is presented in Sect. 6. The relationship between
Hausdorff continuous interval valued functions and minimal upper semi-continuous
compact valued maps is discussed in Sect. 7.

Throughout the paper, X and Y denote (nonempty) topological spaces, with Vx

denoting the set of open neighbourhoods of x ∈ X . A set-valued map � from a set
A into another set B is a function from A into the powerset of B, and is denoted
� : ⇒ B. E is a nontrivial (real) Banach lattice. For u ∈ E and r > 0, the ball
centred at u with radius r is denoted by B(u, r). The closure of a set A is denoted
by A. The reader is referred to [22,25] for terminology and notation relating to Riesz
spaces and Banach lattices in particular.

2 Semi-continuous functions

Ercan and Wickstead [16] generalised the concepts of real valued lower and upper
semi-continuous functions to functions taking values in a Banach lattice. The aim of
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this section is to generalise certain results from [16] concerning such vector val-
ued semi-continuous functions. In particular, [16, Theorem 5.7] and some of its
consequences remain valid in a more general setting than that considered by Ercan
and Wickstead. Further results on vector valued semi-continuous functions that are
required for later use are also included.

Let A(X, E) denote the set of all E-valued functions on X .

Definition 2.1 A function ϕ ∈ A(X, E) is upper semi-continuous if ϕ−1(U − E+)

is open in X whenever U is open in E .

Definition 2.2 A function ϕ ∈ A(X, E) is lower semi-continuous if ϕ−1(U + E+)

is open in X whenever U is open in E .

Denote byU(X, E) andL(X, E) the sets of all upper semi-continuous, respectively
lower semi-continuous, functions in A(X, E). The sets U(X, E) and L(X, E) are
closed under (pointwise) addition and multiplication by positive scalars; that is, for
all ϕ,ψ ∈ A(X, E) and every real number α ≥ 0,

ϕ,ψ ∈ U(X, E) ⇒ ϕ + ψ, αϕ ∈ U(X, E) (2.1)

and

ϕ,ψ ∈ L(X, E) ⇒ ϕ + ψ, αϕ ∈ L(X, E). (2.2)

On the other hand, if α < 0, then

ϕ ∈ U(X, E) ⇒ αϕ ∈ L(X, E), ψ ∈ L(X, E) ⇒ αψ ∈ U(X, E). (2.3)

The mentioned results from [16] are based on a selection theorem of Asimow and
Atkinson [6], which in turn is an application of Michael’s classical Selection Theorem
[26]. In order to generalise the relevant results from [16] it is sufficient to prove a
correspondingly more general version of the selection theorem [6, Corollary 1.3], see
also [16, Theorem 5.6].

Theorem 2.3 Let X be a paracompact T1-space, F a Banach space and � : X ⇒ F
a set-valued map with closed, nonempty and convex values. Suppose that for every
ε > 0 there exists a lower semi-continuous map �ε : X ⇒ F with closed, convex and
nonempty values so that �(x) ⊆ �ε(x) ⊆ �(x) + B(0, ε) for all x ∈ X. Then there
exists a continuous function ϕ : X → F so that ϕ(x) ∈ �(x) for every x ∈ X.

Proof ApplyingMichael’s SelectionTheorem [26, Theorem3.2”] to�2−1 , there exists
a continuous function ϕ1 : X → F so that ϕ1(x) ∈ �2−1(x) ⊆ �(x) + B(0, 2−1) for
every x ∈ X . For each natural number n ≥ 1, let

�′
2−(n+1) (x) = B(ϕn(x), 2−n) ∩ �2−(n+1) (x), x ∈ X.

Then ∅ 
= �′
2−(n+1) (x) ⊆ �(x)+ B(0, 2−(n+1)) is closed and convex for every x ∈ X .

By [26, Propositions 2.3 & 2.5], �′
2−(n+1) is lower semi-continuous. Therefore we
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may apply Michael’s Selection Theorem to �′
2−(n+1) to find a continuous function

ϕn+1 : X → F so that ϕn+1(x) ∈ �′
2−(n+1) (x) ⊆ �(x) + B(0, 2−(n+1)) for every

x ∈ X . Since �′
2−(n+1) (x) ⊆ B(ϕn(x), 2−n) for every x ∈ X and n ∈ N, it follows

that ‖ϕn+1(x) − ϕn(x)‖ < 2−n for every x ∈ X and n ∈ N. Therefore the sequence
(ϕn) is uniformly Cauchy so that (ϕn) converges uniformly to a continuous function
ϕ : X → F . Since �(x) is closed in F , and ϕn(x) ∈ �(x) + B(0, 2−n) for every
x ∈ X and n ∈ N, it follows that ϕ(x) ∈ �(x) for every x ∈ X . �

The following results now follow in exactly the same way as the corresponding
results in [16].

Corollary 2.4 Let X be a paracompact T1-space and E a Banach lattice. If ϕ0 ∈
U(X, E) and ϕ1 ∈ L(X, E) and ϕ0 ≤ ϕ1, then there exists a continuous function
ψ : X → E so that ϕ0 ≤ ψ ≤ ϕ1.

