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Abstract We give a survey of the development of the spectral theory in ordered
Banach algebras; from its roots in operator theory to the modern abstract context.
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1 Introduction

Let T be an n × n matrix with complex entries. One can view T as an operator of C
n

into C
n in the normal way. It was discovered around the turn of the previous century

that the spectrum of an n × n matrix with positive entries has certain special features.
The first result was by Perron.

Theorem 1.1 ([55]) Let T = [ti j ] be an n × n matrix with ti j > 0 for all i and j .
Then:

1. T has strictly positive spectral radius r(T ).
2. r(T ) is a simple eigenvalue of T with strictly positive eigenvector.
3. T is primitive, i.e. r(T ) is the unique eigenvalue on the spectral circle |λ| = r(T ).
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Since that time a slow but steady development has taken place. In 1948 Krein and
Rutman considered positive operators defined on ordered Banach spaces. A Banach
space X is called an ordered Banach space if it is ordered by a (not necessarily closed)
cone C and an operator T on X is called positive if TC ⊆ C . Krein and Rutman
proved that if T is a positive compact operator defined on an ordered Banach space X
with r(T ) > 0, then r(T ) is an eigenvalue of Twith positive eigenvector x , i.e. x ∈ C
and T x = r(T )x . In the early 1970s the Krein-Rutman results were generalised to the
setting of positive operators defined onBanach lattices; see for instance themonograph
of Schaefer [60]. For a fairly complete account of spectral theory of positive operators
defined on Banach lattices, see [23].

The notion of an ordered Banach algebra appeared in the literature for the first
time in 1975 in a paper [65] by White. Despite this, the theory of ordered Banach
algebras remained dormant for almost two decades. In the early 1990s Raubenheimer
and Rode (Mouton) [52,58] generalised the notion of a positive operator defined on
a Banach lattice to positive elements in an ordered Banach algebra (OBA), where
positive means that an element belongs to some subset C of a Banach algebra A. The
subset C is called an algebra cone of A and it gives rise to a partial ordering on A
that is compatible with the algebraic structure of A. The above two papers together
with results on spectral theory of positive operators on Banach lattices created a lot of
activity for future research [3,9–11,13,28–30,33,38,43–45,47,49–51].

Our paper is organised as follows: In Sect. 2 basic notions in spectral theory of
Banach algebras are mentioned as well as notions concerning operators defined on
Banach lattices. Section 3 contains the definition of an ordered Banach algebra (OBA)
as well as the basic properties of these algebras. The main results in this paper appear
in Sect. 4. Section 4.1 contains the generalisations of the Perron-Frobenius and Krein–
Rutman theorems—see Theorems 4.1.1 and 4.1.4. Herzog and Schmoeger [29] proved
an interesting converse of the Perron-Frobenius result—see Theorem 4.1.3.

The so-called dominationproblem inOBAs is discussed inSect. 4.2.More precisely,
if an element b in an OBA has certain properties (spectral or topological) and if b
dominates a positive element a, does a inherit these properties of b? This problem
is of course inspired by work of Dodds and Fremlin [20] and work of Aliprantis and
Burkinshaw [4,5] in the context of Banach lattices and positive operators. Hitherto, the
domination problem in OBAs has been investigated for radical elements [38], Riesz
elements [33,58], inessential elements [9], quasi compact elements [52] and ergodic
elements [51].

The work in Sect. 4.3 is motivated by the Gelfand-Hille theorems: If an element a
in a Banach algebra A has unit spectrum, i.e. if σ(a) = {1}, does it follow that a = 1?
Gelfand and Hille [22,31] proved that an element with unit spectrum which is doubly
power bounded is the identity. Later, this problem was also studied in the context of
operators defined onBanach lattices [24,62]. It was shown that if an operator T defined
on a Banach lattice is positive with σ(T ) = {1} and if T satisfies some boundedness
condition weaker than power boundedness, then T = I . In OBAs this problem is
investigated in [13,44]. One can also study a weaker version of the Gelfand-Hille
theorems: If T is a positive operator defined on a Banach lattice with σ(T ) = {1},
does it follow that T ≥ I? This question was investigated in [67] and in the context
of OBAs in [44].
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In spectral theory of Banach algebras the main questions concern the properties
of the spectrum function a �→ σ(a) and the spectral radius function a �→ r(a). In
particular, what continuity properties do these functions have? In Banach algebras this
study was initiated by Newburgh [54] in the 1950s. Section 4.4 contains interesting
and nontrivial results of Mouton where she investigates continuity properties of the
spectrum and spectral radius functions in the context of OBAs [45,47]. Aupetit’s
scarcity theorem is a deep result in spectral theory of Banach algebras and many
applications of this result can be found in [7]. It was shown by Mouton and Mouton
[38] that the application of the scarcity theoremwhen studying the domination problem
for radical elements in OBAs is crucial. Further applications of the scarcity theorem
in OBAs are discussed in Sect. 4.5.

It turned out that positive irreducible operators on Banach lattices have good spec-
tral properties [60, Chapter V.5] and [23]. Alekhno [3] introduced the notion of an
irreducible element in OBAs and he illustrated that irreducible elements have useful
spectral properties which can be used to obtain spectral information of positive ele-
ments in an OBA. For an account of these results see Sect. 4.6. Fredholm theory in
Banach algebras plays a central role in spectral theory of Banach algebras [3,27,39–
41]. Section 4.7 contains results of Mouton and Benjamin [10,11] in OBAs which
illustrate the effect of positive elements in Fredholm theory.

2 Notation and preliminaries

Throughout A will denote a Banach algebra with unit 1, in which we denote the set of
all invertible elements by A−1. Unless otherwise stated, A will be over C. By “ideal”
we will always mean “(not necessarily closed) proper two-sided ideal”. If A and B
are Banach algebras, then a linear operator T : A → B is called a homomorphism if
T (ab) = TaTb (a, b ∈ A) and T 1 = 1. The null space (kernel) of T will be indicated
by N (T ). The spectrum of an element a in A will be denoted by σ(a), the non-zero
spectrum of a by σ ′(a), the set of isolated points of the spectrum of a by iso σ(a),
the connected hull of the spectrum of a (i.e. the union of σ(a) with the bounded
components of C\σ(a)) by ησ(a) and the spectral radius of a by r(a) (or σ(a, A),
etc., when necessary to avoid confusion). The peripheral spectrum psp(a) of a is the
set σ(a) ∩ {λ ∈ C : |λ| = r(a)}. It is a non-empty closed subset of the spectrum.

If λ ∈ C, the element λ1 of A will be denoted by λ. If a ∈ A and r(a) ∈ iso σ(a),
then the coefficient of (λ − r(a)) j in the Laurent series of the resolvent (λ − a)−1 of
a around r(a) will be denoted by a j , for all integers j .

