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Abstract In this paper, by means of the image space analysis, we obtain optimal-
ity conditions for vector optimization of objective multifunction with multivalued
constraints based on disjunction of two suitable subsets of the image space. By the
oriented distance function a nonlinear regular separation is introduced and some opti-
mality conditions for the constrained extremum problem are obtained. It is shown that
the existence of a nonlinear separation is equivalent to a saddle point condition for the
generalized Lagrangian function.

Keywords Image space · Nonlinear separation · Constrained Optimization ·
Generalized Lagrangian
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1 Introduction

The Image Space approach (IS) was initiated in [8] and was carried on in some
other articles; see [9,13,14,25,26] and references therein. The (IS) approach has been
proved to be a fruitful method in many topics of optimization theory (e.g., optimal-
ity condition, existence of solution, duality, vector variational inequalities and vector
equilibrium problems); see [1–7,13,14]. Moreover, it has been shown that several the-
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oretical aspects of constrained extremum problem, such as duality, penalty methods,
regularity and Lagrangian-type optimality can be developed by (IS). In this approach,
the disjunction of two suitable disjoint sets by a linear or nonlinear separation implies
the optimality for constrained extremum problem.
Besides the direction of nonlinear/nonconvex separation in image spaces, there are
other interesting approaches to set-valued optimization based on generalized differ-
entiation and extremal principle; see the 2-volumes monograph [23] and [24].
Here,we focus our attention on somenonlinear separation functions for the constrained
extremum problem. We extend the nonlinear regular weak separation functions that
have been discussed in [11,16] and [22,28] formultivalued optimization problems.We
also define a new nonlinear (regular) weak separation function based on the oriented
distance function � and derive some optimality conditions. In particular, the relation
between saddle points of the generalized Lagrangian functions and optimality for the
constrained extremum problem are deduced.
The paper is organized as follows: In Sect. 1, we present some basic concepts and
different types of solutions of a vector optimization problem. In Sect. 2, we recall the
main concepts concerning the image space analysis and we consider some proper-
ties of the image problem. Sect. 3 illustrates the equivalence between the existence
of a nonlinear separation function and a saddle point condition for the generalized
Lagrangian function.
Let X be a topological vector space and let Y and Z be two normed linear spaces
with normed dual spaces Y ∗ and Z∗, respectively, and F : U ⇒ Y be a multifunction
defined on a nonempty subset U of X with values in Y. The set

dom F := {x : F(x) �= ∅}

is called the domain of F, and the set

gr F := {(x, y) : x ∈ dom F, y ∈ F(x)} =
⋃

x∈dom F

[{x} × F(x)]

is called the graph of F . Let C ⊂ Y and D ⊂ Z be pointed, closed and convex cones
with nonempty interiors. The space of continuous linear operators from Z to Y is
denoted by L(Z ,Y ) and

L+(Z ,Y ) := {T ∈ L(Z ,Y ) : T (D) ⊆ C}.

The positive dual cone of C is defined by

C+ := {p ∈ Y ∗ : p(y) ≥ 0, ∀y ∈ C},

and the set of all positive linear functionals in C+ is

C+i := {p ∈ Y ∗ : p(y) > 0, ∀y ∈ C\{0}}.
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Note that, if C is a convex cone in Y, then int C+ ⊆ C+i and the equality holds if
int C+ �= ∅ . A partial order ≤C in Y is defined by

y1 ≤C y2 ⇔ y2 − y1 ∈ C, ∀y1, y2 ∈ Y.

For simplicity, throughout this article, we denote
◦
C := int C and C0 := C\{0}.

Definition 1.1 Let U be a convex subset of X. A multifunction F : U ⇒ Y is said to
be C-multifunction on U , iff for all x1, x2 ∈ U and t ∈ [0, 1], we have

t F(x1) + (1 − t)F(x2) ⊆ F(t x1 + (1 − t)x2) + C.

In the sequel, we suppose that F : U ⇒ Y is a multifunction defined on a nonempty
convex subset U of X with values in Y.

Definition 1.2 Let F : U ⇒ Y andG : U ⇒ Z be twomultifunctions with nonempty
values. We consider the following vector optimization problem:

minC F(x) s.t. x ∈ R := {x ∈ U : G(x) ∩ (−D) �= ∅}, (1)

where R is called the feasible region of Problem (1), which we suppose nonempty.