Corollary 2.5 Let X be a paracompact T1-space, E a Banach lattice with order
continuous norm and ϕ ∈ A(X, E). Then the following statements are equivalent.

(i) ϕ is lower semi-continuous.
(ii) ϕ is the pointwise supremum of some family of continuous functions.
(iii) ϕ is the pointwise supremum of some upward directed family of continuous func-

tions.

Corollary 2.6 Let X be a paracompact T1-space, E a Banach lattice with order
continuous norm and ϕ ∈ A(X, E). Then the following statements are equivalent.

(i) ϕ is upper semi-continuous.
(ii) ϕ is the pointwise infimum of some family of continuous functions.
(iii) ϕ is the pointwise infimum of some downward directed family of continuous

functions.

We next consider additional results on semi-continuous functions. These are all
generalisations of well known properties of real valued semi-continuous functions.

Proposition 2.7 Consider functions ϕ,ψ ∈ A(X, E). The following statements are
true.

(i) If ϕ andψ are lower semi-continuous, then so are the functions ϕ ∨ψ : X � x �→
ϕ(x) ∨ ψ(x) ∈ E and ϕ ∧ ψ : X � x �→ ϕ(x) ∧ ψ(x) ∈ E.

(ii) If ϕ andψ are upper semi-continuous, then so are the functions ϕ ∧ψ : X � x �→
ϕ(x) ∧ ψ(x) ∈ E and ϕ ∨ ψ : X � x �→ ϕ(x) ∨ ψ(x) ∈ E.

Proof Assume that ϕ and ψ are lower semi-continuous, and let U ⊆ E be open. If
x ∈ [ϕ ∨ ψ]−1(U + E+) then ϕ(x) ∨ ψ(x) ∈ U + E+. Due to the joint continuity
of the lattice operations on E there exist open subsets U1 and U2 of E so that ϕ(x) ∈
U1 ⊆ U1 + E+, ψ(x) ∈ U2 ⊆ U2 + E+ and {v ∨ w : v ∈ U1, w ∈ U2} ⊆ U + E+.
In fact, we have

{v ∨ w : v ∈ U1 + E+, w ∈ U2 + E+} ⊆ U + E+. (2.4)
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Since ϕ and ψ are lower semi-continuous there exists V ∈ Vx so that V ⊆ ϕ−1(U1 +
E+) ∩ ψ−1(U2 + E+). It now follows from (2.4) that V ⊆ [ϕ ∨ ψ]−1(U + E+) so
that ϕ ∨ ψ is lower semi-continuous.

Now suppose that x ∈ [ϕ ∧ ψ]−1(U + E+) so that ϕ(x) ∧ ψ(x) ∈ U + E+.
It follows from the joint continuity of the lattice operations on E there exist open
subsets U1 and U2 of E so that ϕ(x) ∈ U1 ⊆ U1 + E+, ψ(x) ∈ U2 ⊆ U2 + E+ and
{v ∧ w : v ∈ U1, w ∈ U2} ⊆ U + E+. In fact, we have

{v ∧ w : v ∈ U1 + E+, w ∈ U2 + E+} ⊆ U + E+. (2.5)

Since ϕ and ψ are lower semi-continuous there exists V ∈ Vx so that V ⊆ ϕ−1(U1 +
E+) ∩ ψ−1(U2 + E+). It now follows from (2.5) that V ⊆ [ϕ ∧ ψ]−1(U + E+) so
that ϕ ∧ ψ is lower semi-continuous.

The statement in (ii) follows from (i), (2.2) and [22, Theorem 11.5]. �
Proposition 2.8 Assume that E has order continuous norm, and that F ⊆ A(X, E)

is order bounded in A(X, E). Then the following statements are true.

(i) If F ⊂ L(X, E), then the function ψ : X � x �→ sup{ϕ(x) : ϕ ∈ F} ∈ E is
lower semi-continuous.

(ii) If F ⊂ U(X, E), then the function ψ : X � x �→ inf{ϕ(x) : ϕ ∈ F} ∈ E is
upper semi-continuous.

Proof Assume that F ⊆ L(X, E). In view of Proposition 2.4, we may assume that
F = {ϕλ : λ ∈ �} is upward directed. Let U ⊆ E be open, and suppose x0 ∈
ψ−1(U +E+) so thatψ(x0) ∈ U +E+. Since the norm on E is order continuous, and
ϕλ(x0) ↑ ψ(x0), it follows that (ϕλ(x0)) converges in norm to ψ(x0). But U + E+ is
open, so there exists λ0 ∈ � so that ϕλ0(x0) ∈ U + E+, hence x0 ∈ ϕ−1(U + E+).
Since ϕλ0 is lower semi-continuous there exists V ∈ Vx0 so that V ⊆ ϕ−1

λ0
(U + E+).