The set of all non-negative real numbers will be denoted by R
+, the distance from

λ ∈ C to a non-empty compact set K ⊆ C by d(λ, K ) and the number of elements
in a set K ⊆ C by #K . The open disk, closed disk and circle in C with centre λ and
radius ε will be denoted by D(λ, ε), D(λ, ε) and C(λ, ε), respectively.

Certain well-known examples of Banach algebras will enter throughout our dis-
cussion. If X is a Banach space, then L(X) will denote the Banach space of bounded
linear operators on X . Under the operator norm

||T || = sup{||T x || : ||x || = 1}, (2.1)
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with T ∈ L(X), and multiplication defined as composition of operators, L(X) is a
Banach algebra with unit the identity operator I on X . In this Banach algebra F(X)

will denote the ideal of all finite rank operators and K(X) the ideal of all compact
operators on X .

Let Mn(C) denote the vector space of all n×n matrices with complex entries. If we
define multiplication as multiplication of matrices and equip Mn(C) with the matrix
norm

||A|| = sup

⎧
⎨

⎩

n∑

j=1

|ai j | : i ∈ {1, 2, . . . , n}
⎫
⎬

⎭
, (2.2)

where A = (ai j ) ∈ Mn(C), then Mn(C) becomes a Banach algebra.
If X is a Banach space with dim X = n, then we can identify Mn(C) with L(X),

so that Mn(C) equipped with the norm (2.1) is then also a Banach algebra. Note that
in this case the norms (2.1) and (2.2) are equivalent. The subalgebra of all upper
triangular matrices in Mn(C) will be denoted by Mu

n (C).
C(K ) will denote the Banach space of all continuous complex valued functions

on a compact Hausdorff space K . If multiplication of functions in C(K ) is defined
pointwise and if C(K ) is equipped with the sup norm

|| f || = sup{| f (x)| : x ∈ K },
where f ∈ C(K ), then C(K ) is a Banach algebra with unit the identity function
1(x) = 1 for all x ∈ K .

If D is the open unit disk in the complex plane, then A(D) denotes the Banach
algebra of all continuous complex valued functions defined on the closure D of D
which are analytic on D. Since A(D) ⊆ C(D), A(D)has the samealgebraic operations
as C(D). The norm in A(D) is the sup norm

|| f || = sup{| f (z)| : z ∈ D} = sup{| f (z)| : |z| = 1},
where f ∈ A(D).

If A is a Banach algebra, then l∞(A) will indicate the collection of all bounded
sequences of elements of A. If addition, scalar multiplication and multiplication are
defined pointwise, then l∞(A) becomes a Banach algebra under the norm

||x || = ||(xn)|| = sup{||xn|| : n = 1, 2, . . .},
with x = (xn) ∈ l∞(A). The unit in this Banach algebra is 1 = (1) with 1 the unit in
A. In the special case that A = C, this Banach algebra will be denoted by l∞.

In addition, Lr (E) will denote the Banach algebra of all regular operators on a
complex Banach lattice E (where a regular operator is one that can be written as a
linear combination over C of positive operators) with the usual operations and the
r -norm

||T ||r = inf{||S|| : S ∈ L(E), S ≥ 0, |T x | ≤ S|x | for all x ∈ E},
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with Kr (E) indicating the ideal of all r-compact operators, i.e. the closure in Lr (E)

of F(E) (see [60, IV §1] or [6]). The o-spectrum of T ∈ Lr (E), i.e. σ(T,Lr (E)),
will be denoted by σo(T ). This concept was introduced by Schaefer in [61]. Similarly,
the o-spectral radius and the o-peripheral spectrum of T will be denoted by ro(T )

and pspo(T ), respectively.
If A is a Banach algebra and D a domain inC, then a map g : A → Awill be called

D-analytic if g ◦ f : D → A is analytic for every analytic function f : D → A. It is
easy to see that the maps g(x) = a + x and g(x) = a(1 + x) (for a fixed a ∈ A), as
well as every continuous, linear map g, are D-analytic, for every domain D ⊆ C.

The following famous and very deep result of Aupetit, which is known as the
scarcity theorem, states in very general terms that if a function f is analytic on a
domain D in the complex plane and with values in a Banach algebra, then either the
subset of D on which the spectrum of f is finite is “very small” in some sense or it is
the whole of D, in which case the spectrum of f is even uniformly finite on D:

Theorem 2.3 ([7], Theorem 3.4.25) Let f : D → A be analytic, where D is a domain
in C and A is a Banach algebra. Then either the set of λ ∈ D such that σ( f (λ)) is
finite is a Borel set having zero capacity, or there exist an integer n ≥ 1 and a closed
discrete subset E of D such that #σ( f (λ)) = n for all λ ∈ D\E and #σ( f (λ)) < n
for all λ ∈ E.

Here, the capacity of a Borel set in the complex plane (see [7, pp. 177–180]) is in
some sense a measure of its size. It is a monotone function, with compact sets having
zero capacity being very small. For our purposes it suffices to know that balls and line
segments have non-zero capacities. (By “ball” and “line segment” we imply strictly
positive radius and length, respectively.)

It also follows from the scarcity theorem that if σ( f (λ)) is uniformly finite on a
subset of D with non-zero capacity, then it is (uniformly) finite on the whole of D
with the same bound:

Corollary 2.4 Let f : D → A be analytic, where D is a domain in C and A is a
Banach algebra. If n ≥ 1 is such that #σ( f (λ)) ≤ n for all λ in a subset of D with
non-zero capacity, then #σ( f (λ)) ≤ n for all λ ∈ D.

Corollary 2.4, together with [7, Corollary 3.4.18], yields the following result about
quasinilpotent elements:

Corollary 2.5 ([38], Corollary 2.3) Let f be an analytic function from a domain D
in C into a Banach algebra A. If {λ ∈ D : σ( f (λ)) = {0}} contains a ball or a line
segment, then σ( f (λ)) = {0} for all λ in D.

A point a in a vector space X is said to be an absorbing point of a subset U of X
if for all x ∈ X there exists r > 0 such that a + λx ∈ U for all real λ with |λ| ≤ r .
A subset U of a vector space X is called an absorbing set if U contains an absorbing
point. Open sets are absorbing, but not vice versa. With Rad(A) denoting the Jacobson
radical of a Banach algebra A, we have:

Theorem 2.6 ([7], Theorem 5.4.2 and its proof) Let A be a Banach algebra. If A
contains an absorbing subset U such that
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1. σ(x) is finite for all x ∈ U, then A/Rad(A) is finite dimensional,
2. #σ(x) ≤ n for all x ∈ U and some fixed n ∈ N, then dim A/Rad(A) ≤ n6.

