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1 Introduction

In 1998, Marcotte and Zhu [14] introduced the concept of weak sharp solutions of a
point-to-point variational inequality. They derived the necessary and sufficient condi-
tion for a solution set to be weakly sharp, and also studied the finite convergence of
iterative algorithms for solving variational inequalities whose solution set is weakly
sharp. The finite convergence of an iterative algorithm means that the algorithm finds
a solution in a finite number of iterates. Zhou and Wang [23] re-examined the unified
treatment of finite termination of a class of iterative algorithms, and showed that some
results given by Marcotte and Zhu [14] remain valid under more general assumptions.
Wu and Wu [18] presented several equivalent (and sufficient) conditions for weak
sharp solutions of a variational inequality in the setting of Hilbert spaces. They gave a
finite convergence result for a class of algorithms for solving variational inequalities.
Using the concept of a dual gap function, Zhang et al. [22] characterized the directional
derivative and subdifferential of the dual gap function. Their analysis opens the way
for a better understanding of the concepts of a global error bound, weak sharpness,
and minimum principle sufficiency property for a variational inequality, where the
operator is pseudo-monotone point-to-point. Xiu and Zhang [20] further studied finite
convergence of a specific family of algorithms. They established the finite convergence
of the proximal point algorithm when the solution set is weakly sharp.

If the objective function of a constrained optimization problem is neither convex nor
differentiable, then the problem cannot be formulated as a point-to-point monotone
variational inequality. In this case, generalized variational inequalities (i.e., with a
non-monotone set-valued underlying mapping) are needed.

On the other hand, the literature addressing the case of weak sharp solutions for
generalized variational inequalities (i.e., for set-valued variational inequalities) is very
scarce, and, as far asweknow, treats themaximallymonotone case in finite dimensions,
see, e.g., the recent work [19]. Under a weak-sharpness assumption, the latter paper
shows finite termination for the set-valued maximally monotone case. To address this
gap is the main aim of the present paper.

The paper is structured as follows: in the next section, we present the formulation
of generalized variational inequality problem in which the underlying operator is a
set-valued mapping.We also present some basic definitions and results from nonlinear
and convex analysis, which will be used in the sequel. Section 3 deals with the notion
of a gap function for generalized variational inequality problems.We investigate some
properties of the gap functions and give some characterizations of the solution set of
generalized variational inequality problems in terms of gap functions. In Sect. 4, on
the lines of Marcotte and Zhu [14], we introduce the concept of weak sharp solution
set for generalized variational inequalities. We provide some necessary and sufficient
conditions in terms of a gap function for the solution set of the generalized variational
inequality to be weak sharp. We give a necessary condition for a weak sharp solution
set of a generalized variational inequality in terms of global error bound. In the last
section, we prove finite termination of an iterative algorithm under weak sharpness of
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the solution set.Weprovide thefinite termination result under two types of assumptions
on the underlying set-valued map F : (1) when F is monotone, and (2) when F is
continuous in the set-valued sense (see Definition 2).

The results of this paper extend and generalize corresponding results for variational
inequalities studied in [14,15,23].

2 Formulations, preliminaries and basic definitions

Let H be a Hilbert space with inner product denoted by 〈·, ·〉, and induced norm
‖ · ‖ : H → R+, where R+ is the set of nonnegative real numbers. Given C a
nonempty closed convex subset of H and F : H ⇒ H a set-valued mapping, the
generalized variational inequality problem (GVIP) is stated as follows: find x̄ ∈ C
and ū ∈ F(x̄) such that

〈ū, y − x̄〉 ≥ 0, for all y ∈ C. (1)

An important particular case arises when F ≡ ∂ f , the subdifferential of a proper,
lower semicontinuous and convex function f : H → R ∪ {+∞}, or the Clarke
subdifferential [8] ∂ f C of a locally Lipschitz function f : H → R ∪ {+∞}. In
these cases, the GVIP (1) provides a necessary and sufficient optimality condition
for solving a convex/non-convex and non-smooth optimization problem. For further
details onGVIP and their generalizations with applications, we refer to [1,5,10,13,16]
and the references therein.

For a given nonempty subset C of H , we denote by intC , riC , and clC the interior,
the relative interior, and the closure ofC , respectively. We denote by B(x, r) the open
ball in H with center x and radius r > 0 and by B[x, r ] the closed ball in H with
center x and radius r > 0. The polar cone C◦ of C is defined by

C◦ := {y ∈ H : 〈y, x〉 ≤ 0 for all x ∈ C} .

For a nonempty closed convex subset ofRn , the tangent cone to C at x ∈ C is defined
by

TC (x) := cl

(⋃
λ>0

C − x

λ

)
.

By construction, TC (x) is a nonempty, closed and convex cone. The normal cone to
the set C at x is defined by

NC (x) :=
{ {y ∈ H : 〈y, z − x〉 ≤ 0 for all z ∈ C}, if x ∈ C,

∅, otherwise,

that is, NC (x) := [TC (x)]◦. The distance from x ∈ H to C is given by

d(x,C) := inf{‖x − c‖ : c ∈ C}
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Let C be a nonempty closed convex subset of H . The projection of x ∈ H onto C is
defined by

PC (x) := argmin
y∈C ‖x − y‖.

Let f : H → R ∪ {+∞} be a proper, convex and lower semicontinuous function.
The domain of f is denoted by dom f and defined as

dom f := {x ∈ H : f (x) < +∞}.

Fix d ∈ H and x ∈ dom f . Recall that the directional derivative of f at x in the
direction d is defined by

f ′(x; d) := lim
t→0+

f (x + td) − f (x)

t
.