Asϕλ0 ≤ ψ it follows thatϕ−1
λ0

(U+E+) ⊆ ψ−1(U+E+) so that V ⊆ ψ−1(U+E+).

Hence ψ−1(U + E+) is open so that ψ is lower semi-continuous.
That (ii) is true follows from (i), (2.2) and [22, Theorem 13.1 (i)]. �

Proposition 2.9 If ϕ ∈ L(X, E), ϕ(X) ⊆ E+ and ϕ−1(0) is dense in X, then ϕ = 0.

Proof Let U = E \ (−E+). Since U is open and U = U + E+, it follows from the
lower semi-continuity of ϕ that ϕ−1(U ) is open in X . But ϕ(x) ∈ E+ for every x ∈ X
so that ϕ−1(U ) = {x ∈ X : ϕ(x) > 0} = X \ ϕ−1(0). Since ϕ−1(0) is dense in X , it
follows that {x ∈ X : ϕ(x) > 0} = ∅, hence ϕ = 0. �
Corollary 2.10 If ϕ ∈ U(X, E), ϕ(X) ⊆ −E+ and ϕ−1(0) is dense in X, then ϕ = 0.

Proof The result follows immediately from (2.3) and Proposition 2.9. �

3 Baire operators

For locally bounded, real valued functions, semi-continuity is characterised as

ϕ : X → R is lower semi-continuous ⇔ I [ϕ] = ϕ
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and

ϕ : X → R is upper semi-continuous ⇔ S[ϕ] = ϕ,

where I, S : A(X,R) → A(X,R) are the Lower and Upper Baire Operators, respec-
tively, defined by

I [ϕ](x) = lim inf
y→x

ϕ(y), x ∈ X (3.1)

and

S[ϕ](x) = lim sup
y→x

ϕ(y), x ∈ X, (3.2)

see for instance [1,10,32].
For functionswith values in aBanach lattice E , this characterisation is not available,

as even a continuous function ϕ : X → E may fail to be locally order bounded.
However, the Baire operators (3.1) and (3.2) may be expressed in a way which is
amenable to a generalisation to Banach lattice valued functions.

Proposition 3.1 Consider a function ϕ ∈ A(X,R). If there exist ψ0 ∈ L(X,R) and
ψ1 ∈ U(X,R) so that ψ0 ≤ ϕ ≤ ψ1, then

I [ϕ](x) = 	[ϕ](x) := sup{ψ(x) : ψ ∈ L(X,R), ψ ≤ ϕ}, x ∈ X

and

S[ϕ](x) = u[ϕ](x) := inf{ψ(x) : ψ ∈ U(X,R), ϕ ≤ ψ}, x ∈ X.

Proof Clearly, 	[ϕ] ≤ ϕ so that I [	[ϕ]] ≤ I [ϕ]. But the pointwise supremum of
a family of lower semi-continuous functions is again lower semi-continuous, hence
	[ϕ] = I [	[ϕ]] ≤ I [ϕ]. On the other hand, I [ϕ] is lower semi-continuous, and
I [ϕ] ≤ ϕ. Hence I [ϕ] ≤ 	[ϕ] so that I [ϕ] = 	[ϕ]. The second identity follows in
exactly the same way. �

Assume that E is Dedekind complete, and let

A0(X, E) =
{
ϕ : X → E

∃ ψ0 ∈ L(X, E), ψ1 ∈ U(X, E) :
ψ0 ≤ ϕ ≤ ψ1

}
.

We define the Upper and Lower Baire Operators S : A0(X, E) → A0(X, E) and
I : A0(X, E) → A0(X, E) by

S[ϕ](x) = inf{ψ(x) : ψ ∈ U(X, E), ψ ≥ ϕ}, x ∈ X (3.3)

and

I [ϕ](x) = sup{ψ(x) : ψ ∈ L(X, E), ψ ≤ ϕ}, x ∈ X (3.4)
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respectively. It is clear that

I [ϕ] ≤ ϕ ≤ S[ϕ] (3.5)

and

I ◦ I [ϕ] = I [ϕ], S ◦ S[ϕ] = S[ϕ] (3.6)

for each ϕ ∈ A0(X, E). Furthermore,

I [ϕ] ≤ I [ψ], S[ϕ] ≤ S[ψ] (3.7)

whenever ϕ ≤ ψ . Combining (3.5) and (3.6) in a judicious way, we see that

I ◦ S[I ◦ S[ϕ]] = I ◦ S[ϕ], S ◦ I [S ◦ I [ϕ]] = S ◦ I [ϕ] (3.8)

for all ϕ ∈ A0(X, E). It follows from (2.1), (2.2) and (2.3) that

I [ϕ + ψ] ≥ I [ϕ] + I [ψ], S[ϕ + ψ] ≤ S[ϕ] + S[ψ] (3.9)

and

I [−ϕ] = −S[ϕ], S[−ϕ] = −I [ϕ] (3.10)

for all ϕ,ψ ∈ Ao(X, E).
Clearly I [ϕ] = ϕ whenever ϕ is lower semi-continuous, while S[ϕ] = ϕ whenever

ϕ is upper semi-continuous. The converse holds whenever E has order continuous
norm.