A Banach algebra A is said to be semiprime if, for all a ∈ A, we have that a = 0
whenever aAa = {0}. If a is a nonzero element of a semiprime Banach algebra A,
then a is a rank one element if aAa ⊆ Ca, and a is a finite rank element if a = 0 or
a is a finite sum of rank one elements—see [56]. The sets of all rank one elements
and all finite rank elements are denoted by F1 and F , respectively, and F equals the
socle Soc(A) (defined as the sum of the minimal left ideals) of A (see [56, p. 659]).
“Rank one element” is, of course, a generalisation of “rank one operator” and “finite
rank element” is a generalisation of “finite rank operator”.

A is semisimple if Rad(A) = {0}. A semisimple Banach algebra is also semiprime
(see [12, Proposition 5, p. 155]). All the examples mentioned before, except those
involving upper triangular matrices, are in fact semisimple. In a semisimple Banach
algebra there exist spectral characterisations of rank one and finite rank elements:

Theorem 2.7 ([8,42]) Let A be a semisimple Banach algebra. Then

{a ∈ A : there exists n ∈ N such that #σ ′(xa) ≤ n for all x ∈ A}
= Soc(A) = {a ∈ A : #σ ′(xa) < ∞ for all x ∈ A}

and

F1 = {0 �= a ∈ A : #σ ′(xa) ≤ 1 for all x ∈ A}.

Alternative characterisations of rank one elements and of the socle are given in
Theorems 2.8 and 2.9, respectively:

Theorem 2.8 ([8], Theorem 2.2 (1), ([42], Theorem 2.2) Let A be a semisimple
Banach algebra and 0 �= a ∈ A. Then the following are equivalent:

1. a is rank one.
2. σ(x + s0a) ∩ σ(x + s1a) ⊆ σ(x) for all s0, s1 ∈ C\{0} with s0 �= s1 and all

x ∈ A.
3. ησ(x + s0a) ∩ ησ(x + s1a) ⊆ ησ(x) for all s0, s1 ∈ C\{0} with s0 �= s1 and all

x ∈ A.

Theorem 2.9 ([8], Theorem2.2 (2), [42], Theorem3.1)Let A be a semisimple Banach
algebra and a ∈ A. Then the following are equivalent:

1. a ∈ Soc(A).
2. There exists n ∈ N such that ∩t∈Fσ(x + ta) ⊆ σ(x) for all (n + 1)-element

subsets F of C\{0} and all x ∈ A.
3. There exists n ∈ N such that ∩t∈Fησ(x + ta) ⊆ ησ(x) for all (n + 1)-element

subsets F of C\{0} and all x ∈ A.

If I is an ideal in a Banach algebra A (not necessarily semiprime or semisimple),
then an element a ∈ A is called an inessential element (in A relative to I ) if a + I ∈
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Rad(A/I ) and a Riesz element (in A relative to I ) if a+ I ∈ QN(A/I ). (Here, QN(A)

denotes the set of all quasinilpotent elements of A, i.e. those elements a for which
σ(a) = {0}.) The symbols kh(I ) and R(I ) will indicate the sets of all inessential
elements relative to I and all Riesz elements relative to I , respectively. In a semiprime
Banach algebra the sets mentioned above clearly satisfy the following inclusions:

F1 ⊆ Soc(A) ⊆ kh(Soc(A)) ⊆ R(Soc(A))

An ideal I of A is an inessential ideal if the spectrum of each element of I is either
finite or a sequence converging to zero (i.e. the spectrum of each a ∈ I has at most 0 as
a limit point), and if B is also a Banach algebra and T : A → B is a homomorphism,
then T is said to have the Riesz property if N (T ) is an inessential ideal. Note that
Soc(A) is an inessential ideal and kh(Soc(A)) is a closed inessential ideal (see [7,
Corollaries 5.7.6 and 5.7.7]). The ideal of compact operators on a Banach space X
and the ideal of r -compact operators on a Banach lattice E are closed and inessential
in the Banach algebrasL(X) andLr (E), respectively. For a ∈ A, a point λ ∈ iso σ(a)

is said to be a Riesz point of σ(a) (relative to I ) if the spectral idempotent p(a, λ)

is an element of I . Given any element a ∈ A, we define the (compact) set D(a) (or
D(a, I ) when necessary to avoid confusion) as follows:

D(a) = σ(a)\{λ ∈ σ(a) : λ is a Riesz point of σ(a)}

Aupetit obtained the following important result in 1986:

Theorem 2.10 ([7], Theorem 5.7.4) Let I be an inessential ideal in a Banach algebra
A and a ∈ A. Then σ(a + I ) ⊆ D(a) and ησ(a + I ) = ηD(a).

Theorem 2.10 is often called Aupetit’s perturbation theorem, because it relies on
certain perturbation properties of a by elements of I . It follows from this theorem that
a is a Riesz element (relative to a specified inessential ideal I ) if and only if σ(a) is
finite or a sequence converging to zero and every nonzero point of σ(a) is a Riesz
point of σ(a) (relative to I ) [7, Corollary 5.7.5].

It was shown in [37, Theorem 1.4] that if A is semisimple, then every inessential
ideal is contained in kh(Soc(A)). This yields the important fact that if a ∈ A and I is
an inessential ideal, then every Riesz point of σ(a) is a pole of (λ−a)−1 [52, Theorem
3.11], [43, Lemma 2.1]. We make use of this observation in, for instance, Theorems
4.1.4, 4.2.13 and 4.7.4.

If an ideal I is closed and inessential, then an element a ∈ A is quasi inessential
(in A relative to I ) if there exist t ∈ I and n ∈ N such that ||an − t || < 1. The set
of all these elements is denoted by qkh(I ), and, by [52, Proposition 5.1], we have the
following inclusions:

I ⊆ kh(I ) ⊆ R(I ) ⊆ qkh(I )

If X is a Banach space, then T ∈ L(X) is an inessential operator (Riesz operator,
quasi compact operator) if T is an inessential element (Riesz element, quasi inessential
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element) inL(X) relative toK(X). Finally, if E is a Banach lattice, then T ∈ Lr (E) is
an r-inessential operator if T is an inessential element inLr (E) relative toKr (E) and
T is an r-asymptotically quasi finite rank operator if T is a Riesz element in Lr (E)

relative to Kr (E).
Let A and B be Banach algebras and let T : A → B be a homomorphism. Then,

in 1982, Harte [27] defined an element a ∈ A to be

– Fredholm if Ta ∈ B−1,
– Weyl if there exist b ∈ A−1 and c ∈ N (T ) such that a = b + c and
– Browder if there exist commuting elements b ∈ A−1 and c ∈ N (T ) such that
a = b + c.