Fix x ∈ dom f . The subdifferential of f at x is defined by

∂ f (x) := {ξ ∈ H : f (y) − f (x) ≥ 〈ξ, y − x〉 for all y ∈ H}.

Let ε ≥ 0. The ε-subdifferential of f at x is defined by

∂ε f (x) := {ξ ∈ H : f (y) − f (x) ≥ 〈ξ, y − x〉 − ε for all y ∈ H}.

Note that ∂ε f (x) ⊃ ∂ f (x) for all x ∈ dom f and all ε ≥ 0.
Given a set-valued mapping F : H ⇒ H , its domain is denoted by D(F) and

defined as

D(F) := {x ∈ H : F(x) �= ∅}.

The graph of F is denoted by G(F) and defined as

G(F) := {(x, u) : x ∈ D(F) and u ∈ F(x)}.

Let C ⊂ H be nonempty. We denote by GC (F) the graph of F restricted to C ,
namely,

GC (F) := {(x, u) ∈ G(F) : x ∈ C}.

A set-valued mapping F : H ⇒ H is said to be

(a) monotone if

〈u − v, x − y〉 ≥ 0, for all x, y ∈ H and all u ∈ F(x), v ∈ F(y);
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(b) pseudomonotone if for all x, y ∈ H ,

〈u, y − x〉 ≥ 0 for all u ∈ F(x) ⇒ 〈v, y − x〉 ≥ 0 for all v ∈ F(y).

(c) maximally monotone if it is monotone and the graph of F cannot be enlarged
without destroying the monotonicity property. In other words, if F̃ is monotone
and G(F) ⊂ G(F̃), then F ≡ F̃ ;

(d) paramonotone if it is monotone and whenever 〈u−v, x − y〉 = 0 with u ∈ F(x)
and v ∈ F(y), then this implies that u ∈ F(y) and v ∈ F(x);

We will consider in our analysis maps which are continuous in the point-to-set
sense. The following definitions and results collect all the tools we will need. We start
by defining convergence of a sequence of sets.

Definition 1 ([5, Definition 2.2.3 and Proposition 2.2.7]) Given a sequence {Ck} of
sets such that Ck ⊂ H for all k, we define the interior limit of the sequence {Ck} of
sets as the set

lim int
k→∞ Ck :=

{
z ∈ H : lim inf

k→∞ d(z,Ck) = 0

}
.

Recall that in a Hilbert space, the strong topology is the metric topology induced
by the norm.

Definition 2 ([5, Definition 2.5.1(a) (b) and Definition 2.5.3 (i)]) Let F : H ⇒ H
andU be a subset of D(F) such that F is closed-valued onU . In the definitions below,
we consider the convergence with respect to the strong (i.e., the norm) topology in H .
We say that F is:

(a) inner-semicontinuous at x ∈ D(F) if whenever a sequence {xn}n∈N converges
to x we have

F(x) ⊂ lim int
n→∞ F(xn).

(b) Lipschitz continuous onU if there exists a Lipschitz constant κ > 0 such that for
all x, x ′ ∈ U it holds that

F(x) ⊂ F(x ′) + κ‖x − x ′‖B.

The next result, which will be used for establishing finite convergence under no
monotonicity assumptions, is an adaptation of [5, Proposition 2.5.29(i)] to our frame-
work. Since the statement is slightly changed from that in [5], and for convenience of
the reader, we include its proof here.

Proposition 1 Let F : H ⇒ H be inner-semicontinuous (with respect to the strong
topology) at x̄ ∈ int D(F). Consider the following assumptions.

(i) H is infinite dimensional and F(x̄) is compact (with respect to the strong topology
in H ).



1072 S. Al-Homidan et al.

(ii) H = R
n (i.e., H is finite dimensional) and F(x̄) is closed.

If either (i) or (ii) hold, then for every ρ > 0, ε > 0, there exists δ > 0 such that

F(x̄) ∩ B[0, ρ] ⊂ F(x) + B[0, ε], for all x ∈ B(x̄, δ).

Proof Assume that (i) holds. If the statement on neighborhoodswere not true,we could
find ρ0, ε0 > 0, and a sequence {xn} converging to x̄ such that F(x̄) ∩ B[0, ρ0] �⊂
F(xn) + B[0, ε0]. Define a sequence {zn} such that zn ∈ F(x̄) ∩ B[0, ρ0] and zn /∈
F(xn) + B[0, ε0]. By compactness of F(x̄), there exists a subsequence {znk } of {zn}
converging to some z̄ ∈ F(x̄) ∩ B[0, ρ0]. By inner-semicontinuity of F , we can find
a sequence {yn ∈ F(xn)} also converging to z̄. Then limk znk − ynk = 0, so that
for large enough k we have that znk − ynk ∈ B[0, ε0]. Altogether, we conclude that
znk = ynk + [znk − ynk ] ∈ F(xnk ) + B[0, ε0] for large enough k, but this contradicts
the definition of {zn}. Therefore, the claim on neighborhoods must hold.

Assume now that (ii) holds. In this case, the proof follows the same steps, but with
the difference that we use the compactness of the ball, which only holds in finite
dimensions. Indeed, we have now that the set F(x̄) ∩ B[0, ρ0] is compact, because
the ball is compact and F(x̄) is closed. Hence, as in the proof for assumption (i), there
is subsequence {znk } of {zn} converging to some z̄ ∈ F(x̄)∩ B[0, ρ0]. The proof now
follows exactly as for the previous assumption. ��
Remark 1 The Lipschitz continuity assumption rules out maximally monotone map-
pings which are not point-to-point. Hence this assumption only makes sense for
non-monotone set-valued variational inequalities.

The following is a simple extension of results in the literature, and will be needed
in the sequel. We provide here its simple proof for convenience of the reader.

