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Received: 25 April 2016 / Accepted: 17 August 2016 / Published online: 23 August 2016
© Springer International Publishing 2016

Abstract We consider Markov operators L on C[0, 1] such that for a certain c ∈
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iterates Lm of L . When L is a Kantorovich modification of a certain classical operator
from approximation theory, the eigenstructure of this operator is used to give a precise
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we extend the domain of convergence of the dual functionals associated with the
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1 Introduction

The asymptotic behavior of the iterates of a linear operator L is investigated in
connection with ergodic theory, approximation theory and related fields (see, e.g.,
[1–4,6–8,10–13,17–19,21,22]).

In this paper we study the iterates of certain Markov operators acting on C[0, 1].
General criteria underwhich aMarkov operator L is uniquely ergodic (i.e., L admits

a unique invariant probability measure ν) can be found in [2,3,11,18]. In Sect. 2 we
give a short and direct proof in a special case. Then ν is used in order to characterize
the limits of the iterates of L .

The results are applied in Sect. 3 to the linking operators Bn,ρ , where Bn,1 is the
genuine Bernstein-Durrmeyer operator and Bn,∞ the classical Bernstein operator. The
invariant probability measure νn,k,ρ for the kth order Kantorovich type modification

B(k)
n,ρ of Bn,ρ is related to the corresponding dual functional un,k,ρ which accompanies

the eigenstructure of B(k)
n,ρ .

A similar approach is used in Sect. 4 in connection with the kth order Kan-
torovich type modification of the Bernstein-Durrmeyer operators with Jacobi weights.
A remarkable feature of this case is that now the eigenpolynomials are orthogonal and
independent of n; consequently, the dual functionals and the limits of the iterates are
independent of n.

In Sect. 5 we use the relation between νn,k,ρ and un,k,ρ to extend [6, Theorem
4.20] and [12, Theorem 5.1], enlarging thus the domain of convergence of the dual
functionals. This gives a partial answer to a problem raised by Cooper and Waldron
in [6, p. 149].

We denote by C[0, 1] the space of all real-valued, continuous functions on [0, 1],
endowed with the supremum norm ‖ · ‖ and the usual ordering. By e0 we denote the
constant function of constant value 1. P will stand for the space of all polynomial
functions defined on [0, 1] andPk for the space of all polynomials of degree at most k,
k ∈ N0. A positive linear operator L : C[0, 1] −→ C[0, 1] such that Le0 = e0 will be
called aMarkov operator. In what followswe use the notation a j := ∏ j−1

l=0 (a+l), j ∈
N; a0 := 1 for the rising factorials.

2 A uniquely ergodic operator and its iterates

The convergence of the Cesàro averages m−1 ∑m−1
i=0 Li is an important object of

study in Ergodic Theory (see e.g. [18]). In this section we consider uniquely ergodic
operators L on C[0, 1] for which the unaveraged sequence Lm f converges to a limit
f̄ which is a constant function (compare with [18, Proposition 5.1.3]).
Let L : C[0, 1] → C[0, 1] be a Markov operator. Then (see, e.g., [18, p. 178])

there exists at least one invariant probability measure ν for L , i.e., a probability Borel
measure ν on [0, 1] such that

∫ 1

0
L( f ; t)dν(t) =

∫ 1

0
f (t)dν(t), f ∈ C[0, 1]. (1)
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Moreover, suppose that L(C1[0, 1]) ⊂ C1[0, 1] and there exists c ∈ [0, 1) such that

‖(L f )′‖ ≤ c‖ f ′‖, f ∈ C1[0, 1]. (2)

Theorem 1 L admits a unique invariant probability measure ν, i.e., L is uniquely
ergodic. For each f ∈ C[0, 1] one has

lim
m→∞ Lm( f ; x) =

∫ 1

0
f (t)dν(t), (3)

uniformly on [0, 1].
Proof From (2) it follows that

‖(Lm f )′‖ ≤ cm‖ f ′‖, f ∈ C1[0, 1], m ≥ 1.