If FT ,WT and BT denote the sets of Fredholm, Weyl and Browder elements, respec-
tively, then clearly

A−1 ⊆ BT ⊆ WT ⊆ FT .

These sets give rise to the Fredholm spectrum σ(Ta), theWeyl spectrum ωT (a) =
{λ ∈ C : λ − a /∈ WT } and the Browder spectrum βT (a) = {λ ∈ C : λ − a /∈ BT }
of an element a ∈ A, respectively. These spectra are non-empty and compact, and
clearly satisfy

σ(Ta) ⊆ ωT (a) ⊆ βT (a) ⊆ σ(a).

The following is an important result:

Theorem 2.11 ([7], Theorem 5.7.4; [39], Corollaries 7.6 and 7.8; [41], Corollary 5.4)
Let A and B be Banach algebras and let T : A → B be a homomorphism with closed
range satisfying the Riesz property. Then

ησ(Ta) = ηωT (a) = ηβT (a) = ηD(a, N (T )) = ησ(a + N (T )),

for all a ∈ A.

Here we note that the homomorphism in Theorem 2.11 need not be bounded; this
is due to [25, Proposition 2.1].

Another concept that will be needed is that of ergodicity. An element a in a Banach

algebra A is said to be ergodic if the sequence
(∑n−1

k=0
ak
n

)
converges (in A).Abounded,

linear operator T on a Banach space X is called uniformly ergodic if the sequence(∑n−1
k=0

T k

n

)
converges in L(X), i.e. T is an ergodic element of the Banach algebra

L(X). We call an operator T ∈ Lr (E) (with E a Banach lattice) r-ergodic if the

sequence
(∑n−1

k=0
T k

n

)
converges in Lr (E), i.e. if T is an ergodic element of the

Banach algebra Lr (E).
We will also need the following boundedness conditions, for an element a of a

Banach algebra A:
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– a is said to be power bounded if there exists a constant C such that ||an|| ≤ C for
all n ∈ N,

– a is Cesàro bounded if there exists a constant C such that ||Mn(a)|| ≤ C for all
n ∈ N, where Mn(a) = ∑n−1

k=0
ak
n , and

– a is Abel bounded if there exists a constant C such that
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
(1 − θ)

∞∑

k=0

θkak
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ C

for all θ ∈ (0, 1).

Note that the following implications hold (see [24]):
power bounded ⇒ Cesàro bounded ⇒ Abel bounded

The notion of uniformly Abel bounded is obtained by replacing ∞ in the definition
of Abel bounded with n and requiring that C works for all n. Additional types of Abel
boundedness conditions are obtained by replacing (1 − θ) by (1 − θ)N . An element
a is said to be doubly bounded of one of these forms if a is invertible and both a and
a−1 are bounded of the same form.

The boundary spectrum of an element a in a Banach algebra A was introduced in
[46] as

S∂ (a) := {λ ∈ C : λ − a ∈ ∂A−1},

where ∂K indicates the topological boundary of a set K in a metric space. It is easy
to see [46, Proposition 2.1] that ∂σ(a) ⊆ S∂ (a) ⊆ σ(a) and that S∂ (a) is a closed set.
Therefore, the boundary spectrum of a is a non-empty compact subset of the complex
plane, for every a ∈ A. In general, ∂σ(a) �= S∂ (a) �= σ(a) (see [46, Example 2.3]
and [48, Examples 2.3 and 3.8]).

3 Ordered Banach algebras

A complex unital Banach algebra A is called an ordered Banach algebra (OBA) [58] if
A contains an algebra cone, i.e. a subsetC (not necessarily closed) with the properties
that C contains the unit 1 and is closed under (a) addition, (b) non-negative real scalar
multiplication and (c) multiplication. If, instead of condition (c), C only satisfies the
condition

a, b ∈ C, ab = ba ⇒ ab ∈ C,

then C is called an algebra c-cone and A is called a commutatively ordered Banach
algebra (COBA) [50]. A non-empty subsetC of Awhich is only closed under addition
and under non-negative real scalar multiplication is called a space cone. A cone C is
said to be proper if C ∩ −C = {0}.

A Banach algebra A is partially ordered by an algebra cone C as follows:

a ≤ b if and only if b − a ∈ C
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This ordering is reflexive and transitive, and it is antisymmetric if and only if C is
proper. We often refer to the condition a ≤ b by saying that a is dominated by b or b
dominates a. It turns out that C = {a ∈ A : a ≥ 0} and therefore the elements of C
are called the positive elements.

An algebra cone C is said to be normal if there exists a constant α > 0 with the
property that if 0 ≤ a ≤ b (relative to C), then ||a|| ≤ α||b||. Clearly, the property
of normality reconciles the order structure and the topology of A. It is obvious that if
C is normal, then C is proper. It is also easy to see that if C is normal (respectively,
closed) relative to a norm || · ||, then C is normal (respectively, closed) relative to any
norm equivalent to || · ||. We note that if C is closed and normal, then C does not
contain any interior points (recall that A is a complex space); in fact, C does not even
contain any absorbing points—see [49, Proposition 3.4]. We say that C is generating
if span C = A, and C is inverse-closed if it has the property that if a ∈ C and a is
invertible, then a−1 ∈ C . Finally, we say that the spectral radius is monotone (w.r.t. C
in A) if r(a) ≤ r(b) whenever 0 ≤ a ≤ b. If C is normal, then the spectral radius is
monotone [58, Theorem 4.1].

TheNeumann series plays an important role in orderedBanach algebras. In general,

|λ| > r(a) ⇒ (λ − a)−1 =
∞∑

n=0

an

λn+1 .

Therefore, if C is closed and a ∈ C , then (λ − a)−1 ∈ C for all real λ > r(a). This
implies that if a ∈ C and r(a) is a pole of order k of (λ − a)−1, then the coefficient
a−k in the Laurent series of (λ − a)−1 is a positive element [52, proof of Theorem
3.2].

At this point we note that all the preceding concepts also make sense in the context
of a COBA with an algebra c-cone. However, in view of [50, Proposition 3.12 and
Example 3.13], COBA-statements sometimes contain commutativity assumptions that
were not necessary in their OBA-counterparts.

It is well known that if a and b are commuting elements in a Banach algebra,
then r(ab) ≤ r(a)r(b) and r(a + b) ≤ r(a) + r(b). In an OBA we have that if the
algebra cone C is normal and a, b ∈ C satisfy ab ≤ ba, then r(ab) ≤ r(a)r(b) [58,
Proposition 4.4] and r(a + b) ≤ r(a) + r(b) [45, Theorem 4.7].