Definition 1.3 A point x̄ ∈ R is called a minimum point of Problem (1) iff

∃ȳ ∈ F(x̄) s.t. (F(R)) ∩ (ȳ − C0) = ∅.

In this case we say that (x̄, ȳ) is a minimizer for Problem (1). A point x̄ ∈ R is called
a weak minimum point of Problem (1) iff

∃ȳ ∈ F(x̄) s.t. (F(R)) ∩ (ȳ − ◦
C) = ∅.

In this case we say that (x̄, ȳ) is a weak minimizer for Problem (1).

The following result presents a necessary and sufficient condition for a vector to be a
minimum point or a weak minimum point of Problem (1).

Lemma 1.1 [20] Let x̄ ∈ R and (x̄, ȳ) ∈ gr F. Then

(i) (x̄, ȳ) is a minimizer of Problem (1) iff

(ȳ − C0,−D) ∩ (F(x),G(x)) = ∅ ∀x ∈ U.

(ii) (x̄, ȳ) is a weak minimizer of Problem (1) iff

(ȳ − ◦
C,−D) ∩ (F(x),G(x)) = ∅ ∀x ∈ U.
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2 Image space analysis

In this section, we develop the image space analysis for vector optimization with
multifunction constraints and multifunction objectives. Let x̄ ∈ R and p̄ := (x̄, ȳ) ∈
gr F . We introduce the multifunction Ap̄ : U ⇒ Y × Z , defined by

Ap̄(x) := {(ȳ − y,−z) : y ∈ F(x) , z ∈ G(x)}, x ∈ U,

and we associate the following sets to p̄ ∈ gr F

H = C0 × D , K p̄ = Ap̄(U ).

The set K p̄ is called the image space associated with Problem (1). By Lemma 1.1,
p̄ = (x̄, ȳ) is a minimizer of Problem (1) iff

K p̄ ∩ H = ∅, (2)

and p̄ = (x̄, ȳ) is a weak minimizer of Problem (1) iff

K p̄ ∩ Hic = ∅, (3)

where, Hic = ◦
C × D.

Remark 2.1 In general, the image spaceK p̄ is not convex, evenwhen the two functions
F and G are C-multifunction and D-multifunction on the convex set U, respectively.
To overcome this defect, we introduce the extended image space K p̄ with respect to
the cone cl H as E p̄ = K p̄ − cl H. In fact, by imposing some convexity assumptions
on F and G, we obtain the convexity of the extended image space.

Lemma 2.1 [6] Let F : U ⇒ Y and G : U ⇒ Z be C-multifunction and D-
multifunction on the convex set U, respectively. Then the extended image E p̄ = K p̄ −
cl H is convex and

K p̄ ∩ H = ∅ ⇐⇒ E p̄ ∩ H = ∅.

Corollary 2.1 Let x̄ ∈ R. Then p̄ = (x̄, ȳ) ∈ gr F is a minimizer of Problem (1) iff

E p̄ ∩ H = ∅. (4)

Remark 2.2 LetH0 be a subset ofH, defined byH0 = C0 × {0z}. Then by a similar
argument as that of the proof of Proposition 2.1 in [12], we can deduce that (4) is
equivalent to

E p̄ ∩ H0 = ∅. (5)
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3 Nonlinear separation functions

The separation functions play an important role in the optimality conditions for con-
strained optimization. In order to prove disjunction between the two sets K p̄ and H,

we will show that K p̄ and H lie in two disjoint level sets of a linear or nonlinear
separation function.

Definition 3.1 Let � be a set of parameters and H = C0 × D.The class of all the
functions ω : Y × Z × � −→ R, such that

H ⊆ lev≥0 ω(., ., π), ∀π ∈ �, (6)

and

⋂
π∈�

lev>0 ω(., ., π) ⊆ H (7)

is called the class of weak separation functions and is denoted by W(�), in which
lev>0 ω(., ., π) := {(u, v) ∈ Y × Z : ω(u, v, π) > 0} denotes the level set of
ω(., ., π).

Definition 3.2 The class of all the functions ω : Y × Z × � −→ R, such that

⋂
π∈�

lev>0 ω(., ., π) = H, (8)

is called the class of regular weak separation functions and is denoted by Wr (�).