Let f ∈ C1[0, 1], x ∈ [0, 1] and ν be an invariant probability measure for L . Then

∣
∣
∣
∣L

m( f ; x) −
∫ 1

0
Lm( f ; t)dν(t)

∣
∣
∣
∣ ≤

∫ 1

0

∣
∣Lm( f ; x) − Lm( f ; t)∣∣ dν(t)

≤ ‖(Lm f )′‖
∫ 1

0
|x − t |dν(t)

≤ cm‖ f ′‖.

Therefore,

∣
∣
∣
∣L

m f −
(∫ 1

0
Lm( f ; t)dν(t)

)

e0

∣
∣
∣
∣ ≤ cm‖ f ′‖e0. (4)

On the other hand, (1) entails

∫ 1

0
Lm( f ; t)dν(t) =

∫ 1

0
f (t)dν(t),

and from (4) we get

∣
∣
∣
∣L

m f −
(∫ 1

0
f (t)dν(t)

)

e0

∣
∣
∣
∣ ≤ cm‖ f ′‖e0. (5)

This implies (3) for f ∈ C1[0, 1]. Since C1[0, 1] is dense in C[0, 1], and ‖Lm‖ = 1,
(3) holds for all f ∈ C[0, 1]. The unicity of ν follows from (3). 
�
Remark 1 1. The above proof is a short and direct one. More general results, exam-

ples and applications can be found in [2,11] and [3, Section 1.4], where quantitative
estimates are also given.
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2. (5) expresses a quantitative result for f ∈ C1[0, 1]. It was proved in [11, Corollary
3.4] that

∥
∥
∥
∥L

m f −
(∫ 1

0
f (t)dν(t)

)

e0

∥
∥
∥
∥ ≤ ω̃( f, cm), f ∈ C[0, 1], (6)

where for a function g the least concave majorant of the first order modulus of
continuity ω̃(g, ε) is given by

ω̃(g, ε) =
⎧
⎨

⎩

sup
0≤x≤ε≤y≤1

(ε − x)ω(g; y) + (y − ε)ω(g, x)

y − x
, 0 ≤ ε ≤ 1

ω(g, 1), ε > 1
.

3 Application to linking Bernstein type operators

We now apply the results of Sect. 2 to the operators Bn,ρ which constitute a non-trivial
link between the genuine Bernstein-Durrmeyer operators and the classical Bernstein
operators.

Definition 1 Let ρ ∈ R+, n ∈ N. For a function f ∈ C[0, 1] the operators Bn,ρ :
C[0, 1] −→ Pn are defined by

Bn,ρ( f ; x) = f (0)pn,0(x) + f (1)pn,n(x)

+
n−1∑

j=1

pn, j (x)
∫ 1

0
μn, j,ρ(t) f (t)dt

where

pn, j (x) =
(
n

j

)

x j (1 − x)n− j , 0 ≤ j ≤ n, x ∈ [0, 1]

denote the Bernstein basis polynomials and

μn, j,ρ(t) = t jρ−1(1 − t)(n− j)ρ−1

B( jρ, (n − j)ρ)
, 1 ≤ j ≤ n − 1, t ∈ (0, 1)

with Euler’s Beta function

B(x, y) =
∫ 1

0
t x−1(1 − t)y−1dt = �(x)�(y)

�(x + y)
, x, y > 0.
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For k ∈ N0 the kth order Kantorovich modification B(k)
n,ρ : C[0, 1] −→ Pn−k is given

by

B(0)
n,ρ = Bn,ρ

B(k)
n,ρ = Dk ◦ Bn,ρ ◦ Ik

= Dk−l ◦ B(l)
n,ρ ◦ Ik−l , 0 ≤ l ≤ k

where Dk denotes the k-th order ordinary differential operator and

Ik f = f, if k = 0, and Ik( f, x) =
∫ x

0

(x − t)k−1

(k − 1)! f (t)dt, if k ∈ N.

For simplicityweomit the superscript (k) in case k = 0 as indicated by the definition
above.

In [9] it is proved that

lim
ρ→∞ Bn,ρ f = Bn,∞ f uniformly on [0, 1] for any f ∈ C[0, 1],

where here and in the following Bn,∞ denotes the classical Bernstein operator.