3.1 Subalgebras, direct sums and quotients

In this section we will consider methods of obtaining new OBAs from given OBAs.
First of all, although we have defined the concept of an ordered Banach algebra for a
complex algebra, the definition also makes sense in the case of a real algebra, in which
case we consider the complexification of the algebra, as follows: If A is a real OBA
with algebra cone C , then the complexification AC = A ⊕ i A of A (with the norm
given by the Minkowski functional—see [12, §1 and §13]) is a complex OBA with
algebra cone C . In addition, C is closed (proper, normal, generating, inverse-closed)
in A if and only if C is closed (proper, normal, generating, inverse-closed) in AC. (We
restrict our attention to complex Banach algebras, unless stated otherwise.)
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If C is an algebra cone of (a complex OBA) A and B is a closed subalgebra of A
containing the unit of A, thenC∩ B is an algebra cone of B, and ifC is closed (proper,
normal) in A, then C ∩ B is closed (proper, normal) in B.

IfCi is an algebra cone of anOBA Ai for i = 1, . . . , n, thenC = C1⊕C2⊕· · ·⊕Cn

is an algebra cone of A = A1 ⊕ A2 ⊕ · · · ⊕ An . Furthermore, if Ci is closed (proper,
normal, generating, inverse-closed) in Ai for all i = 1, . . . , n, thenC is closed (proper,
normal, generating, inverse-closed) in A.

Algebra c-cones in COBAs behave similarly with respect to subalgebras and direct
sums.

For a Banach algebra B and a homomorphism T : A → B, we have that if C is
an algebra cone of A, then TC is an algebra cone of B. Unfortunately, properties of
C do not in general carry over to TC . However, if T is onto and C is generating in
A, then TC is generating in B. If A has algebra cone C and F is a closed ideal in
A, then we often consider the canonical homomorphism π : A → A/F , and A/F is
an OBA with algebra cone πC , which is generating in A/F if C is generating in A.
The spectral radius is called weakly monotone (w.r.t. πC in A/F) if it follows from
0 ≤ a ≤ b in A that r(a + F) ≤ r(b + F). The property of weak monotonicity
of the spectral radius in the quotient algebra is sufficient to obtain many results, and
we will see that it is practically applicable as well. (For particular reasons we have
been referring to this property in the literature just as “monotonicity” of the spectral
radius in the quotient algebra, but to be completely consistent, and to avoid possible
confusion, we will now rather call it “weak monotonicity”.)

If C in the previous discussion is only an algebra c-cone of A, then, in general,
TC is only an algebra c-cone of B if T is injective. Therefore πC is in general not an
algebra c-cone of A/F . However, this deficiency can be dealt with by using either of
the concepts of algebra c′-cone and maximal positive commutative set—see [50].

3.2 Examples

The most trivial example of an ordered Banach algebra is the (commutative) Banach
algebraC of all complex numbers, which has a closed, normal, generating and inverse-
closed algebra cone R

+. Considering matrix algebras: if C is the subset of Mn(C) (or
Mu

n (C)) consisting of all matrices with only nonnegative real entries, then it is easy
to check that Mn(C) (or Mu

n (C)) with the norm (2.2) is an OBA with closed, normal
and generating algebra cone C , which is, however, not inverse-closed. Since the norm
(2.1) and the norm (2.2) are equivalent in Mn(C), the algebra cone C is also closed
and normal in the OBA Mn(C) (or Mu

n (C)) relative to the norm (2.1).
Turning to sequence algebras, let C be the subset of l∞ consisting of all sequences

with only nonnegative real entries. Then l∞ is an OBAwith closed, normal, generating
and inverse-closed algebra cone C . More generally, we can consider A = l∞(Mn(C))

or A = l∞(Mu
n (C)). Let C be the subset of A consisting of all sequences having as

entries only matrices with nonnegative real entries. Then A is an OBA with closed,
normal and generating algebra cone C . Other Banach algebras than the matrices can
be used in the definition of A, but then the algebra cone would not necessarily be
generating.
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Let C be the subset of C(K ) (with K a compact Hausdorff space) consisting of
all functions which are real and nonnegative at every point of K . Then C(K ) is an
OBAwith closed, normal, generating and inverse-closed algebra coneC . If, instead,C
denotes the subset of A(D) (with D the open unit disc in C) consisting of all functions
which are real and nonnegative at every point of D, then A(D) is an OBAwith closed,
normal and inverse-closed algebra cone C .

For a Hilbert space H we let C be the subset of L(H) consisting of all positive
operators (i.e. T such that 〈T x, x〉 ≥ 0 for all x ∈ H ). Then L(H) is a COBA with
closed, normal and inverse-closed algebra c-cone C . More generally, let A be a C∗-
algebra and let C = {a ∈ A : a = a∗, σ (a) ⊆ [0,∞)}. Then A is a COBA with
closed, normal and inverse-closed algebra c-cone C . If A is commutative, then A is
an OBA. More examples of COBAs can be found in [50].

Now, let X be any complex ordered Banach space with (space) cone C and let
K = {T ∈ L(X) : TC ⊆ C}. Then L(X) is an OBA with algebra cone K and if C is
closed in X , then K is closed in L(X). The other algebra cone-properties do not, in
general, carry over from C to K . However, if we replace X with a complex Banach
lattice E with cone C = {x ∈ E : x = |x |}, we can say more: if K = {T ∈ L(E) :
TC ⊆ C}, then both L(E) and Lr (E) are OBAs with closed and normal algebra cone
K , and K is generating in Lr (E). (The normality of K follows from [59, Lemma 3]).
In addition, both L(E)/K(E) and Lr (E)/Kr (E) are OBAs with algebra cone πK ,
and πK is generating in Lr (E)/Kr (E). Although πK is, in general, not normal in
either quotient algebra, we do have that if both E and E ′ have order continuous norm,
then πK is proper inL(E)/K(E) and inLr (E)/Kr (E). We will justify this remark in
Sect. 4.2 (see Proposition 4.2.3 and the remark thereafter). Finally, if E is Dedekind
complete, then the spectral radius in Lr (E)/Kr (E) is weakly monotone. This very
important fact was proved in 1991 by Martinez and Mázon in [35, Theorem 2.8]. This
result of Martinez andMázon was generalised to the setting of Banach lattice algebras
in [33, Theorem 3.8]. We note, in particular, that πK is not necessarily normal in
Lr (E)/Kr (E)—see [58, Example 4.2].

In [30] Herzog and Schmoeger illustrated that any Banach algebra B can be embed-
ded in an OBA A. The advantage of this is that questions in B can be answered by
working in the OBA A—see [30, Theorems 6 and 7].

4 Spectral theory

We will now consider different aspects of spectral theory in OBAs and present the
most important results. Many of these results have counterparts in COBAs, although
sometimes with additional commutativity assumptions—see [50,51]. For a general
survey on results in OBAs we refer the reader to [28,50,52,58].