Suppose that � = Y ∗ × � is the given set of parameters and the class of functions
ω1 : Y × Z × Y ∗ × � �→ R is given by

ω1(u, v, θ, γ ) := 〈θ, u〉 + ω0(v, γ ),

where ω0 fulfills the following conditions:

∀γ ∈ �, ∀α ∈ R+, ∃γα ∈ � s.t. αω0(v, γ ) = ω0(v, γα) ∀v ∈ Z . (9)

⋂
γ∈�

lev≥0 ω0(., γ ) = D. (10)

The above weak separation has been discussed byGiannessi in [9]. Note that the above
conditions imply that

∃γ̄ ∈ � s.t. ω0(., γ̄ ) ≡ 0. (11)

∀v /∈ D, ∃γ ∈ � s.t. ω0(v, γ ) < 0. (12)
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In the sequel, we consider the following assumptions:

inf
γ∈�

ω0(v, γ ) = −∞, ∀v /∈ D. (13)

inf
γ∈�

ω0(v, γ ) = 0, ∀v ∈ D. (14)

One can show that (13) and (14) imply (10), see [12] and if Z = R
m, then (9) implies

(13) and (14), see [9].
In the sequel, by using the oriented distance function we introduce a new nonlinear
class of functions.

Definition 3.3 Suppose that A ⊆ Y and dA(y) = inf{‖a− y‖ : a ∈ A} is the distance
function from A. The function �A : Y → R ∪ {±∞} defined by

�A(y) = dA(y) − dY\A(y)

is called the oriented distance function.

This function was defined in [15] and some of its main properties are gathered in the
following result.

Proposition 3.1 [18,19,27] If the set A is nonempty and A � Y with nonempty
interior, then:

(i) �A is real valued and 1-Lipschitzian function;
(ii) �A < 0 for every y ∈ intA, �A = 0 for every y ∈ ∂A, and �A > 0 for every

y ∈ int(Y\A);
(iii) If A is closed, then it holds that A = {y : �A(y) ≤ 0};
(iv) If A is convex, then �A is convex;
(v) If A is a cone, then �A is positively homogeneous;
(vi) If A is a closed convex cone, then�A is nonincreasingwith respect to the ordering

relation induced by C on Y.

(vi) If A is a convex cone, then �A(y) = sup{θ∈C+,‖θ‖=1} −〈θ, y〉, for all y ∈ Y .

Now, by the oriented distance function�,we consider the nonlinear class of functions
ω2 : Y × Z × � �→ R defined by

ω2(u, v, π) := −�C (u) + ω0(v, π).

Remark 3.1 The class of separation functions ω1 and ω2 have unified the following
known linear or nonlinear separation functions:

(i) ω3(u, v, θ, γ ) := 〈θ, u〉 + 〈γ, v〉, (θ, γ ) ∈ � = (C+ × D+)\{(0, 0)},
(ii) ω4(u, v, θ, γ ) := 〈θ, u〉−�R+(〈γ, v〉), (θ, γ ) ∈ � = (C+ × D+)\{(0, 0)},
(iii) ω5(u, v, θ, γ ) := 〈θ, u〉 − γ dD(v), (θ, γ ) ∈ � = (C+ × R)\{(0, 0)},
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(iv) ω6(u, v, θ) := 〈θ, u〉 − δD(v), where, θ ∈ � = C+ and δD, is the indicator
function of D,

(v) ω7(u, v, γ ) := −�C (u) + 〈γ, v〉, γ ∈ � = D+,

(vi) ω8(u, v) := −�C (u) − δD(v),

(vii) ω9(u, v, θ, T ) := 〈θ, u〉 − �C (T v), where (θ, T ) ∈ � = (C+ × L+(Z ,Y )).

The linear weak separation ω3 has been discussed by many authors. The separation
functions ω3, ω4, ω6, ω7,and ω8 are weak separation functions and regular weak
separation functions for some parameter sets �, see [3,17,21].

Proposition 3.2 (i) If ω0 fulfills both conditions (13) and (14), then ω1 ∈ Wr (�),
where � = C+i × �;

(ii) If ω0 fulfills both conditions (13) and (14), then ω2 ∈ W(�), where � = D+.
(iii) ω5 ∈ Wr (�), where � = C+i × R

+;
(iv) ω9 ∈ Wr (�), where � = C+i × L+(Z ,Y ).

Proof (i) With minor modifications in the proof of Proposition 4.3.3. in [9], we can
deduce the proof.