Proposition 3.2 Suppose that E has order continuous norm. The following statements
are true for every ϕ ∈ A0(X, E).

(i) If I [ϕ] = ϕ, then ϕ is lower semi-continuous.
(ii) If S[ϕ] = ϕ, then ϕ is upper semi-continuous.

Proof According to Proposition 2.8, I [ϕ] is lower semi-continuous and S[ϕ] is upper
semi-continuous for every ϕ ∈ A0(X, E). The result follows immediately. �
Remark 3.3 Kaplan [19,20] introduced the closely related operators 	 and u on the
bidual C(X)′′ of C(X), with X a compact Hausdorff space. In particular, for ϕ ∈
C(X)′′,

	(ϕ) = sup{ψ ≤ ϕ : ψ is lower semi-continuous}
and

u(ϕ) = inf{ψ ≥ ϕ : ψ is upper semi-continuous},
the supremum and infimum being formed with respect to the the natural order on
C(X)′′.
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4 Interval functions

Let I E denote the set of all non-empty order intervals in E . That is,

I E = {[u, u] : u, u ∈ E, u ≤ u}

where [u, u] = {w ∈ E : u ≤ w ≤ u}. Two intervals u = [u, u] and v = [v, v] in I E
are equal if they are equal as sets. This is equivalent to

u = v, u = v.

We define a partial order on I E by setting

u ≤ v ⇔ u ≤ v, u ≤ v. (4.1)

It is easy to see that (4.1) does indeed define a partial order on I E . In fact, I E is a
lattice with respect to the order (4.1).

Associating each u ∈ E with the degenerate interval [u, u] ∈ I E , we may consider
E as a subset of I E . Furthermore, the order on I E extends that of E in the sense that,
for all u, v ∈ E ,

u ≤ v in E ⇔ u ≤ v in I E .

Denote by A(X, E) the set of all functions from X into I E . Note that, through the
identification of points in E with degenerate intervals in I E , we may view A(X, E)

in a natural way as a subset of A(X, E). Conversely, we may associate with each
f ∈ A(X, E) two functions f , f ∈ A(X, E) by setting

f (x) = inf f (x), f (x) = sup f (x), x ∈ X.

By abuse of notation, we write f = [ f , f ]. The partial order (4.1) on I E induces an
order relation on A(X, E), namely, the pointwise order

f ≤ g ⇔ f (x) ≤ g(x) ⇔ f (x) ≤ g(x) and f (x) ≤ g(x), x ∈ X. (4.2)

Clearly this ordering of A(X, E) extends the pointwise order onA(X, E). The inclu-
sion relation on A(X, E) is likewise defined in a pointwise way. In particular, for
f, g ∈ A(X, E),

f ⊆ g ⇔ f (x) ⊆ g(x), x ∈ X.

Generalising the corresponding notions for real interval-valued functions, we intro-
duce the following concepts of continuity for functions in A(X, E).

Definition 4.1 Afunction f : X ��→ [ f (x), f (x)] ∈ I E is called Sendov continuous

(S-continuous) if f is lower semi-continuous and f is upper semi-continuous.
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Definition 4.2 AnS-continuous function f : X → I E is calledHausdorff continuous
(H-continuous) if f = g for every S-continuous function g such that g ⊆ f .

We denote by H(X, E) the set of H-continuous interval functions from X into E .
As we show next, H-continuous functions are abundant.

Proposition 4.3 If E has order continuous norm and f ∈ A(X, E) is S-continuous,
then there exists an H-continuous function g ∈ A(X, E) so that g ⊆ f .

Proof Noting that Definition 4.2 is nothing but a minimality condition on the set
{g ⊆ f : g is S − continuous}, it is clear that the result follows immediately from
Proposition 2.8 and Zorn’s Lemma. �

Real-valued H-continuous functions are characterised through the Baire operators
[1, Theorem 1]. For E-valued functions the situation is analogous, provided that E
has order continuous norm.

Proposition 4.4 Consider the following statements, for some function f = [ f , f ] ∈
A(X, E).

(i) f is H-continuous.
(ii) I [ f ] = f and S[ f ] = f .

If f is S-continuous, then (ii) implies (i). If E has order continuous norm, then (i) and
(ii) are equivalent.

Proof Assume that f is S-continuous and satisfies (ii). Suppose that g ⊆ f is S-
continuous so that f ≤ g ≤ g ≤ f . Then it follows from (3.7) that

f = I [ f ] ≤ I [g] ≤ I [ f ] = f and f = S[ f ] ≤ S[g] ≤ S[ f ] = f

so that g = I (g) = f and g = S(g) = f . Therefore f = g so that f is H-continuous.
Now assume that E has order continuous norm. Suppose that f is H-continuous. It

follows from (3.5) and (3.7) that f ≤ S[ f ] ≤ S[ f ] = f . Therefore g = [ f , S[ f ]] ⊆
f . According to Proposition 3.2, S[ f ] is upper semi-continuous so that g is S-

continuous. Therefore f = g so that S[ f ] = f . It follows in the same way that

I [ f ] = f . Conversely, suppose that I [ f ] = f and S[ f ] = f . It follows from (3.6)
that

S[ f ] = S ◦ S[ f ] = S[ f ] = f , I [ f ] = I ◦ I [ f ] = I [ f ] = f .