Remark 2 For ρ = 1, ρ = ∞ we have the explicit representations for the kth order
Kantorovich modifications (see [14, (3.5)] and [20, §1.4])

(B(k)
n,1 f )(x) = n!(n − 1)!

(n − k)!(n + k − 2)!
n−k∑

j=0

pn−k, j (x)
∫ 1

0
pn+k−2, j+k−1(t) f (t)dt,

(B(k)
n,∞ f )(x) = n!

(n − k)!
n−k∑

j=0

pn−k, j (x)Δ
k
1
n

(

Ik

(

f ; j

n

))

,

where the kth order forward difference for a function g and step h is given by

Δk
h (g(x)) =

k∑

i=0

(−1)k−i
(
k

i

)

g(x + ih).

From [16, Corollary 1] we know that

B(k)
n,ρ(e0; x) = ρk

(nρ)k
· nk . (7)



902 M. Heilmann, I. Raşa

For n − k ≥ 0, 0 ≤ k + j ≤ n the eigenvalues of B(k)
n,ρ are given by

λ
(k)
n, j,ρ = ρk+ j

(nρ)k+ j

n!
(n − k − j)! , ρ ∈ R+, (8)

λ
(k)
n, j,∞ := lim

ρ→∞ λ
(k)
n, j,ρ = 1

n j+k

n!
(n − k − j)! . (9)

For k = 0, ρ = ∞ see [6, (1.3)], for k = 0, ρ = 1 [23, (1.25)], for k ≥ 2, ρ = 1 [15,
Theorem 9], for k = 0, ρ ∈ R+ [12, (3.4)]. It is not difficult to find the eigenvalues
for an arbitrary k, using the method described, e.g., in [15, Theorem 9].

Now for 1 ≤ k ≤ n we define the operators V (k)
n,ρ : C[0, 1] −→ Pn−k by

V (k)
n,ρ = 1

λ
(k)
n,0,ρ

B(k)
n,ρ .

Then it is clear from the definition that V (k)
n,ρ is a positive linear operator with

V (k)
n,ρ(e0; x) = e0(x), (10)

having the property

f ∈ C1[0, 1] ⇒ V (k)
n,ρ f ∈ C1[0, 1].

In view of Theorem 1 we need the following estimate.

Lemma 1 Let f ∈ C1[0, 1]. Then

‖(V (k)
n,ρ f )′‖ ≤ ‖ f ′‖

⎧
⎪⎨

⎪⎩

ρ(n − k)

nρ + k
, ρ ∈ R+,

n − k

n
, ρ → ∞.

Proof As Bn,ρ(Pk) ⊂ Pk for k ∈ N0, k ≤ n, we have

(B(k)
n,ρ f )′ = (Dk+1 ◦ Bn,ρ ◦ Ik) f

= (Dk+1 ◦ Bn,ρ ◦ Ik+1) f
′.

Thus

‖(V (k)
n,ρ f )′‖ = λ

(k+1)
n,0,ρ

λ
(k)
n,0,ρ

‖V (k+1)
n,ρ f ′‖

≤ ‖ f ′‖

⎧
⎪⎨

⎪⎩

ρ(n − k)

nρ + k
, ρ ∈ R+,

n − k

n
, ρ → ∞.


�
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From Lemma 1 we derive that V (k)
n,ρ satisfies (2) with

c = c(k)
n,ρ =

{
ρ(n−k)
nρ+k , ρ ∈ R+,
n−k
n , ρ → ∞.

Thus from Theorem 1 and (6) we obtain the following result.

Theorem 2 V (k)
n,ρ admits a unique invariant probability measure νn,ρ,k . For each f ∈

C[0, 1] one has
lim

m→∞(V (k)
n,ρ)m( f ; x) =

∫ 1

0
f (t)dνn,ρ,k(t), (11)

uniformly on [0, 1] and, moreover,
∥
∥
∥
∥(V (k)

n,ρ)m f −
(∫ 1

0
f (t)dνn,ρ,k(t)

)

e0

∥
∥
∥
∥ ≤ ω̃

(
f,

(
c(k)
n,ρ

)m)
.