(ii) Let (u, v) ∈ H, by condition (14) and Proposition 3.1, we have ω0(v, π) ≥ 0 and
�C (u) ≤ 0, which implies

H ⊆ lev≥0 ω2(., ., π), ∀π ∈ D+.

We will prove the following inclusion:

⋂
π∈D+ lev>0 ω2(., ., π) ⊆ H.

On the contrary, assume that there exists (û, v̂) /∈ H, such that

ω2(û, v̂, π) > 0, ∀π ∈ D+. (15)

We consider two cases:

Case (i) If û /∈ C0 and v̂ ∈ Z , then û ∈ ∂C or û ∈ Y\C, by Proposition 3.1,
we deduce that �C (û) ≥ 0. From condition (11), there exists π̂ ∈ D+, such that
ω0(v̂, π̂) = 0. So,

ω2(û, v̂, π̂) ≤ 0,

which contradicts (15).

Case (ii) If û ∈ C0 and v̂ /∈ D, then from condition (10), there exists π̂ ∈ D+,

such that

ω2(û, v̂, π̂) = −�C (û) + ω0(v̂, π̂) < 0,

which again contradicts (15).
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(iii) Since ω0(v, γ ) = −γ dD(v) and ω0 fulfills both conditions (13) and (14), by part
(i) we obtain the result.

(iv) Since ω9 is linear with respect to u, so that it is a regular separation function
provided θ ∈ C+i . Let (u, v) ∈ H, then 〈θ, u〉 > 0, for each θ ∈ C+\{0} and
�C (T v) ≤ 0, for all T ∈ L+(Z ,Y ). Hence we have,

H ⊆ lev>0 ω9(., ., θ, T )

Now we prove the following inclusion:

⋂
(θ,T )∈C+\{0}×L+(Z ,Y )

lev>0 ω9(., ., θ, T ) ⊆ H.

On the contrary, assume that there exists (û, v̂) /∈ H such that

ω9(û, v̂, θ, T ) > 0 ∀θ ∈ C+\{0} ∀T ∈ L+(Z ,Y ). (16)

We consider the following two cases:

Case (i) If û /∈ C0 and v̂ ∈ Z , then there exists θ̂ ∈ C+\{0} such that 〈θ̂ , û〉 ≤ 0.
If we set T = 0 ∈ L+(Z ,Y ), then

ω9(û, v̂, θ̂ , T ) ≤ 0,

which contradicts (16).

Case (ii) If û ∈ C0 and v̂ /∈ D, then there exists γ̂ ∈ D+, such that 〈γ̂ , v̂〉 < 0.
We define the operator Tn : Z −→ Y , by

Tn(z) = n〈γ̂ , z〉ê, ∀z ∈ Z ,

for some ê ∈ ◦
C. Clearly, Tn ∈ L+(Z ,Y ) and

ω9(û, v̂, θ̂ , Tn) ≤ 0,

for sufficiently large n ∈ N, which contradicts (16). Therefore, we have ω9 ∈
Wr (�). ��

Definition 3.4 Let x̄ ∈ R and p̄ = (x̄, ȳ) ∈ gr F. Then we say that K p̄ and H admit
a nonlinear separation w.r.t. ωi , for i = 1, 2, 3, 4, 5, 6, 7, 8, 9, iff there exists π̄ ∈ �,

such that ωi (u, v, π̄) �≡ 0 and

H ⊆ lev≥0 ωi (., ., π̄); (17)

K p̄ ⊆ lev≤0 ωi (., ., π̄ ). (18)

For i = 1, 3, 4, 5, 6, 9, if π̄ ∈ C+i × �, then the separation is said to be regular.
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In general, the existence of a nonlinear separation does not guarantee the disjunction of
K p̄ andH; whereas, if the separation function ω1 is regular, then the strict inequality
in (18) holds and we obtain a nonlinear version of Proposition 4.1 in [6] as follows.

Proposition 3.3 Let x̄ ∈ R and p̄ = (x̄, ȳ) ∈ gr F. If K p̄ and H admit a regular
nonlinear separation w.r.t. ω1, then p̄ is a minimizer of Problem (1).

Bya similar argument, as that of the proof of Theorem4.2 in [6],we obtain its nonlinear
version.

Proposition 3.4 Let x̄ ∈ R, p̄ = (x̄, ȳ) ∈ gr F. Letω1 be a class of regular nonlinear
separation functions satisfying both conditions (13) and (14). If

inf
γ∈D+ sup

(u,v)∈K p̄

ω1(u, v, θ̄ , γ ) ≤ 0,

then p̄ is a minimizer of Problem (1).