Therefore, by Proposition 3.2, f is lower semi-continuous and f is upper semi-
continuous so that f is S-continuous. Since f is assumed to satisfy (ii), it follows
that f is H-continuous.

As an application of Proposition 4.4, we obtain the following, see [1, Theorem 2]
for the corresponding result for real valued functions.
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Corollary 4.5 Assume that ϕ ∈ A0(X, E) and that E has order continuous norm.
Then f = [I ◦ S[ϕ], S ◦ I ◦ S[ϕ]] and g = [I ◦ S ◦ I [ϕ], S ◦ I [ϕ]] are H-continuous,
and g ≤ f .

Proof We have S[ f ] = S ◦ I ◦ S[ϕ] = f and, by (3.8), I [ f ] = I ◦ S ◦ I ◦ S[ϕ] =
I ◦ S[ϕ] = f . Therefore f is H-continuous by Proposition 4.4. In the same way it
follows that g is H-continuous. The inequalities (3.5) and (3.7) imply that g ≤ f . �

Aswewill see in Sect. 5, S-continuous functions containing a unique H-continuous
functions play an important role in defining the algebraic operations on H(X, E), see
also [32]. We therefore end this section with two characterisations of such functions.

Proposition 4.6 Assume that E has order continuous norm and that f ∈ A(X, E) is
S-continuous. Then the following statements are equivalent.

(i) f contains a unique H-continuous function.
(ii) I ◦ S[ f ] = I [ f ] and S ◦ I [ f ] = S[ f ].

Proof By Corollary 4.5, g = [I ◦ S[ f ], S[ f ]] and h = [I [ f ], S ◦ I [ f ]] are H-
continuous. Furthermore, (3.5) and the S-continuity of f imply that g, h ⊆ f . Hence
(i) implies (ii).

Assume that (ii) holds, and p ⊆ f is H-continuous. Then by (3.7) and Proposition
4.4, I ◦ S[ f ] ≤ p and S[ f ] = S ◦ I [ f ] ≥ p. This implies that p ⊆ g = [I ◦
S[ f ], S[ f ]]. Since g is H-continuous, it follows that p = g so that f contains at most
one H-continuous function. The result now follows by Proposition 4.3. �

An application of Proposition 4.6 yields the following.

Proposition 4.7 Assume that E has an order continuous norm. An S-continuous func-
tion f = [ f , f ] ∈ A(X, E) contains a unique H-continuous function if and and only

if I [ f − f ] = 0.

Proof Assume that I [ f − f ] = 0. According to (3.9) and (3.10), 0 ≥ I [ f ] − S[ f ]
so that I ◦ S[ f ] ≥ I [ f ] by (3.6) and (3.7). But (3.7) and the upper semi-continuity of

f imply that I ◦ S[ f ] ≤ I ◦ S[ f ] = I [ f ]. Hence I ◦ S[ f ] = I [ f ]. In the same way,

S ◦ I [ f ] = S[ f ] so that f contains a unique H-continuous function by Proposition
4.6.

Conversely, suppose that f contains a unique H-continuous function. Assume, for
the sake of obtaining a contradiction, that I [ f − f ] > 0. Then there exists a lower
semi-continuous function ϕ : X → E so that ϕ(x0) > 0 for some x0 ∈ X , and
ϕ ≤ f − f . According to Proposition 2.7 (i), we may assume that ϕ(x) ≥ 0 for all
x ∈ X . Since f contains a unique H-continuous function, it follows from Proposition
4.6 that S◦ I [ f ] = S[ f ]. But, since f ≤ f +ϕ ≤ f , it follows from (3.7) and the lower

semi-continuity of f and ϕ that S◦ I [ f ] ≥ S[ f +ϕ] ≥ S[ f ]. Hence S[ f +ϕ] = S[ f ].
It therefore follows from (3.3) and (3.5) that, for an upper semi-continuous function
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ψ : X → E , ψ ≥ f if and only if ψ ≥ f + ϕ. Hence

S[ f ](x0) = inf{ψ(x0) : ψ ∈ U(X, E), ψ ≥ f }

≤ inf{ψ(x0) − ϕ(x0) : ψ ∈ U(X, E), ψ ≥ f }

= inf{ψ(x0) : ψ ∈ U(X, E), ψ ≥ f } − ϕ(x0)

= S[ f ](x0) − ϕ(x0).