Lemma 1 (See [15, Lemma 1] and [7, Lemma 3.1]) Let C ⊂ H be a closed convex
set and x ∈ C. Then, for every u ∈ H, we have

(a)
〈
PTC (x)(−u), u

〉 = − ∥∥PTC (x)(−u)
∥∥2;

(b) min {〈v, u〉 : v ∈ TC (x), ‖v‖ ≤ 1} = − ∥∥PTC (x)(−u)
∥∥.

Proof We denote by ū := PTC (x)(−u) ∈ TC (x). The properties of the projection
imply that

〈y − ū,−u − ū〉 ≤ 0, for all y ∈ TC (x). (2)

Taking y = 0 ∈ TC (x) and y = 2ū ∈ TC (x) in (2), we obtain sequentially that

〈−ū,−u − ū〉 ≤ 0 and 〈ū,−u − ū〉 ≤ 0,

which readily imply (a). Assume first that ū = 0. From (2) and (a), we have

〈y, u〉 ≥ 0, for all y ∈ TC (x).

So,

inf {〈v, u〉 : v ∈ TC (x), ‖v‖ ≤ 1} ≥ 0.
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If ū = 0, then the above infimum is attained when v := ū and is equal to 0. Hence, (b)
holds in this case. Assume now that ū �= 0. The fact that ū = PTC (x)(−u) means that

ū = argmin
y∈TC (x)

‖y + u‖2.

Therefore, for all y ∈ TC (x) such that ‖y‖ ≤ ‖ū‖, we have

‖ū + u‖2 ≤ ‖y + u‖2.

Using (a) in this inequality and simplifying the resulting expression yields

〈y, u〉 + ‖ū‖2
2

≥ 〈y, u〉 + ‖y‖2
2

≥ −‖ū‖2
2

, (3)

where in the left-most inequality we used the fact that y ∈ TC (x) is such that ‖y‖ ≤
‖ū‖. Combine the left-most and right-most expressions in (3) to obtain

〈y, u〉 ≥ −‖ū‖2,

for all y ∈ TC (x) such that ‖y‖ ≤ ‖ū‖. Since ū �= 0, we can re-write this expression
as 〈

y

‖ū‖ , u

〉
≥ −‖ū‖, (4)

for all y ∈ TC (x) such that ‖y‖ ≤ ‖ū‖. Since ‖y‖ ≤ ‖ū‖, y
‖ū‖ represents any

y′ ∈ TC (x) such that ‖y′‖ ≤ 1. With this in mind, (4) reads

〈y′, u〉 ≥ −‖ū‖, (5)

for all y′ ∈ TC (x) such that ‖y′‖ ≤ 1. This proves that

min{〈v, u〉 : v ∈ TC (x), ‖v‖ ≤ 1} ≥ −‖ū‖.

To obtain the opposite inequality, take v := ū
‖ū‖ ∈ TC (x), we have

min{〈v, u〉 : v ∈ TC (x), ‖v‖ ≤ 1} ≤
〈

ū

‖ū‖ , u

〉
= −‖ū‖,

where we used (a) in the right-most equality. This completes the proof of (b). ��
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3 Gap functions and solution set for generalized variational inequalities

3.1 Characterization of solution set for generalized variational inequalities

The GVIP can be stated in terms of the graph of F as follows:

Find (x̄, ū) ∈ GC (F) such that 〈ū, y − x̄〉 ≥ 0, for all y ∈ C. (6)

The set of solutions of GVIP is denoted by S, that is,

S = {(x̄, ū) ∈ GC (F) : 〈ū, y − x̄〉 ≥ 0 for all y ∈ C} .

We will also consider the set S̄, the projection of S onto the first coordinate :

S̄ := {x ∈ C : ∃u ∈ F(x) satisfying (x, u) ∈ S} . (7)

From (6),we have that x̄ ∈ S̄ if and only if there exists ū ∈ F(x̄) such that−ū ∈ NC (x̄)
or equivalently, PTC (x̄)[−ū] = 0.

Nowwe give a characterization of the solution set S̄ of (1) under paramonotonicity.

Proposition 2 Let F : H ⇒ H be paramonotone and x̄ ∈ S̄. Then, S̄ = S̃, where

S̃ := {z ∈ C : ∃ū ∈ F(z) ∩ F(x̄) such that 〈ū, z − x̄〉 = 0} .

Proof Let z ∈ S̄. Then, there exists w ∈ F(z) such that 〈w, x̄ − z〉 ≥ 0. Since x̄ ∈ S̄,
there exists ū ∈ F(x̄) such that 〈ū, z − x̄〉 ≥ 0. Combining the last two inequalities,
we get

〈w − ū, z − x̄〉 ≤ 0. (8)

By monotonicity of F , we have

〈w − ū, z − x̄〉 ≥ 0. (9)

From (8) and (9), we get 〈w − ū, z − x̄〉 = 0. The paramonotonicity of F implies that
w ∈ F(x̄) and ū ∈ F(z). Hence, ū ∈ F(z) ∩ F(x̄). Moreover,

0 ≥ 〈w, z − x̄〉 = 〈ū, z − x̄〉 ≥ 0,

and thus, 〈ū, z − x̄〉 = 0. Hence, z ∈ S̃, therefore, S̄ ⊆ S̃.
Conversely, let z ∈ S̃. Then, z ∈ C and there exists ū ∈ F(z) ∩ F(x̄) such that

〈ū, z − x̄〉 = 0. (10)

Since x̄ ∈ S̄, there exists û ∈ F(x̄) such that

〈û, y − x̄〉 ≥ 0, for all y ∈ C. (11)
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By monotonicity, and the inclusions ū ∈ F(z) and û ∈ F(x̄), we have