Remark 3.2 Similar to the case of nonlinear separationω1, the existence of a nonlinear
separation ω2 does not guarantee the disjunction of K p̄ and H; whereas, if both
conditions (17) and (18) hold for some π̄ ∈ �, and at least one of them is strict, i.e.

ω2(u, v, π̄) < 0, ∀(u, v) ∈ K p̄;

or

ω2 ∈ Wr (�),

thenwe say that the nonlinear separationω2(u, v, π) = −�C(u)+ω0(v, π) is regular.

The following result is directly derived from Definition 3.4 and (3).

Proposition 3.5 Let x̄ ∈ R and p̄ = (x̄, ȳ) ∈ gr F. If K p̄ and H admit a nonlinear
separation w.r.t. ω2, then p̄ is a weak minimizer of Problem (1).

Remark 3.3 By a similar argument, as that of the proof of Proposition 4.1 in [17], we
deduce that the following conditions

ω1(u, v, θ̄ , γ̄ ) ≤ 0, ∀(u, v) ∈ K p̄;

ω2(u, v, π̄) ≤ 0, ∀(u, v) ∈ K p̄;

are equivalent to

ω1(u, v, θ̄ , γ̄ ) ≤ 0, ∀(u, v) ∈ E p̄;

ω2(u, v, π̄) ≤ 0, ∀(u, v) ∈ E p̄;

respectively.
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The next result is a nonlinear version of Theorem 4.2 in [6].

Theorem 3.1 Let x̄ ∈ R, p̄ = (x̄, ȳ) ∈ gr F. Letω2 be a class of nonlinear separation
functions satisfying both conditions (13) and (14). If for each z ∈ G(x) ∩ (−D),

inf
π∈D+ sup

{y∈F(x):x∈R}
ω2(ȳ − y,−z, π) < 0,

then p̄ is a minimizer of Problem (1).

Proof Suppose, on the contrary, that p̄ is not a minimizer of Problem (1), then by (2),
K p̄ ∩ H �= ∅. Therefore, there exists x̂ ∈ R, ŷ ∈ F(x̂) and ẑ ∈ G(x̂), such that

(ȳ − ŷ,−ẑ) ∈ K p̄ ∩ H.

Hence,

sup
{y∈F(x):x∈R}

ω2(ȳ − y,−z, π) ≥ −�C(ȳ − ŷ) + ω0(−ẑ, π).

Since infπ∈D+ ω0(−ẑ, π) = 0 and (ȳ − ŷ) ∈ C0, then

inf
π∈D+ sup

{y∈F(x):x∈R}
ω2(ȳ − y,−z, π) ≥ 0,

which is a contradiction. ��
In order to obtain saddle point conditions for the generalized Lagrangian function
associated with Problem (1), we consider the generalized Lagrangian function
L1 : U × C+ × � �→ R defined by

L1(x, θ, γ ) = inf
y∈F(x)

〈θ, y〉 − sup
z∈G(x)∩−D

ω0(−z, γ ),

where , F andG, are compact valued.ThegeneralizedLagrangian functionL1(x, θ, γ )

refines the ones in the literature.
For obtaining a saddle point of the generalized Lagrangian function in our context, we
need the following stronger versions of conditions (13) and (14):

inf
γ∈�

sup
v∈D1

ω0(v, γ ) = −∞. (19)

inf
γ∈�

sup
v∈D2

ω0(v, γ ) = 0, (20)

where D1 and D2, are compact subsets of Z\D and D, respectively and ω0 is contin-
uous in the first argument.

Remark 3.4 It is obvious that if two sets D1 and D2, are singletons then the above
conditions are equivalent to (13) and (14). Moreover, we note that (19) and (20) hold
when ω0(v, γ ) = 〈γ, v〉.
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The following result shows that the existence of a nonlinear separation between K p̄

and H is equivalent to the existence of a saddle point for the generalized Lagrangian
functionL1(x, θ, γ ). The proof is similar to the proof of Theorem 4.3 in [6]; therefore,
it is omitted.

Theorem 3.2 Let p̄ = (x̄, ȳ) ∈ gr F, and ω1 be a class of nonlinear functions
satisfying conditions (19) and (20).