For f ∈ C[0, 1] the operator Bn,ρ can be represented by

Bn,ρ f =
n∑

j=0

λ
(0)
n, j,ρqn, j,ρun, j,ρ( f )

with the eigenvalues λ
(0)
n, j,ρ , j = 0, 1, . . . , n, the associated monic eigenpolynomials

qn, j,ρ and the dual functionals un, j,ρ on C[0, 1], such that un, j,ρ(qn,i,ρ) = δi, j ,
i, j = 0, 1, . . . , n (see [6, Theorem 2.3] and [12, Theorem 3.2]).

Thus

B(k)
n,ρ f =

n∑

j=k

λ
(0)
n, j,ρq

(k)
n, j,ρun, j,ρ(Ik f )

=
n−k∑

j=0

λ
(0)
n, j+k,ρq

(k)
n, j+k,ρun, j+k,ρ(Ik f )

=
n−k∑

j=0

λ
(k)
n, j,ρq

(k)
n, j+k,ρun, j+k,ρ(Ik f ),

i.e.,

V (k)
n,ρ f =

n−k∑

j=0

λ
(k)
n, j,ρ

λ
(k)
n,0,ρ

q(k)
n, j+k,ρun, j+k,ρ(Ik f ),

which entails

(V (k)
n,ρ)m f =

n−k∑

j=0

(
λ

(k)
n, j,ρ

λ
(k)
n,0,ρ

)m

q(k)
n, j+k,ρun, j+k.ρ(Ik f ), f ∈ C[0, 1], m ≥ 1. (12)
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For 1 ≤ j ≤ n − k we have

λ
(k)
n, j,ρ

λ
(k)
n,0,ρ

= (n − k) . . . (n − ( j + k − 1))

(n + k
ρ
) . . . (n + j+k−1

ρ
)

< 1

and

λ
(k)
n, j,∞

λ
(k)
n,0,∞

= (n − k) . . . (n − ( j + k − 1))

n j
< 1,

and so (12) implies the following theorem.

Theorem 3 Let f ∈ C[0, 1]. Then

lim
m→∞(V (k)

n,ρ)m f = k!un,k,ρ(Ik f )e0. (13)

Now from (11) and (13) we get

Corollary 1 The invariant probability measure νn,k,ρ is characterized by

∫ 1

0
f (t)dνn,ρ,k(t) = k!un,k,ρ(Ik f ), f ∈ C[0, 1].

Example 1 According to [6, Theorem 9.8], un,1,∞(g) = g(1) − g(0), g ∈ C[0, 1].
Consequently, (13) yields

lim
m→∞(V (1)

n,∞)m( f ; x) =
∫ 1

0
f (t)dt, f ∈ C[0, 1]. (14)

Let us remark that V (1)
n,∞ coincides with the classical Kantorovich operator. For more

general versions of (14), see also [2,11] and [3, Section 1.4].

4 The special case ρ = 1

In this section we consider the special case ρ = 1 with the extension to Jacobi
weighted Bernstein-Durrmeyer operators. As ρ = 1 is fixed in this section, we omit
the corresponding index in the notations.

We denote the Jacobi weights byw(x) = xα(1− x)β, x ∈ (0, 1), α, β > −1. Then
the Bernstein-Durrmeyer operators with Jacobi weights (see [5, p. 27], named V (α,β)

n−1
there) are defined by

B(1)
n,w =

n−1∑

j=0

pn−1, j (x)

∫ 1
0 pn−1, j (t)w(t) f (t)dt
∫ 1
0 pn−1, j (t)w(t)dt

.
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Remark that for α = β = 0 we have the Bernstein-Durrmeyer operators. Define

σ
(k)
n, j,w = (n − 1)!

(n − j − k)! · �(n + α + β + 1)

�(n + j + k + α + β)
.

For the following results concerning the eigenstructure of B(1)
n,w see [5, p. 28]. The

eigenvalues of B(1)
n,w are given by

σ
(1)
n, j,w = (n − 1)!

(n − j − 1)! · �(n + α + β + 1)

�(n + j + α + β + 1)

and the corresponding monic eigenpolynomials are the Jacobi polynomials on [0, 1]
normalized such that the leading coefficient is 1, i.e.,

Q j,w(x) = (−1) j�( j + α + β + 1)

�(2 j + α + β + 1)
· x−α(1 − x)−βD j

[
x j+α(1 − x) j+β

]
.