〈û − ū, x̄ − z〉 ≥ 0. (12)

Using (10) and (11) for y = z in the inequality above yields

0 ≤ 〈û, z − x̄〉 ≤ 〈ū, z − x̄〉 = 0,

so,
〈û, z − x̄〉 = 0. (13)

This fact and (10) imply that

〈û − ū, x̄ − z〉 = 0,

and by paramonotonicity, we conclude that

û ∈ F(z). (14)

For any y ∈ C , by (11), we have

0 ≤ 〈û, y − x̄〉 = 〈û, y − z〉 + 〈û, z − x̄〉 = 〈û, y − z〉,

where we used (13) in the last equality. Combining the above expression with (14)
implies that z ∈ S̄. Therefore, S̃ ⊆ S̄ and the proof is complete. ��
Remark 2 Proposition 2 extends to the point-to-set framework Lemma 2 in [15]. Since
the subdifferential of a proper convex lower semicontinuous function is point-to-set
and paramonotone [12], Proposition 2 also extends and generalizes Lemma 1 in [23].

3.2 Gap function and solution set for generalized variational inequalities

Let C be a nonempty subset of H and F : H ⇒ H be a set-valued mapping with a
non-empty domain.

Definition 3 A function g : H → R∪ {+∞} is said to be a gap function for GVIP if
and only if the following conditions hold:

(a) g(x) ≥ 0 for all x ∈ C ;
(b) g(x̄) = 0 if and only if x̄ ∈ S̄.

One of the main motivations to introduce the gap functions is that they allow to
convert a GVIP into an optimization problem, so that standard methods can be used
to solve GVIP.

Crouzeix [9] considered the Minty type generalized variational inequality problem
(MGVIP): find x̄ ∈ C such that

〈v, y − x̄〉 ≥ 0, for all y ∈ C and v ∈ F(y). (15)
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The solution set of MGVIP is denoted by S∗. It is clear that S̄ ⊆ S∗ if F is
pseudomonotone. It was proved by Crouzeix [9] that S̄ = S∗ if C is a nonempty
closed convex subset of H and F is pseudomonotone and upper semicontinuous with
nonempty convex compact values.

Auslender [2] (see also [3,9]) introduced the following gap function hF,C : H →
R ∪ {+∞} for GVIP:

hF,C (x) :=

⎧⎪⎨
⎪⎩

sup
(v,y)∈GC (F)

〈v, x − y〉, if x ∈ C ∩ D(F),

+∞, if x /∈ C ∩ D(F).

(16)

The function hF,C is nonnegative, lower semicontinuous and convex. The latter
two properties follow from the fact that it is a supremum of affine functions. From its
definition, hF,C is proper when C ∩ D(F) �= ∅.

When F is maximally monotone, the minimizers of hF,C are the solutions of GVIP.
This fact, established in [4], is stated next.

Proposition 3 [3,4] Assume that F is maximally monotone. Consider the following
assumptions.

(i) H is finite dimensional and ri(D(F)) ∩ ri(C) �= ∅.
(ii) H is infinite dimensional and int(D(F)) ∩ C �= ∅ or D(F) ∩ int(C) �= ∅.
Under assumptions (i) or (ii), we have:

(a) hF,C (x) ≥ 0 for all x ∈ D(F) ∩ C;
(b) hF,C (x̄) = 0 if and only if x̄ ∈ S̄.

For brevity, we write from now on h instead of hF,C when referring to the gap
function defined by (16).

Definition 4 For a fixed x ∈ C , we define the following sets:

	(x) := {(z, w) ∈ GC (F) : 〈w, x − z〉 = h(x)}

	1(x) := {z ∈ C : ∃w ∈ F(z)with (z, w) ∈ 	(x)}

	2(x) := {w ∈ H : ∃z ∈ C with (z, w) ∈ 	(x)}.

(17)

Remark 3 For h as in (16), we have that

	(x) = {(z, w) ∈ GC (F) : 〈w, x − z〉 = h(x)}
= {(z, w) ∈ GC (F) : 〈w, x − z〉 ≥ h(x)}. (18)

Indeed, we clearly have

{(z, w) ∈ GC (F) : 〈w, x − z〉 = h(x)} ⊂ {(z, w) ∈ GC (F) : 〈w, x − z〉 ≥ h(x)}.



Weak sharp solutions for generalized… 1077

The opposite inclusion follows directly from the fact that

h(x) ≥ 〈w, x − z〉 ≥ h(x),

where we used the definition of h in the first inequality. Hence, under the assumptions
of Proposition 3, for every x̄ ∈ S̄ we must have h(x̄) = 0. In this situation, (18) yields

	(x̄) = {(z, w) ∈ GC (F) : 〈w, x̄ − z〉 = 0}
= {(z, w) ∈ GC (F) : 〈w, x̄ − z〉 ≥ 0}. (19)

Remark 4 Fix x̄ ∈ S̄ and assume that F is maximally monotone. If assumptions (i)
or (ii) of Proposition 3 hold, we must have that h(x̄) = 0. This yields

{x̄} × {F(x̄)} ⊂ 	(x̄).

Indeed, we may use z := x̄ in the scalar product in the definition of 	(x̄). As a direct
consequence of the inclusion above, we have that

x̄ ∈ 	1(x̄),

and
F(x̄) ⊂ 	2(x̄). (20)

The aim of the next lemma is to find further relations between the sets	2(x̄), ∂h(x̄)
and F(x̄).