4.1 Fundamental results

In this section we give the general OBA-versions of the fundamental spectral-
theoretical results. Note, however, that these fundamental results have been well-
known in an operator context before the OBA-versions were published. In the general
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OBA-case, the proofs typically rely on things like Laurent series and other elements
of complex analysis, Neumann series, the spectral mapping theorem and other basic
analytic properties of Banach algebras, and, in certain cases, on Aupetit’s perturbation
theorem (Theorem 2.10).

Firstwehave the followinggeneralisation of the original Perron-Frobenius theorem:

Theorem 4.1.1 ([58], Proposition 5.1) Let A be an OBA with closed and normal
algebra cone C. If a ∈ C, then r(a) ∈ σ(a).

In the 1960s, Schaefer proved this result for positive operators on Banach lat-
tices, using operator-theoretic methods—see [59]. A few years later Schneider and
Turner then extended the result to positive operators on ordered Banach spaces in
[63]. Their proof can be adapted to provide the above general version of this theorem.
It is important to note that the normality of the algebra cone can, in fact, be relaxed to
monotonicity of the spectral radius. This was proven by de Pagter and Schep in [19,
Proposition 3.3] (see also [58, Theorem 5.2]), and is of particular interest in quotient
algebras:

Theorem 4.1.2 ([58], Theorem 5.3) Let A be an OBAwith closed algebra cone C and
let F be a closed ideal of A such that the spectral radius in A/F is weakly monotone.
If a ∈ C, then r(a + F) ∈ σ(a + F).

Herzog and Schmoeger proved that (the de Pagter-Schep version of) Theorem 4.1.1
has a converse:

Theorem 4.1.3 ([29], Theorem 2) Let A be a Banach algebra with a ∈ A. If r(a) ∈
σ(a), then there exists an algebra cone C in A such that a ∈ C and the spectral radius
is monotone w.r.t. C.

The original Krein-Rutman theorem states that the spectral radius r(T ) of a positive
compact operator T on an ordered Banach space is an eigenvalue of T , with a positive
eigenvector (if r(T ) �= 0). This result was proven by Krein and Rutman in [34], with
operator-theoretic techniques. Then, in 1986, de Pagter [18] proved that if T is an ideal
irreducible positive compact operator, then r(T ) �= 0. (Irreducibility will be discussed
in Sect. 4.6).

By replacing T with the left or right regular representation on a Banach algebra
A, the conclusion of the Krein-Rutman theorem makes sense in A. Also, the spectral
properties of a Riesz operator, or a Riesz element in a Banach algebra, are similar to
those of a compact operator; in particular, in both cases nonzero points of the spectra
are poles of the resolvents. Therefore it makes sense to use Riesz elements in the OBA
version of the Krein-Rutman theorem:

Theorem 4.1.4 ([52], Theorem 3.7) Let A be a semisimple OBA with closed and
normal algebra cone C and let 0 �= a ∈ C be such that r(a) > 0. If I is a closed
inessential ideal in A such that a is a Riesz element, then there exists 0 �= u ∈ C such
that ua = au = r(a)u and aua = r(a)2u.

A possible choice for the positive element u in Theorem 4.1.4 is the coefficient a−k

in the Laurent series of the resolvent of a around the order k pole r(a)—see [52].
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In the 1960s Schaefer proved that if T is a positive operator on a Banach lattice
such that the spectral radius of T is a Riesz point of its spectrum, then the peripheral
spectrum of T consists of Riesz points. In the general case, we have:

Theorem 4.1.5 ([43], Theorem 4.3; [52], Theorem 4.1) Let A be an OBA with closed
algebra cone C and let I be a closed inessential ideal of A such that the spectral
radius in A/I is weakly monotone. If a ∈ C is such that r(a) is a Riesz point of σ(a),
then psp(a) consists of Riesz points.

Theorem 4.1.5 relies on Aupetit’s perturbation theorem. If the Banach lattice under
consideration is Dedekind complete, then, as was mentioned in Sect. 3.2, the spectral
radius in the quotient algebra of the regular operators modulo the r -compact operators
is weakly monotone. Therefore we can apply this result to this case. We can also apply
the result to C∗-algebras: since the quotient of a C∗-algebra modulo a closed ideal is
again a C∗-algebra, its algebra cone is normal, and therefore the spectral radius in the
quotient algebra is monotone. In particular, we can consider the operators on a Hilbert
space. These observations are contained in the following corollary:

Corollary 4.1.6 ([43], Corollaries 4.9–4.10; [52], Corollary 4.2)

1. Let T be a positive operator on a Dedekind complete Banach lattice E. If ro(T ) is
a Riesz point of σo(T ), then pspo(T ) consists of Riesz points (relative to Kr (E)).

2. Let T be a positive operator on a Hilbert space. If r(T ) is a Riesz point of σ(T ),
then psp(T ) consists of Riesz points.

Note that if A is an OBA with an algebra cone C and I is a closed ideal in A, then
many results in spectral theory of OBAs rely on the assumption that the spectral radius
in the quotient algebra A/I is weakly monotone—see, for instance [9,11,43,51,52,
58].

4.2 Domination properties

The following problem is often referred to as the domination problem:
Let A be an OBA and let a, b ∈ A such that 0 ≤ a ≤ b. Given a spectral property

(P), provide conditions which will ensure that if b satisfies (P), then a satisfies (P).
The best-known domination results are undoubtedly the following results of

Aliprantis and Burkinshaw, and of Dodds and Fremlin:

Theorem 4.2.1 ([4], Theorems 2.1 and 2.2) Let S and T be operators on a Banach
lattice E such that 0 ≤ S ≤ T . Suppose that T is compact.

1. Then S3 is compact.
2. If either E or E ′ have order continuous norm, then S2 is compact.

Theorem 4.2.2 ([20], Theorem 4.5) Let S and T be operators on a Banach lattice E
such that both E and E ′ have order continuous norm. If 0≤ S ≤ T and T is compact,
then S is compact.
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In [58] it was observed that domination relative to an ideal is, in fact, equivalent to
properness of the algebra cone in the quotient modulo the ideal:

Proposition 4.2.3 ([58], Theorem 6.1) Let A be an OBA with algebra cone C and F
a closed ideal of A. Then the following are equivalent:

1 If a, b ∈ A are such that 0 ≤ a ≤ b and b ∈ F, then a ∈ F.
2. The algebra cone πC in A/F is proper.

Together with Theorem 4.2.2 it can now be seen that if both E and E ′ have order
continuous norm, C = {x ∈ E : x = |x |}, K = {T ∈ L(E) : TC ⊆ C} and
π : L(E) → L(E)/K(E) is the canonical homomorphism, then the algebra cone πK
is proper, as was mentioned in Sect. 3.2.