For α = β = 0 we have σ
(k)
n, j,w = λ

(k)
n, j,1.

The operators B(1)
n,w can be represented in terms of their eigenvalues and eigenpoly-

nomials by

B(1)
n,w f =

n−1∑

j=0

σ
(1)
n, j,wQ j,wh j,w

∫ 1

0
Q j,w(t)w(t) f (t)dt,

where

h−1
j,w =

∫ 1

0
Q j (t)

2w(t)dt = 1

B( j + α + 1, j + β + 1)
· ( j + α + β + 1) j

j ! .

Thus we have

B(k)
n,w f =

n−1∑

j=k−1

σ
(1)
n, j,w(Q j,w)(k−1)h j,w

∫ 1

0
Q j,w(t)w(t)Ik−1( f ; t)dt (15)

=
n−k∑

j=0

σ
(k)
n, j,w(Q j+k−1,w)(k−1)h j+k−1,w

∫ 1

0
Q j+k−1,w(t)w(t)Ik−1( f ; t)dt.

We now calculate

B(k)
n,we0 =

n−k∑

j=0

σ
(k)
n, j,w(Q j+k−1,w)(k−1)h j+k−1,w

×
∫ 1

0
Q j+k−1,w(t)w(t)

1

(k − 1)! t
k−1dt. (16)
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Due to the orthogonality properties of the Jacobi polynomials the integral on the
right-hand side vanishes for j �= 0. As

∫ 1

0
Qk−1,w(t)w(t)tk−1dt =

∫ 1

0
Qk−1,w(t)w(t)Qk−1,w(t)dt = 1

hk−1,w

we derive from (16)

B(k)
n,we0 = σ

(k)
n,0,w.

We now define

V (k)
n,w f =

n−k∑

j=0

σ
(k)
n, j,w

σ
(k)
n,0,w

Q(k−1)
j+k−1,wh j+k−1,w

∫ 1

0
Q j+k−1,w(t)w(t)Ik−1( f ; t)dt.

Thus

lim
m→∞(V (k)

n,w)m( f ; x) = (k − 1)!hk−1,w

∫ 1

0
Qk−1,w(t)w(t)Ik−1( f ; t)dt.

Integration by parts leads to

∫ 1

0
Qk−1,w(t)w(t)Ik−1( f ; t)dt

= (−1)k−1

(k + α + β)k−1

∫ 1

0

(
tk+α−1(1 − t)k+β−1

)(k−1)
Ik−1( f ; t)dt

= 1

(k + α + β)k−1

∫ 1

0
tk+α−1(1 − t)k+β−1 f (t)dt.

So

lim
m→∞(V (k)

n,w)m( f ; x) = (k − 1)!
(k + α + β)k−1

hk−1,w

∫ 1

0
tk+α−1(1 − t)k+β−1 f (t)dt.

For f = e0 this yields

1 = (k − 1)!
(k + α + β)k−1

hk−1,wB(k + α, k + β).

Thus we derive the following result.

Theorem 4 Let f ∈ C[0, 1]. Then

lim
m→∞(V (k)

n,w)m( f ; x) = 1

B(k + α, k + β)

∫ 1

0
tk+α−1(1 − t)k+β−1 f (t)dt, (17)
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uniformly on [0, 1].

Remark 3 1. For k = 1, qualitative and quantitative versions of (17) were obtained
with different methods in [2, Section 3.2] and [11, Example 4.3].

2. The preceding results can be extended to the context of spaces L p and semigroups
of operators, in the spirit of [2] and [3, Section 1.4]. This could be the subject of
a forthcoming paper.

3. Both (13) and (17) express the convergence of the iterates towards operators L
(for which L f is constant). Since the dual functionals involved in the proofs are
linear and bounded, an inspection of the proofs shows that in both cases we have
convergence in the uniform operator norm.

4. A significant difference between the operators V (k)
n,ρ , ρ �= 1, and V (k)

n,w is that for the
latter the eigenpolynomials are orthogonal and independent of n; consequently, the
dual functionals are also independent of n. This explains the difference between
the right-hand member of (13) (depending on n) and that of (17) (where n does
not appear). As (24) will show, these two right-hand members are related when
w = e0, i.e., α = β = 0.