Lemma 2 Let F be a maximally monotone point-to-set mapping and C ⊂ H a closed
and convex set such that assumptions (i) or (ii) in Proposition 3 hold. Let S̄ �= ∅ be
as defined by (7) and fix x̄ ∈ S̄. Consider h as defined by (16). With the notation used
in (17) and (19), the following properties hold.

(a) For all x ∈ C ∩ dom h and all nonzero vector d ∈ H, we have

h′(x; d) ≥ sup
w∈	2(x)

〈w, d〉.

Consequently, 	2(x) ⊆ ∂h(x).
(b) If F is paramonotone and x̄ ∈ S̄, then 	2(x̄) = F(x̄) ⊂ ∂h(x̄).

Proof

(a) Given d ∈ H , use the definition of h and 	(x), to write

h(x + td) = sup {〈w, (x + td) − y〉 : (y, w) ∈ GC (F)}
≥ sup {〈w, x − y〉 + t〈w, d〉 : (y, w) ∈ 	(x)}
= h(x) + t sup {〈w, d〉 : w ∈ 	2(x)} ,
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where we also used the fact that	(x) ⊂ GC (F) in the first inequality. The above
expression yields,

h(x + td) − h(x)

t
≥ sup

w∈	2(x)
〈w, d〉 ≥ 〈u, d〉, for all u ∈ 	2(x).

Thus, for all d �= 0 we have that h′(x; d) ≥ 〈u, d〉 for all u ∈ 	2(x). By [17,
Proposition 4.1.6], we deduce that u ∈ ∂h(x), and hence, 	2(x) ⊆ ∂h(x).

(b) Letw ∈ 	2(x̄). By (19), there exists y ∈ C ∩ F−1(w) such that 〈w, x̄ − y〉 = 0.
Since x̄ ∈ S̄, there exists w̄ ∈ F(x̄) such that

〈w̄, y − x̄〉 ≥ 0, for all y ∈ C. (21)

By monotonicity of F , for all w ∈ F(y), we have

0 ≤ 〈w − w̄, y − x̄〉 = 〈w, y − x̄〉 + 〈w̄, x̄ − y〉 ≤ 0,

where we used (21) and the fact that 〈w, y − x̄〉 = 0. Altogether, we have

〈w − w̄, y − x̄〉 = 0 with w ∈ F(y) and w̄ ∈ F(x̄).

Since F is paramonotone, we have w̄ ∈ F(y) and w ∈ F(x̄). Hence, for all
w ∈ 	2(x̄), we have w ∈ F(x̄). Therefore, 	2(x̄) ⊆ F(x̄). The opposite
inclusion follows from (20). The inclusion involving the subgradient of h follows
directly from (a) for x = x̄ .

��
Remark 5 For x̄ ∈ S̄ and ε ≥ 0, we can define enlargements of the set 	2(x̄) given
in (19) as follows.

	ε
2(x) := {w ∈ R(F) : ∃z ∈ C ∩ F−1(w) with 〈w, x − z〉 ≥ −ε}. (22)

With straightforward modifications, the proof of Lemma 2 (a) can be adapted to show
that 	ε

2(x) ⊆ ∂εh(x).

4 Weak sharp solutions for generalized variational inequalities

In this section, we consider GVIP with solution set S̄. Unless specifically stated, F is
a set-valued mapping which is not necessarily maximally monotone.

Definition 5 We say that S̄ is weak sharp if there exists α > 0 such that

αB ⊆ F(x̄) + (TC (x̄) ∩ NS̄(x̄))
◦, for all x̄ ∈ S̄, (23)

where B denotes the unit ball with center at origin in H . In this situation, we say that
S̄ is weak sharp with parameter α.



Weak sharp solutions for generalized… 1079

We will consider in our analysis the following alternative concept of weak sharp
solution, introduced in [6,24] in the context of error bounds.

Definition 6 Let g be a gap function for GVIP (as given in Definition 3) and assume
that g is convex, proper and lower semicontinuous. We say that S̄ is weak sharp with
respect to g if there exists α > 0 such that

αB ⊆ ∂g(x̄) + (TC (x̄) ∩ NS̄(x̄))
◦, for all x̄ ∈ S̄. (24)

In this situation, we say that S̄ is g-weak sharp with parameter α.

The following proposition gives the characterization of a weak sharp solution set,
and will be used in the next section for establishing finite convergence.

Proposition 4 The solution set S̄ of GVIP is weak sharp with parameter α if and only
if for every x̄ ∈ S̄ there exists ū ∈ F(x̄) such that

〈ū, v〉 ≥ α‖v‖, (25)

for all v ∈ V (x̄) = TC (x̄) ∩ NS̄(x̄).

Proof Assume that the solution set S̄ of GVIP is weak sharp. Then, for all x ∈ B and
every x̄ ∈ S̄, we have

αx ∈ F(x̄) + (V (x̄))◦ .

That is, there exist ū ∈ F(x̄) and z ∈ (V (x̄))◦ such that αx− ū = z ∈ (V (x̄))◦. Hence,
for all v ∈ V (x̄) with v �= 0, we have 〈αx − ū, v〉 ≤ 0, equivalently, α〈x, v〉 ≤ 〈ū, v〉.
Take x = v

‖v‖ , then α
〈

v
‖v‖ , v

〉
≤ 〈ū, v〉. That is, there exists ū ∈ F(x̄) such that

α‖v‖ ≤ 〈ū, v〉, for all v ∈ V (x̄).

Conversely, assume that (25) holds and let x ∈ B. For v ∈ V (x̄) and ū ∈ F(x̄) as
in (25), we can write

〈αx − ū, v〉 = α〈x, v〉 − 〈ū, v〉
≤ α〈x, v〉 − α‖v‖
= α(〈x, v〉 − ‖v‖) ≤ 0,

where we used (25) in the first inequality and the fact that x ∈ B in the second one.
This implies that for all x ∈ B there exists ū ∈ F(x̄) such that

αx − ū ∈ (V (x̄))◦ .