But this contradicts the fact that ϕ(x0) > 0. Hence I [ f − f ] = 0. �

5 The Riesz space H(X, E)

Throughout this section, we assume that E has an order continuous norm. For real
intervals α = [α, α] and β = [β, β], the sum α + β is defined by

α + β = [α + β, α + β],

while for a real number γ , the product γα is defined as

γα =
⎧⎨
⎩

[γα, γ α] if γ ≥ 0

[
γα, γ α

]
if γ < 0

This is standard practice in interval analysis, see for instance [3,27,28], and we adopt
the same definitions for intervals in I E .

For functions f, g ∈ A(X, E) and γ ∈ R, we set

[ f ⊕ g](x) = f (x) + g(x) = [ f (x) + g(x), f (x) + g(x)] (5.1)

and

[γ � f ](x) = γ f (x) =

⎧⎪⎨
⎪⎩

[γ f (x), γ f (x)] if γ ≥ 0

[
γ f (x), γ f (x)

]
if γ < 0

(5.2)

for every x ∈ X . In view of (2.1), (2.2) and (2.3), f ⊕ g and γ f are S-continuous
whenever f and g are S-continuous, and γ ∈ R. Furthermore, it is easily seen that
H(X, E) is closed under pointwise scalar multiplication (5.2). However, even in the
scalar valued case, the set of H-continuous functions on X is in general not closed
under pointwise addition (5.1). This can be seen at the hand of elementary examples,
see for instance [32,33]. The key to overcoming this difficulty lies in the following.
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Proposition 5.1 Assume that E has order continuous norm. If f, g ∈ A(X, E) are
S-continuous and each contains a unique H-continuous function, then f ⊕ g contains
a unique H-continuous function.

Proof Let h = f ⊕ g, so that h = f + g and h = f + g. Assume that ϕ : X → E is

lower semi-continuous, and ϕ ≤ h − h. Then ϕ + f − f ≤ g − g so that

ϕ + f − f = I [ϕ + f − f ] ≤ I [g − g] = 0

by (2.1), (2.3), (3.7) and Proposition 4.7. Hence

ϕ = I [ϕ] ≤ I [ f − f ] = 0,

again by (3.7) and Proposition 4.7. Therefore I [h−h] = 0 so that h contains a unique
H-continuous function. �

In view of Proposition 5.1, we define addition in H(X, E) as follows. For f, g ∈
H(X, E), set

f + g := the unique H-continuous function contained in f ⊕ g. (5.3)

Scalar multiplication is defined by

γ f := γ � f (5.4)

for all f ∈ H(X, E) and γ ∈ R.

Theorem 5.2 H(X, E) is a vector space over R, with addition and scalar multipli-
cation defined in (5.3) and (5.4).

Proof We verify only the associative law for addition, the other axioms of a vector
space following in the sameway. Consider f, g, h ∈ H(X, E). It is clear that pointwise
addition (5.1) of functions in A(X, E) satisfies the associative law, so that

f ⊕ (g ⊕ h) = ( f ⊕ g) ⊕ h = f ⊕ g ⊕ h.

By (5.3), g + h ⊆ g ⊕ h and f + (g + h) ⊆ f ⊕ (g + h) so that f + (g + h) ⊆
f ⊕ (g ⊕ h) = f ⊕ g ⊕ h. In the same way, ( f + g) + h ⊆ ( f ⊕ g) ⊕ h =
f ⊕ g ⊕ h. By Proposition 5.1, f ⊕ g ⊕ h contains a unique H-continuous function,
so that f + (g + h) = ( f + g) + h. �

We now show that, with respect to the order (4.2),H(X, E) is a Dedekind complete
Riesz space. The proof of this fact relies on the following.

Lemma 5.3 Assume that E has an order continuous norm, and that f, g ∈ H(X, E).
Then the functions f ∨0 g = [ f ∨g, f ∨g] and f ∧0 g = [ f ∧g, f ∧g] each contain
a unique H-continuous function.
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Proof By Proposition 2.7, f ∨ g is lower semi-continuous and f ∨ g is upper semi-
continuous so that f ∨0 g is S-continuous. By Proposition 4.3 there exists an H-
continuous function h ⊆ f ∨0 g. Then h = S(h) ≥ S( f ) = f and h = S(h) ≥
S(g) = g by Proposition 4.4 and (3.7). Thus h = f ∨ g so that h = I [ f ∨ g] by
Proposition 4.4. Since this holds for an arbitrary H-continuous function h ⊆ f ∨0 g
it follows that f ∨0 g contains a unique H-continuous function.

The proof that f ∧0 g contains a unique H-continuous function is similar. �
Theorem 5.4 With addition, scalar multiplication and the partial order defined as in
(5.3), (5.4) and (4.2), respectively, H(X, E) is a Dedekind complete Riesz space.

Proof Consider f, g, h ∈ H(X, E) so that f ≤ g and a real number γ ≥ 0. It is clear
from (5.4) and (4.2) that γ f ≤ γ g. According to (5.3), f +h = [I ◦S[ f +h], S[ f +h]]
and g+h = [I ◦ S[g+h], S[g+h]], see the proof of Proposition 4.6. Furthermore, it
follows from (4.2) that f +h ≤ g+h so that f +h ≤ g+h by (3.7). HenceH(X, E)

is an ordered vector space.
For f, g ∈ H(X, E), let f ∨ g be the unique H-continuous function contained in

f ∨0 g. Then

f ≤ f ∨ g ≤ f ∨ g and g ≤ f ∨ g ≤ f ∨ g.