(i) If (x̄, γ̄ ) is a saddle point for the generalized Lagrangian function L1(x, θ̄ , γ ),

i.e.

L1(x̄, θ̄ , γ ) ≤ L1(x̄, θ̄ , γ̄ ) ≤ L1(x, θ̄ , γ̄ ), ∀x ∈ U, ∀γ ∈ D+,

for a fixed θ̄ ∈ C+, then x̄ ∈ R and K p̄ and H admit a nonlinear separation.
(ii) Suppose that F(x̄) ⊆ {ȳ} + C. If there exists (θ̄ , γ̄ ) ∈ C+ × D+ for which K p̄

andH admit a nonlinear separation w.r.t. ω1(u, v, θ̄ , γ̄ ), then (x̄, γ̄ ) is a saddle
point for the generalized Lagrangian function ,i.e.

L1(x̄, θ̄ , γ ) ≤ L1(x̄, θ̄ , γ̄ ) ≤ L1(x, θ̄ , γ̄ ), ∀x ∈ U, ∀γ ∈ D+.

Remark 3.5 In Theorem 3.2, if we consider θ̄ ∈ C+i , then we obtain a similar result
for regular nonlinear separation.

The following result is directly derived from Proposition 3.2 and part (i) of Theorem
3.2.

Corollary 3.1 Assume ω0 satisfies both conditions (19) and (20). If (x̄, γ̄ ) is a saddle
point for the generalized Lagrangian function L1(x, θ̄ , γ ) for some θ̄ ∈ C+i , then p̄
is a minimizer of Problem (1).

In order to obtain saddle point conditions for the generalized Lagrangian function
associatedwith Problem (1)w.r.t.ω2,we consider the generalizedLagrangian function
L2 : U × � �→ R defined by

L2(x, π) = inf
y∈F(x)

�C(ȳ − y) − sup
z∈G(x)∩−D

ω0(−z, π),

where F and G are compact valued and p̄ = (x̄, ȳ) ∈ gr F.

The next result shows that the existence of a regular nonlinear separation functions
ω2(u, v, π) between K p̄ andH is equivalent to the existence of a saddle point for the
generalized Lagrangian function L2(x, π).

Theorem 3.3 Let p̄ = (x̄, ȳ) ∈ gr F, F(x̄) ⊆ {ȳ} + C and ω2 be the class of
nonlinear functions satisfying both conditions (19) and (20).

(i) If (x̄, π̄) is a saddle point for the generalized Lagrangian function, i.e.

L2(x̄, π) ≤ L2(x̄, π̄) ≤ L2(x, π̄), ∀x ∈ U, ∀π ∈ D+,

then x̄ ∈ R and K p̄ and H, admit a nonlinear separation.
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(ii) Suppose that x̄ ∈ R, if K p̄ and H admit a nonlinear separation, then (x̄, π̄) is a
saddle point for the generalized Lagrangian function, i.e.

L2(x̄, π) ≤ L2(x̄, π̄) ≤ L2(x, π̄), ∀x ∈ U, ∀π ∈ D+,

Proof (i) Suppose that (x̄, π̄) is a saddle point for the generalizedLagrangian function
L2(x, π), then

L2(x̄, π) ≤ L2(x̄, π̄) ≤ L2(x, π̄), ∀x ∈ U, ∀π ∈ D+.

Or, equivalently for each π ∈ �, and for each x ∈ U , we have

inf
y∈F(x)

�C(ȳ − y) − sup
z∈G(x)∩−D

ω0(−z, π̄) ≥ (21)

inf
y∈F(x̄)

�C(ȳ − y) − sup
z∈G(x̄)∩−D

ω0(−z, π̄) ≥

inf
y∈F(x̄)

�C(ȳ − y) − sup
z∈G(x̄)∩−D

ω0(−z, π).

First, we prove that x̄ ∈ R. On the contrary, suppose that x̄ /∈ R. Then G(x̄) ∩
−D = ∅. So, in the second inequality in (21), we have

inf
π∈D+ sup

z∈G(x̄)∩−D
ω0(−z, π) = −∞,

which contradicts the first inequality in (21). Therefore x̄ ∈ R.

On the other hand, since for each y ∈ F(x̄), we have y ∈ ȳ + C, then
inf y∈F(x̄) �C(ȳ − y) = 0. Now, from the inequality (21), we have

inf
y∈F(x)

�C(ȳ − y) − sup
z∈G(x)∩−D

ω0(−z, π̄) ≥ − sup
z∈G(x̄)∩−D

ω0(−z, π).