5 Convergence of dual functionals

In this section we extend former results concerning convergence properties of dual
functionals from polynomials to smooth functions.

It was proved in [12, Theorem 5.1] that

lim
n→∞ un,k,ρ(p) = μ∗

k(p), p ∈ P, (18)

where (see [6, (4.16)]

μ∗
k( f ) = (−1)k−1

2(k − 1)!
(
2k

k

) ∫ 1

0

(
tk−1(1 − t)k−1

)(k−1)
f ′(t)dt, f ∈ C1[0, 1].

Let g ∈ Ck[0, 1]. Since k ≥ 1, we have g ∈ C1[0, 1] and so

μ∗
k(g) = (−1)k−1

2(k − 1)!
(
2k

k

) ∫ 1

0

(
tk−1(1 − t)k−1

)(k−1)
g′(t)dt

= 1

2(k − 1)!
(
2k

k

) ∫ 1

0
tk−1(1 − t)k−1g(k)(t)dt,

i.e.,

μ∗
k(g) = 1

k! · 1

B(k, k)

∫ 1

0
tk−1(1 − t)k−1g(k)(t)dt, g ∈ Ck[0, 1]. (19)
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From (18) and (19) it follows that

lim
n→∞ un,k,ρ(p) = 1

k! · 1

B(k, k)

∫ 1

0
tk−1(1 − t)k−1 p(k)(t)dt, p ∈ P. (20)

Consider the operators Pn,k,ρ : C[0, 1] −→ P0, Pn,k,ρ f = limm→∞
(
V (k)
n,ρ

)m
f , and

Lk : C[0, 1] −→ P0, Lk f = 1
B(k,k)

(∫ 1
0 tk−1(1 − t)k−1 f (t)dt

)
e0.

Both of them are positive linear operators of norm 1. Moreover, (13) shows that

Pn,k,ρ f = k!un,k,ρ(Ik f )e0, f ∈ C[0, 1]. (21)

Let p ∈ P . From (20) and (21) we get

lim
n→∞ Pn,k,ρ p = lim

n→∞ k!un,k,ρ(Ik p)e0

=
(

1

B(k, k)

∫ 1

0
tk−1(1 − t)k−1 p(t)dt

)

e0

= Lk p,

i.e.

lim
n→∞ Pn,k,ρ p = Lk p, p ∈ P. (22)

P is dense in C[0, 1] and Pn,k,ρ and Lk are bounded operators of norm 1; thus (22)
implies

lim
n→∞ Pn,k,ρ f = Lk f, f ∈ C[0, 1]. (23)

Now (21) and (23) yield

lim
n→∞ un,k,ρ(Ik f ) = 1

k! · 1

B(k, k)

∫ 1

0
tk−1(1 − t)k−1 f (t)dt, f ∈ C[0, 1]. (24)

Combining this with (19) we get

Theorem 5 Let g ∈ Ck[0, 1]. Then

lim
n→∞ un,k,ρ(g) = μ∗

k(g). (25)

Let us remark that (25) extends (18) from P to Ck[0, 1]; in particular, this extends [6,
Theorem 4.20] from P to Ck[0, 1]. (See also [6, Remark on p. 149]). Moreover, from
(21) we see that

|un,k,ρ(g)| = 1

k!
∥
∥
∥Pn,k,ρ

(
g(k)

)∥
∥
∥ ,
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i.e.

|un,k,ρ(g)| ≤ 1

k! ‖g
(k)‖, g ∈ Ck[0, 1].

Also from (21), Pn,k,ρ being positive:

un,k,ρ(g) ≥ 0 for all g ∈ Ck[0, 1], g(k) ≥ 0.

As far as we know, the validity of (25) for all g ∈ C[0, 1] is still an open problem.
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1. Altomare, F., Raşa, I.: On some classes of diffusion equations and related approximation problems,
trends and applications in constructive approximation. In: de Bruin, M.G., Mache, D.H., Szabados, J.
(eds.) International Series of Numerical Mathematics, vol. 151, pp. 13–26. Birkhäuser, Basel (2005)
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