Equivalently, αx ∈ F(x̄) + (V (x̄))◦ for all x ∈ B. Hence, (23) holds. ��
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The next proposition gives the necessary condition for a weak sharp solution set of
a GVIP in terms of global error bound.

Proposition 5 If the solution set S̄ of the GVIP is weak sharp with parameter α, then

h(x) ≥ αd(x, S̄), for all x ∈ C. (26)

Proof Given a fixed x ∈ C , set x̄ = PS̄(x). Then,

x − x̄ ∈ TC (x̄) ∩ NS̄(x̄) := V (x̄).

By Proposition 4, there exists ū ∈ F(x̄) such that

〈ū, v〉 ≥ α‖v‖, for all v ∈ V (x̄).

In particular, 〈ū, x − x̄〉 ≥ ‖x − x̄‖. The definition of h and the inequality above yield

h(x) ≥ 〈ū, x − x̄〉 ≥ α‖x − x̄‖ = αd(x, S̄).

Hence, (26) holds. ��
The following propositions give some nice properties in terms of directional deriva-

tives or subdifferential of a function if the global error bound condition (26) is satisfied.

Proposition 6 Let x̄ ∈ S̄. If

h(x) ≥ αd(x, S̄), for all x ∈ C and α > 0, (27)

then h′(x̄; v) ≥ α‖v‖ for all v ∈ V (x̄) = TC (x̄) ∩ NS̄(x̄).

Proof Assume that (27) holds. If v ∈ V (x̄) with v = 0, then trivially we are done.
So, we assume that v ∈ V (x̄) but v �= 0. In this case,

〈v, v〉 = ‖v‖2 > 0. (28)

On the other hand, the fact that v ∈ V (x̄) implies that, in particular, v ∈ NS̄(x̄), and
hence

〈v, ȳ − x̄〉 ≤ 0, for all ȳ ∈ S̄. (29)

This means that
S̄ ⊂ H−

v := {x : 〈v, x − x̄〉 ≤ 0}. (30)

Since v ∈ TC (x̄), we have
v = lim

k→∞ vk, (31)

with x̄ + tkvk ∈ C for all k and tk ↓ 0. Combining (31) and (28), we deduce that for
all k ≥ k0, 〈vk, v〉 > 0, that is,

〈(x̄ + tkvk) − x̄, v〉 = tk〈vk, v〉 > 0, for all k ≥ k0.
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Equivalently, (x̄ + tkvk) /∈ H−
v for all k ≥ k0. This implies that their projection onto

the half-space H−
v will belong to the boundary of H−

v , which is

Hv := {x : 〈v, x − x̄〉 = 0}.

Denote by z̄k := PHv (x̄ + tkvk) for all k ≥ k0. Using also the inclusion in (30), we
can write

d(x̄ + tkvk, S̄) ≥ d(x̄ + tkvk, H−
v )

= d(x̄ + tkvk, Hv)

= ‖x̄ + tkvk − PHv (x̄ + tkvk)‖
= ‖x̄ + tkvk − z̄k‖.

(32)

By construction, the vector (x̄ + tkvk − z̄k) is a positive multiple of v. Namely, there
is a positive scalar λk such that

x̄ + tkvk − z̄k = λkv.

Let us compute λk . Since 〈v, z̄k − x̄〉 = 0, we have

0 = 〈v, z̄k − x̄〉 = 〈v, tkvk − λkv〉,

which readily implies that λk = tk〈vk, v〉
‖v‖2 . This gives

z̄k = (x̄ + tkvk) − tk〈vk, v〉
‖v‖2 v.

Therefore,

‖z̄k − (x̄ + tkvk)‖ = tk〈vk, v〉
‖v‖2 ‖v‖ = tk〈vk, v〉

‖v‖ .

Then from (32) and (27), we have

h(x̄ + tkvk) ≥ αd(x̄ + tkvk, S̄) ≥ α
tk〈vk, v〉

‖v‖ .

Since h(x̄) = 0, we have

h(x̄ + tkvk) − h(x̄)

tk
≥ α

〈vk, v〉
‖v‖ .

Taking limit for k → ∞ and recalling the fact that tk ↓ 0, we obtain

h′(x̄, v) ≥ α‖v‖,

as claimed. ��
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Proposition 7 Let x̄ ∈ S̄ and assume that (27) holds. If x̄ ∈ int(dom h) and h is
continuous at x̄ , then there exists ū ∈ ∂h(x̄) such that 〈ū, v〉 ≥ α‖v‖ for all v ∈ V (x̄)
and α > 0.

Proof From (27), we have

h′(x̄, v) ≥ α‖v‖, for all v ∈ V (x̄) and α > 0. (33)

Since x̄ ∈ int(dom h) and h is continuous at x̄ , we can use [17, Proposition 4.1.6 (b)]
to deduce that

h′(x̄, v) = max
z∈∂h(x̄)

〈v, z〉.

That is, there exists ū ∈ ∂h(x̄) such that h′(x̄, v) = 〈v, ū〉. From (33), we have
〈ū, v〉 ≥ α‖v‖. ��

Remark 6 In several papers, condition (26) is used as a definition of weak sharp
solutions of variational inequalities or optimization problems, see, for example [6,23,
24] and the references therein. In Propositions 6 and 7, we proved that if condition (26)
is satisfied then we have some nice properties in terms of directional derivatives or
subdifferential of a function. However, we could not establish the sufficient condition
for a weak sharp solution set of GVIP in terms of global error bound. This remains an
open problem, and the topic of our future research.