It follows from (3.7) and Proposition 4.4 that

f ≤ f ∨ g and g ≤ f ∨ g

so that f, g ≤ f ∨ g. Now suppose that h is H-continuous and satisfies f, g ≤ h ≤
f ∨ g. Then f ∨ g ≤ h and h ≤ f ∨ g ≤ f ∨ g so that h ⊆ f ∨0 g. By Proposition
5.3, h = f ∨ g so that f ∨ g is the least upper bound of f and g. The existence of
the greatest lower bound of f and g, namely the unique H-continuous function f ∧ g
contained in f ∧0 g, follows in the same way. Hence H(X, E) is a Riesz space.

Suppose that F is bounded from above in H(X, E). Set

G = {g ∈ H(X, E) : f ≤ g, f ∈ F}.

For each x ∈ X , let f ′(x) = sup{ f (x) : f ∈ F} and f
′
(x) = inf{g(x) : g ∈ G}.

According to Proposition 2.7, f ′ is lower semi-continuous, and f
′
is upper semi-

continuous so that f ′ = [ f ′, f
′] is S-continuous. By Proposition 4.3 there exists an

H-continuous function f0 so that f0 ⊆ f ′. Then, for every f ∈ F , f ≤ f ′ ≤ f
0

and, by (3.7) and Proposition 4.4, f = S[ f ] ≤ S[ f
0
] = f 0. Therefore f ≤ f0 for

every f ∈ F . Now suppose that g ∈ G. Then f ≤ g and f ≤ g for every f ∈ F .

Thus f ′ ≤ g and f
′ ≤ g so that f 0 ≤ f

′ ≤ g and so, by (3.7) and Proposition 4.4,

f
0

= I [ f 0] ≤ I [g] = g. Therefore f0 ≤ g so that f0 = supF . Hence H(X, E) is
Dedekind complete. �
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6 The Dedekind completion of C(X, E)

In general, C(X, E) is not Dedekind complete, even in the scalar case. Indeed, for a
compact Hausdorff space X ,C(X) is Dedekind complete if and only if X is extremally
disconnected, see for instance [25, Proposition 2.1.4]. Ercan andWickstead [16, Theo-
rem3.3] showed that, for X a compactHausdorff space,C(X, E) isDedekind complete
if and only if either X is discrete and E is Dedekind complete, or C(X) is Dedekind
complete and E has compact order intervals.

Anumber of concrete characterisations have been given of theDedekind completion
C(X)δ of C(X), starting with Dilworth [14], who considered the case when X is
compact and Hausdorff. Dilworth’s result was extended to completely regular spaces
by Horn [18]. Maxey [24], see also [20], obtained a characterisation of C(X)δ as a
quotient of C(X)′′. Recently, Anguelov [1] gave a characterisation of C(X)δ , for X
completely regular, in terms of the setH(X) of H-continuous functions on X , see also
[15]. As an application of the theory developed in the preceding sections, we give a
generalisation of Anguelov’s result. In particular, we show that for X a paracompact
T1-space and E aBanach latticewith order continuous norm, theDedekind completion
of C(X, E) is H(X, E).

Theorem 6.1 If X is a paracompact T1-space, and E has order continuous norm,
then H(X, E) is the Dedekind completion of C(X, E).

Proof We first prove that there exists a Riesz isomorphism from C(X, E) into
H(X, E). In this regard, for each ϕ ∈ C(X, E), let E[ϕ] denote the interval valued
function defined as

E[ϕ](x) = [ϕ(x), ϕ(x)], x ∈ X.

Since ϕ is continuous, it is both upper semi-continuous and lower semi-continuous so
that E[ϕ] is S-continuous. Furthermore, since E[ϕ](x) is a degenerate interval for every
x ∈ X , it follows that f = E[ϕ] for every S-continuous function f satisfying f ⊆
E[ϕ]. Therefore E[C(X, E)] ⊆ H(X, E). Clearly E : C(X, E) → H(X, E) is linear,
injective and monotone. It therefore remains to show that E[ϕ ∨ ψ] = E[ϕ] ∨ E[ψ]
and E[ϕ ∧ ψ] = E[ϕ] ∧ E[ψ] for all ϕ,ψ ∈ C(X, E). Due to the monotonicity
of E , E[ϕ] ∨ E[ψ] ≤ E[ϕ ∨ ψ]. If E[ϕ], E[ψ] ≤ f for some f ∈ H(X, E), then
ϕ = E[ϕ] ≤ f and ψ = E[ψ] ≤ f so that E[ϕ ∨ ψ] = ϕ ∨ ψ ≤ f . In the same way,

E[ϕ ∨ ψ] ≤ f so that E[ϕ ∨ ψ] ≤ f . Hence E[ϕ ∨ ψ] = E[ϕ] ∨ E[ψ]. Similarly,
E[ϕ ∧ ψ] = E[ϕ] ∧ E[ψ] so that E is a Riesz isomorphism into H(X, E).