Again, due to the correspondence between the spectral properties of compact oper-
ators and Riesz operators, it makes sense to replace “compact operator” with “Riesz
element” in the OBA-setting. The following result then follows immediately:

Theorem 4.2.4 ([58], Theorem 6.2) Let A be an OBA with closed algebra cone C,
F a closed ideal of A such that the spectral radius in A/F is weakly monotone and
a, b ∈ A such that 0 ≤ a ≤ b. If b is a Riesz element, then a is a Riesz element.

As before, this result can be applied to the regular operators on aDedekind complete
Banach lattice and to C∗-algebras; in particular to the operators on a Hilbert space:

Corollary 4.2.5 ([58], Corollaries 6.3 and 6.6)

1. Let E be a Dedekind complete Banach lattice and S, T ∈ Lr (E) such that 0 ≤
S ≤ T . If T is r-asymptotically quasi finite rank, then S is r-asymptotically quasi
finite rank.

2. Let H be a Hilbert space and S, T ∈ L(H) such that 0 ≤ S ≤ T and ST = T S.
If T is a Riesz operator, then S is a Riesz operator.

Very recently, Koumba and Raubenheimer [33] proved that the commutativity con-
dition in (2) can be omitted, and also that S is in fact compact. This has the interesting
consequence that, on a Hilbert space, there exists no positive Riesz operator which is
not compact. Finally, we remark that Troitsky in [64] also investigated the domination
problem for Riesz operators and provided conditions for a positive operator dominated
by a Riesz operator to be a Riesz operator.

Next we consider domination relative to Riesz points. The first result of note in this
direction was given by Caselles in 1987:

Theorem 4.2.6 ([16], Theorem 4.1) Let E be a Banach lattice and let S, T ∈ L(E)

such that 0 ≤ S ≤ T and r(S) = r(T ). If r(T ) is a Riesz point of σ(T ), then r(S) is
a Riesz point of σ(S).

Theorem 4.2.6 was strengthened by Räbiger and Wolff in 1997 (see [57, Theorem
3.1]) by using a weaker form of domination which does not imply that the smaller
operator is positive.

A general version of Theorem 4.2.6, relying onAupetit’s perturbation theorem, was
obtained in 1997:
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Theorem 4.2.7 ([52], Theorem 4.3) Let A be anOBAwith closed and normal algebra
cone C, I a closed inessential ideal of A such that the spectral radius in A/I is weakly
monotone and a, b ∈ A such that 0 ≤ a ≤ b and r(a) = r(b). If r(b) is a Riesz point
of σ(b), then r(a) is a Riesz point of σ(a).

The above result implies Theorem4.2.6 for the order spectra of the regular operators
on aDedekind completeBanach lattice, and also applies to positive operators onHilbert
spaces (see [52, Corollary 4.4] and [43, Corollaries 4.9–4.10]).

Domination of quasi compact operators (see definition following Theorem 2.10)
was investigated by Martinez and Mázon in 1991:

Theorem 4.2.8 ([35], Proposition 2.5) Let E be a Banach lattice and let S, T ∈ L(E)

such that 0 ≤ S ≤ T and r(T ) ≤ 1. If T is quasi compact, then S is quasi compact.

The general OBA-version of Theorem 4.2.8 was originally given, under additional
conditions, in [52], but Muzundu noticed that some of these conditions could be
omitted:

Theorem 4.2.9 ([50], pp. 573–574; [52], Corollary 5.4)Let A be anOBAwith algebra
cone C, I a closed inessential ideal of A such that the spectral radius in A/I is weakly
monotone and a, b ∈ A such that 0 ≤ a ≤ b. If b is quasi inessential, then a is quasi
inessential.

So comparing with Theorem 4.2.8, we see that we do not need r(b) ≤ 1 in the
general version, but instead we need to assume weak monotonicity of the spectral
radius in the quotient algebra.

We now turn to domination of radical elements, where we find that generating
algebra cones behave well:

Theorem 4.2.10 ([38], Theorem 4.6) Let A be an OBA with normal and generating
algebra cone C and a, b ∈ A such that 0 ≤ a ≤ b. If b ∈ Rad(A), then a ∈ Rad(A).

Note that the proof of this theorem relies on Aupetit’s scarcity theorem (Theorem
2.3), via Corollary 2.5. The algebra cones in all the examples mentioned before are
normal, and many of them are generating. An example of a (non-semisimple) OBA to
which Theorem 4.2.10 applies is l∞(Mu

n (C)), the algebra of all bounded sequences
of upper triangular n × n matrices.

Normality of the algebra cone in Theorem 4.2.10 may be replaced by monotonicity
of the spectral radius. Using this observation, Behrendt and Raubenheimer noticed
that, as a result, the inessential elements have the following domination property:

Theorem 4.2.11 ([9], Theorem 4.1) Let A be an OBA with generating algebra cone
C, F a closed ideal of A such that the spectral radius in A/F ismonotone and a, b ∈ A
such that 0 ≤ a ≤ b. If b is inessential (relative to F), then a is inessential (relative
to F).

They also gave interesting complementary results to Theorem 4.2.10 about domi-
nation of radical elements, such as:
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Theorem 4.2.12 ([9], Corollary 3.4) Let A be an OBA with normal algebra cone C
and a, b ∈ A such that 0 ≤ a ≤ b. If b ∈ QN(A) and a + a2 ∈ Rad(A), then
a ∈ Rad(A).

In fact, in the above result the polynomial a+a2 can be replaced by any polynomial
in a which contains a as a term and has constant term zero—see [9, Theorem 3.3].

In [9] the authors further illustrate by examples that a positive element dominated by
a rank one (respectively, finite rank) element is not necessarily a rank one (respectively,
finite rank) element.

Finally, we consider domination of ergodic elements. In this regard, the main result
is the following:

Theorem 4.2.13 ([51], Theorem 5.5) Let A be a semisimple OBA with closed and
normal algebra cone C, I a closed inessential ideal of A such that the spectral radius
in A/I is weakly monotone, and a, b ∈ A such that 0 ≤ a ≤ b and r(b) is a Riesz
point of σ(b). If b is ergodic, then a is ergodic.

In order to establish Theorem 4.2.13, the ergodic domination theorem, the authors
first established a theorem, the ergodic theorem [51, Theorem 4.10], which gives
necessary and sufficient conditions for an element in a Banach algebra to be ergodic.
This result generalises a theorem that Dunford proved in 1943 for the bounded linear
operators on a complex Banach space—see [21, Theorem 3.16]. The proof of the
ergodic theorem uses many of Dunford’s ideas and relies on the Riesz functional
calculus and complex analysis. Besides the ergodic theorem, the proof of the ergodic
domination theorem also relies on Theorem 4.2.7.