5 Finite convergence analysis

We say that an algorithm has finite convergence whenever all iterates belong to the
solution set after a finite number of iterations. In previous sections, we extended the
notion of weak sharpness to the framework of set-valued mappings. In the present
section, we show that our definition of weak sharpness ensures finite convergence in
this more general framework.

Moreover, at the end of this section, we observe that finite convergence can also be
obtained for paramonotone problems under the relaxed assumption that the solution
set is g-weak sharp.

The following theorem establishes a necessary condition for finite convergence. Its
proof is standard, we present it here for completeness.

Theorem 1 Let F : H ⇒ H be a set-valued mapping with nonempty domain. Let
{xk} ⊆ C ∩ D(F) be a sequence generated by an algorithm with finite termination.
In other words, there exists k0 ∈ N such that xk ∈ S̄ for all k ≥ k0. In this situation,

0 ∈ lim int
k→∞ PTC (xk )(−F(xk)). (34)
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Proof Assume that there exists k0 ∈ N such that xk ∈ S̄ for all k ≥ k0. Then, by
definition of S̄, there exists uk ∈ F(xk) such that

〈uk, y − xk〉 ≥ 0, for all y ∈ C,

that is, −uk ∈ NC (xk). Hence, PTC (xk)(−uk) = 0, and thus, there exists zk =
PTC (xk )(−uk) ⊂ PTC (xk)(−F(xk)) such that 0 = limk→∞ zk . Hence, (34) holds.

��
The following theorem establishes conditions under which (34) is also sufficient

for a monotone mapping.

Theorem 2 Let F : H ⇒ H be a monotone set-valued mapping with nonempty
domain. Assume that S̄ is closed and convex, and weak sharp with parameter α. Let
{xk} ⊆ C ∩ D(F) be a sequence generated by an algorithm such that (34) holds.
Then, there exists k0 ∈ N such that xk ∈ S̄ for all k ≥ k0.

Proof Assume that the conclusion is not true. Then, there exists a subsequence {xk j }
of {xk} such that xk j /∈ S̄ for all j ∈ N. Without loss of generality, we may rename
{xk j } as {y j } for simplicity. Then, y j /∈ S̄ for all j ∈ N. Let z j = PS̄(y j ). Since y j /∈ S̄
and z j ∈ S̄, we have ‖z j − y j‖ > 0 for all j . By construction, we have that

v j := y j − z j ∈ TC (z j ) ∩ NS̄(z j ) and z j − y j ∈ TC (y j ).

By weak sharpness and Proposition 4 applied to x̄ = z j and to v j = y j − z j ∈
TC (z j ) ∩ NS̄(z j ), there exists û j ∈ F(z j ) such that

〈û j , y j − z j 〉 ≥ α‖y j − z j‖, for all j,

which yields, for all j

α ≤
〈
−û j ,

z j − y j
‖y j − z j‖

〉
(35)

By (34), for all k there exists u j ∈ F(y j ) such that

lim
k→∞ PTC (y j )(−u j ) = 0. (36)

By Lemma 1, monotonicity of F , and (35), we have

α ≤
〈
−û j ,

z j − y j
‖y j − z j‖

〉
≤

〈
−u j ,

z j − y j
‖y j − z j‖

〉

≤ max{〈−u j , η〉 : η ∈ TC (y j ), ‖η‖ ≤ 1}

= ‖PTC (y j )(−u j )‖,

(37)
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where we used monotonicity in the second inequality, and Lemma 1(b) in the last
equality. The above expression contradicts (36). Therefore, we must have finite con-
vergence. ��

By combining Theorems 1 and 2, we have the following result.

Theorem 3 Let F : H ⇒ H be a monotone set-valued mapping with nonempty
domain. Assume that S̄ is closed and convex, and weak sharp with parameter α.
Let {xk} ⊆ C ∩ D(F) be a sequence generated by an algorithm. Then, xk ∈ S̄ for
sufficiently large k if and only if (34) holds.

Remark 7 Theorem 3 can be seen as a generalization and refinement of Theorem 5.2
in [14] and Theorem 3.2 in [20].

Remark 8 The assumption of monotonicity in Theorem 3 is standard in the literature
of weak-sharp minima (see, e.g., Theorem 2 in [14] and Theorem 4.2 in [19]). This
assumption is used for proximal-like methods and its variants, such as those studied
in [4]. The weak sharpness assumption has been mainly investigated for the point-to-
point case, and its validity in this case is equivalent to an error bound condition for
the gap function of the variational inequality (see, e.g., Theorem 3.1 in [11]). As for
the point-to-set case, examples of weak sharpness of the solution set can be found
in [19] for variational inequalities arising from nonsmooth constrained optimization
problems.

To establish finite convergence without monotonicity, we need to strengthen condi-
tion (34) (see condition (ii) below). We also need F to have a continuity property. On
the other hand, we do not assume that the sequence is bounded, which is a standard
assumption used in the literature.

Theorem 4 Let F : H ⇒ H be a set-valuedmappingwith nonempty domain. Assume
that the solution set S̄ is closed and convex, and weak sharp with parameter α. Let
{xk} ⊆ C ∩ D(F) be a sequence generated by an algorithm that verifies the following
properties.

(i) limk d(xk, S̄) = 0, and
(ii)

{0} = lim int
k→∞ PTC (xk)(−F(xk)). (38)

Consider the following two assumptions.

(A1) The map F is Lipschitz continuous on C ∩ D(F).
(A2) The space H is finite dimensional, the set F(S̄) is bounded, and F is closed
valued and inner-semicontinuous on S̄.

Under either of the assumptions (A1) or (A2), there exists k0 ∈ N such that xk ∈ S̄
for all k ≥ k0.