For each h ∈ H(X, E), let Lh = E[{ϕ ∈ C(X, E) : E[ϕ] ≤ h}] and Uh = E[{ψ ∈
C(X, E) : h ≤ ε[ψ]}]. By Corollaries 2.5 and 2.6, both these sets are nonempty and

h(x) = sup{ϕ(x) : ϕ ∈ Lh}, h(x) = inf{ψ(x) : ψ ∈ Uh}, x ∈ X.

If h0 ∈ H(X, E) satisfies

E[ϕ] ≤ h0 ≤ h, ϕ ∈ Lh



The Dedekind completion of C(X, E)… 1157

then h0 = h so that h0 = S(h0) = S(h) = h by Proposition 4.4. Thus h = h0 so
that h = supLh . In the same way it follows that h = inf Uh so that H(X, E) is the
Dedekind completion of C(X, E). �

7 Relation with minimal usco maps

Denote byK(Y ) the set of nonempty, compact subsets of Y . A map f : X → K(Y ) is
called upper semi-continuous (usco) if for every x ∈ X and every open setU ⊇ f (x)
there exists an open set V ∈ Vx so that f (y) ⊆ U for every y ∈ V . An usco map
f : X → K(Y ) is called minimal (musco) if

〈 f 〉 := {g : X → K(Y ) : g is usco, g(x) ⊆ f (x), x ∈ X} = { f }.

We say that f is quasi-minimal if 〈 f 〉 is a singleton. Note that 〈 f 〉 
= ∅ for every usco
map f , see for instance [11]. Denote by M(X,Y ) the set of musco maps f : X →
K(Y ).

According to [31, Theorems 5.1 & 6.3], M(X, E) is the Dedekind completion
of C(X, E) whenever X is a compact Hausdorff space, and E is an AM-space with
compact order intervals. In fact, due to Corollary 2.5, the result holds under the milder
assumption that X is a paracompact T1-space. It therefore follows from Theorem 6.1
that there exists a unique Riesz isomorphism

T : M(X, E) → H(X, E)

that leaves each f ∈ C(X, E) invariant, see [22, Section 32]. The aim of this section
is to obtain a description of this isomorphism.

Theorem 7.1 Let X be a paracompact T1-space, and E an AM-space with compact
order intervals. Then the uniqueRiesz isomorphismT : M(X, E) → H(X, E) leaving
each f ∈ C(X, E) invariant is given by

T [ f ](x) = [inf f (x), sup f (x)], x ∈ X.

Proof For f ∈ M(X, E), let

A = {g ∈ C(X, E) : g ≤ f }, B = {g ∈ C(X, E) : g ≤ T [ f ]}.

According to Corollary 2.5, T [ f ](x) = sup{g(x) : g ∈ B}, x ∈ X. It is shown in
the proof of [31, Theorem 6.3] that inf f (x) = sup{g(x) : g ∈ A}, x ∈ X. But T is
a Riesz isomorphism leaving each member of C(X, E) invariant so that T [A] = B.
Hence T [ f ](x) = inf f (x) for every x ∈ X . In exactly the same way, it follows that

T [ f ](x) = sup f (x) for every x ∈ X . �
As a consequence of Theorem 7.1, we obtain an extension of the following results of

Anguelov andKalenda [2]: if f ∈ H(X,R), then f is quasi-minimal usco. Conversely,
if f : X → K(Y ) is musco, then



1158 J. H. van der Walt

X � x �→ [inf f (x), sup f (x)] ∈ IR

is H-continuous.

Corollary 7.2 Assume that X is a paracompact T1-space, and E is an AM-space with
compact order intervals. Then the following statements are true.

(i) If f ∈ H(X, E), then f is a quasi-minimal usco map.
(ii) If f : X → K(E) is musco, then X � x �→ [inf f (x), sup f (x)] ∈ I E is H-

continuous.

Proof If f ∈ H(X, E), then f is an uscomapby [31, Proposition 4.3 (ii)]. Suppose that
g, h ∈ 〈 f 〉. Then, by Theorem 7.1, T [g], T [h] ⊆ f so that T [g] = T [h] = f . Hence
g = h so that f is quasi-minimal, proving (i). That (ii) is true follows immediately
from Theorem 7.1. �

8 Conclusions

It has been shown that the Dedekind completion of C(X, E), with X a paracompact
T1-space and E a Banach lattice with order continuous norm, can be characterised
as the set of H-continuous E-valued interval functions on X , extending a result of
Anguelov [1]. According to Ercan andWickstead [16], spaces of Banach lattice valued
continuous functions provide useful examples of Banach lattices in which features of
different classes of Banach lattices occur simultaneously. Seen in this context, our
result may be of broader significance.
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