By using (20), we obtain

sup
y∈F(x)−D

(−�C(ȳ − y)) + sup
z∈G(x)∩−D

ω0(−z, π̄) ≤ 0.

Hence,

−�C(ȳ − y) + ω0(−z, π̄) ≤ 0.

Which shows that K p̄ and H admit a nonlinear separation.
(ii) Assume that K p̄ andH, admit a nonlinear separation. Then for each x ∈ U, y ∈

F(x) and z ∈ G(x), we have

−�C(ȳ − y) + ω0(−z, π̄) ≤ 0,
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or equivalently

sup
y∈F(x)

(−�C(ȳ − y)) + sup
z∈G(x)∩−D

ω0(−z, π̄) ≤ 0,

thus

inf
y∈F(x)

�C(ȳ − y) − sup
z∈G(x)∩−D

ω0(−z, π̄) ≥ 0.

In particular, for y ∈ F(x̄), by using (20), we obtain

sup
z∈G(x̄)∩−D

ω0(−z, π̄) = 0, (22)

and

inf
y∈F(x̄)

�C(ȳ − y) = 0, (23)

since F(x̄) ⊆ {ȳ} + C.

On the other hand by (20), we obtain

0 = sup
z∈G(x̄)∩−D

ω0(−z, π̄) ≤ sup
z∈G(x̄)∩−D

ω0(−z, π),

and from (22) and (23), we deduce

inf
y∈F(x)

�C(ȳ − y) − sup
z∈G(x)∩−D

ω0(−z, π̄) ≥

inf
y∈F(x̄)

�C(ȳ − y) − sup
z∈G(x̄)∩−D

ω0(−z, π̄) ≥

inf
y∈F(x̄)

�C(ȳ − y) − sup
z∈G(x̄)∩−D

ω0(−z, π).

Or

L2(x̄, π) ≤ L2(x̄, π̄) ≤ L2(x, π̄), ∀x ∈ U, ∀π ∈ D+,

i.e. (x̄, π̄) is a saddle point for the generalized Lagrangian function.
��

The following result is directly derived from Proposition 3.5 and Theorem 3.3.

Corollary 3.2 Let p̄ = (x̄, ȳ) ∈ gr F and ω2 be the class of nonlinear functions
satisfying both conditions (19) and (20). Suppose that F(x̄) ⊆ {ȳ} + C. If (x̄, π̄) is a
saddle point for the generalized Lagrangian function L2(x, π), then x̄ ∈ R and p̄ is
a weak minimizer of Problem (1).
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Remark 3.6 Using the class of regular separation functions ω1, we can obtain an
application to penalty methods for the constrained extremum Problem (1).
Let θ̄ ∈ C+i be fixed. Consider the following extremum Problem:

(Pγ ) Lω(x, γ ) := inf
y∈F(x)

〈θ̄ , y〉 + γ inf
z∈G(x)

dD(−z), x ∈ R, γ ∈ R.

A point x̄ ∈ R is called a minimum point of Problem (Pγ̄ ) iff

∃ȳ∈F(x̄) : 〈θ̄ , ȳ〉+γ̄ inf
z∈G(x̄)

dD(−z)≤〈θ̄ , y〉+γ̄ inf
z∈G(x)

dD(−z),∀x ∈ R,∀y∈F(x).

In this case, (x̄, ȳ) is a minimizer for Problem (Pγ̄ ). If there exists γ̄ ∈ R, such that
any solution of Problem (Pγ̄ ), say (x̄, ȳ), is a solution of Problem (1), then we say
that the function Lω(x, γ̄ ) is an exact penalty function of Problem (1) at x̄ .

By a minor modification in the proof of Theorem 4.4 in [22], we can obtain the
following result for set-valued optimization problems.

Theorem 3.4 Let Z be a reflexive space, x̄ ∈ R, p̄ = (x̄, ȳ) ∈ gr F, F(x̄) ⊆ {ȳ}+C
and θ̄ ∈ C+i . Then, the following statements are equivalent:

(i) cl cone E p̄ ∩ Hu = ∅.

(ii) there exists γ̄ ∈ R+\{0}, such that

sup
y∈F(x)

〈θ̄ , ȳ − y〉 ≤ γ̄ inf
z∈G(x)

dD(−z), ∀x ∈ U.