Proof Consider first assumption (A1). If the conclusion is not true, there exists a
subsequence {xk j } of {xk} such that xk j /∈ S̄ for all j ∈ N. Without loss of generality,
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we denote this subsequence by {x j }. As in the proof of the previous theorem, let
z j = PS̄(x j ). By assumption, we have that

lim
k

d(x j , S̄) = lim
k

‖z j − x j‖ = 0. (39)

By weak sharpness and Proposition 4 applied to x̄ = z j and to v j = x j − z j ∈
TC (z j ) ∩ NS̄(z j ), there exists û j ∈ F(z j ) such that

〈û j , x j − z j 〉 ≥ α‖x j − z j‖,
α ≤

〈
−û j ,

z j − x j
‖x j − z j‖

〉
. (40)

Since F is Lipschitz continuous on C ∩ D(F), there exists a constant λ > 0 such that

F(z j ) ⊂ F(x j ) + λ ‖z j − x j‖ B. (41)

By (39), we can take j0 such that, for j ≥ j0 we have that λ ‖z j − x j‖ < α/2. Hence,
for j ≥ j0, (41) yields

F(z j ) ⊂ F(x j ) + (α/2) B. (42)

For j ≥ j0, take û j ∈ F(z j ) as in (40). By (42), there exist η j ∈ F(x j ) and w j ∈ B
such that

û j = η j + (α/2)w j , for all j ≥ j0. (43)

On the other hand, (38) implies that for every sequence θ j ∈ PTC (x j )(−F(x j )), we
must have

lim
j

‖θ j‖ = 0.

Using this fact for θ j := PTC (x j )(−η j ) ∈ PTC (x j )(−F(x j )), there exists j1 ≥ j0 such
that

‖PTC (x j )(−η j )‖ < α/4, for all j ≥ j1.
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Altogether, (40) and (43) yield, for j ≥ j1

α ≤
〈
η j + (α/2)w j ,

x j − z j
‖x j − z j‖

〉

=
〈
η j ,

x j − z j
‖x j − z j‖

〉
+ (α/2)

〈
w j ,

x j − z j
‖x j − z j‖

〉

≤ (α/2) +
〈
−η j ,

z j − x j
‖z j − x j‖

〉

≤ (α/2) + max{〈−η j , u〉 : u ∈ TC (x j ), ‖u‖ ≤ 1}

= (α/2) + ‖PTC (x j )(−η j )‖

≤ (α/2) + (α/4) = (3/4)α,

where we used the fact that w j ∈ B in the second inequality, Lemma 1 (b) in the
last equality, and the assumption on j1 in the last inequality. The above expression
entails a contradiction, which implies that the algorithm must have finite convergence
as stated.

Consider now assumption (A2). The proof follows the same steps until equation
(40). Since F(S̄) is bounded, there exists ρ > 0 such that ‖û j‖ ≤ ρ. Take this ρ, and
set ε := α/2 in Proposition 1 (ii) to find a δ > 0 such that

F(z j ) ∩ B[0, ρ] ⊂ F(x) + (α/2)B, ∀ x ∈ B(z j , δ).

Take j0 such that x j ∈ B(z j , δ) whenever j ≥ j0, so we deduce that

F(z j ) ∩ B[0, ρ] ⊂ F(x j ) + (α/2)B, ∀ j ≥ j0.

Since û j ∈ F(z j ) ∩ B[0, ρ] we have û j ∈ F(x j ) + (α/2)B, ∀ j ≥ j0. Hence, we are
in the situation of (43). The rest of the proof follows the same steps. ��
Remark 9 Most algorithms for the variational inequality problem have some kind of
monotonicity assumption on the underlying operator. In the absence of anymonotonic-
ity assumption, the usual setting is the one that has a point-to-point and continuous
operator (in the classical sense), see the recent work [21]. For a point-to-point continu-
ous map, all assumptions in (A2) of Theorem 4 hold, as long as F(S̄) is a bounded set
and S̄ is weak sharp. The Lipschitz assumption in Theorem 4 (A1) can be relaxed by
the uniform continuity assumption on F . More precisely, G : Rn ⇒ R

n is uniformly
continuous on a set W ⊂ R

n if for every ε > 0, there exists a δ > 0 such that for
every pair of points x, x ′ ∈ W we have

‖x − x ′‖ < δ ⇒ G(x) ⊂ G(x ′) + ε B.
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The proof under this less restrictive assumption follows the same steps as those in
Theorem 4 under assumption (A1).

Remark 10 When F is paramonotone, we have seen in Lemma 2 (b) that

F(x̄) ⊂ ∂h(x̄) for all x̄ ∈ S̄.

In this situation, whenever S̄ is weak sharp with parameter α, then it is h-weak sharp
with parameter α. This implies that, for a paramonotone F , h-weak sharpness is less
restrictive than weak sharpness.

Remark 11 Under assumption (34) and h-weak sharpness of S̄, Zhou and Wang
established in [24, Theorem 3.1] finite convergence to S̄. This implies that, when
F is paramonotone, the assumption of weak-sharpness may be relaxed by h-weak
sharpness, and finite convergence holds automatically under assumption (34). In fact,
paramonotonicity is only used to show that h-weak sharpness is a less restrictive
assumption than sharpness. Otherwise, the proof of the following theorem follows
directly from [24, Theorem 3.1]. We state this result in our framework.

Theorem 5 Let F be paramonotone and assume S̄ is h-weak sharp. Let {xk} ⊆
C ∩ D(F) be a sequence generated by an algorithm such that (34) holds. Then, there
exists k0 ∈ N such that xk ∈ S̄ for all k ≥ k0.
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