(iii) there exists γ̄ ∈ R+\{0}, such that

ω1(u, v, θ̄ , γ̄ ) ≤ 0, ∀(u, v) ∈ K p̄,

where

ω1(u, v, θ, γ ) = 〈θ, u〉 + ω0(v, γ ) = 〈θ, u〉 − γ dD(v).

(iv) Lω(x, γ ) is an exact penalty function of Problem (1) at x̄ .

Proof Assume that (i) holds, and (i i) doesn’t satisfy. Then for any n ∈ N, there exist
xn ∈ U , yn ∈ F(xn) and zn ∈ G(xn) such that

〈θ̄ , ȳ − yn〉 > ndD(−zn).

Since Z is a reflexive Banach space, the norm is a continuous convex coercive function
and D is a closed convex set, then for any n ∈ N, there exists vn ∈ D such that

dD(−zn) =‖ −zn − vn ‖ .
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Let αn := 1
〈θ̄ ,ȳ−yn〉 > 0. Then,

αn ‖ −zn − vn ‖< 1

n
, ∀n ∈ N.

Thus, limn−→∞ αn(−zn − vn) = 0. So,

lim
n−→∞ αn(〈θ̄ , ȳ − yn〉,−zn − vn) = (1, 0).

Or equivalently

cl cone E p̄ ∩ Hu �= ∅,

which contradicts (i).
Now, assume that (ii) holds and on the contrary, suppose that (i) is not fulfilled. Then
there exists (c, 0) ∈ cl cone E p̄ ∩ Hu . Hence, for any n ∈ N there exist αn > 0,
xn ∈ U , yn ∈ F(xn), zn ∈ G(xn) and (un, vn) ∈ cl H such that

lim
n−→∞ αn(ȳ − yn − un) = c, lim

n−→∞ αn(−zn − vn) = 0.

Therefore, 〈θ̄ , ȳ − yn − un〉 > 0, for sufficiently large n, and

lim
n−→∞

‖ −zn − vn ‖
〈θ̄ , ȳ − yn − un〉

= 0.

Then

lim
n−→∞

dD(−zn)

〈θ̄ , ȳ − yn − un〉
= 0,

since,

0 ≤ dD(−zn)

〈θ̄ , ȳ − yn − un〉
≤ ‖ −zn − vn ‖

〈θ̄ , ȳ − yn − un〉
.

So, we can deduce that for any γ > 0, there exist yn ∈ F(xn), zn ∈ G(xn) and un ∈ C
such that

dD(−zn) <
1

γ
〈θ̄ , (ȳ − yn − un)〉 ≤ 1

γ
〈θ̄ , (ȳ − yn)〉,

for sufficiently large n ∈ N, which contradicts (ii).
(ii) is equivalent to (iii), since (ii) is equivalent to

∃γ̄ ∈ R+\{0} s.t. 〈θ̄ , ȳ − y〉 ≤ γ̄ dD(−z), ∀y ∈ F(x), ∀z ∈ G(x), ∀x ∈ U,

which is equivalent to (iii) by definition of K p̄.
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(ii) is also equivalent to (iv). Indeed, (ii) is equivalent to

∃γ̄ ∈ R+\{0} s.t. 〈θ̄ , ȳ〉 ≤ inf
y∈F(x)

〈θ̄ , y〉 + γ̄ inf
z∈G(x)

dD(−z).

Or

∃γ̄ ∈ R+\{0} s.t. inf
y∈F(x̄)

〈θ̄ , ȳ〉 + γ̄ inf
z∈G(x̄)

dD(−z)

≤ inf
y∈F(x)

〈θ̄ , y〉 + γ̄ inf
z∈G(x)

dD(−z),

since G(x̄) ∩ −D �= ∅. Therefore, Lω(x̄, γ̄ ) ≤ Lω(x, γ̄ ). i.e. (x̄, ȳ) is a minimizer
for Problem (Pγ̄ ). On the other hand from (i i i) we have

ω1(u, v, θ̄ , γ̄ ) ≤ 0, ∀(u, v) ∈ K p̄.

Or

inf
γ∈γ

sup
(u,v)∈K p̄

ω1(u, v, θ̄ , γ ) ≤ 0,

then, p̄ is a minimizer of Problem (1) by Proposition 3.4, and Lω(x, γ ) is an exact
penalty function of Problem (1) at x̄ . ��
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