Theorem 4.2.13 has the following corollary for the regular operators:

Corollary 4.2.14 Let E be a Dedekind complete Banach lattice and S, T ∈ Lr (E)

such that 0 ≤ S ≤ T with r(T ) a Riesz point of σo(T ) (relative to Kr (E)). If T is
r-ergodic, then S is r-ergodic.

Again, under a weaker form of domination which does not imply that S is positive,
this result was proved for the bounded linear operators on a Banach lattice (with the
usual norm) by Räbiger andWolff [57, Theorem 4.5] in 1997, using operator-theoretic
methods. (See also the original result by Caselles in [16, Corollary 4.6]).

We conclude this section with some open questions regarding the domination prob-
lem in ordered Banach algebras:

– Can any of the results currently relying onweakmonotonicity of the spectral radius
in the quotient algebra be provedwithout this condition?Maybe if the algebra cone
in the original Banach algebra is assumed to be normal and/or generating? (This
could allow these results to apply to other cases than the regular operators.)

– Can the ergodic domination theorem be extended by replacing the condition “0 ≤
a ≤ b” with the weaker condition “±a ≤ b”?

4.3 Gelfand-Hille theorems

In this section we will discuss what should rightly be known as the Gelfand-
Hille/Huijsmans-De Pagter problem:
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Let A be an OBA and let a ≥ 0. Under what conditions does it follow from
σ(a) = {1} that a ≥ 1?

The original interest was in the problem of providing conditions, generally in the
absence of an ordering, which would ensure that σ(a) = {1} implied a = 1. Theorems
of this nature are referred to in the literature as Gelfand-Hille theorems, since the first
interesting results in this area were provided by Gelfand (see below) and Hille:

Theorem 4.3.1 ([22]) Let a be a doubly power bounded element of a Banach algebra.
If σ(a) = {1}, then a = 1.

In 1944 Hille elaborated on this result in [31]. A number of authors obtained gen-
eralisations of the Gelfand theorem by replacing power boundedness with weaker
boundedness conditions. Theorem 4.3.1 was generalised to doubly Cesàro bounded
elements by Mbekhta and Zemánek in 1993 (see [36]), and to elements with certain
Abel boundedness properties by Grobler and Huijsmans in 1995 (see [24]).

In 2009 Braatvedt et al. investigated Gelfand-Hille type theorems in an OBA-
context. They showed that, for positive elements in an OBA with closed and normal
algebra cone, the notions of Cesàro boundedness and Abel boundedness coincide—
see [13, Theorem 2.1]; therefore, by the Mbekhta-Zemánek theorem, the following
holds:

Theorem 4.3.2 ([13], Corollary 2.2)Let A be anOBAwith closed and normal algebra
cone C and let a ∈ C be a doubly Abel bounded element with a−1 ∈ C. If σ(a) = {1},
then a = 1.

It is also interesting that this result is true in a Banach lattice algebra, without any
assumptions of Abel boundedness. This was shown by Huijsmans in 1988—see [32].

If normality of the algebra cone is relaxed to properness, the following can be said:

Theorem 4.3.3 ([13], Theorem 2.7) Let A be an OBA with closed and proper algebra
cone C, a ∈ A and suppose there exist L , N ∈ N such that aL is Abel bounded and
aN ≥ 1. If σ(a) = {1}, then a = 1.

An important tool in the proof of Theorem 4.3.3 is the fact that any element x in a
Banach algebra with σ(x) = {1} has the property that x is Abel bounded if and only
if xN is Abel bounded for all N ∈ N (or for some N ∈ N)—see [13, Theorems 2.4
and 2.6].

For inverse-closed algebra cones, we have the following:

Theorem 4.3.4 ([13], Theorem 4.1) Let A be anOBAwith closed, proper and inverse-
closed algebra cone C and a ∈ A such that aN ∈ C for some N ∈ N. If σ(a) = {1},
then a = 1.

Besides boundedness conditions, other types of conditions have also been investi-
gated in this problem. For instance, in 1978 Schaefer et al. showed that, in the case of
operators on Banach lattices, we have:

Theorem 4.3.5 ([62], Corollary 2.2) Let T be a lattice homomorphism of a Banach
lattice. If σ(T ) = {1}, then T is the identity operator I .
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Motivated by this result, Huijsmans and de Pagter (see [67]) then asked the more
general question: If T is a positive operator on a Banach lattice with σ(T ) = {1}, does
it follow that T ≥ I? If this were true, it would imply Theorem 4.3.5.

Let us begin our discussion of this more general problem by investigating the finite-
dimensional case:

Theorem 4.3.6 ([44], Theorem 4.4) If A is a semisimple finite-dimensional Banach
algebra, then A is isomorphic (as an algebra) to an OBA with closed and normal
algebra cone C which has the property that if a ∈ C and σ(a) = {1}, then a ≥ 1.

This result is obtained by considering the n× n matrices, direct sums of OBAs and
the Wedderburn-Artin theorem. In this regard, see also [67, Theorem 4.1].

The Huijsmans-de Pagter version of the problem has originally been investigated
by Zhang in [66,67] for the bounded linear operators on a Banach lattice:

Theorem 4.3.7 ([67], Theorem 5.3) Let T be a positive operator on a Banach lattice.
If σ(T ) = {1} and 1 is a pole of the resolvent of T , then T ≥ I .

In 2003, this problemwas investigated in the general OBA-context, using properties
of Neumann and Laurent series:

Theorem 4.3.8 ([44], Corollary 4.9) Let A be an OBA with closed algebra cone C
and let a ∈ C. If σ(a) = {1} and 1 is a pole of the resolvent of a of order 1 or 2,
then a ≥ 1. More generally, if 1 is a pole of the resolvent of a of order k + 1, then
(a − 1)k ∈ C.

In the case of inverse-closed algebra cones, the following can be said:

Theorem 4.3.9 ([44], Theorem 4.23) Let A be an OBA with closed, proper and
inverse-closed algebra cone C and let a ∈ C.

1. If d(0, σ (a)) ≥ 1, then a ≥ 1.
2. If σ(a) ⊆ C(0, 1), then a = 1.
3. In particular, if σ(a) = {1}, then a = 1.

Note that Theorem 4.3.9 (3) was strengthened by Braatvedt, Brits and Rauben-
heimer in Theorem 4.3.4.

Finally, the following are some open questions regarding the Gelfand-Hille theo-
rems:

– Can any of the relevant results be improved if the algebra cone is assumed to be
normal?

– In particular, in the case where 1 is assumed to be a pole of the resolvent of a, can
the first part of Theorem 4.3.8 be proved for orders higher than 2?

4.4 Spectral continuity

The subject of spectral continuity had been initiated by Newburgh [54] in 1951, and
he showed that the spectrum and spectral radius functions are
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– upper semi-continuous,
– continuous at points with totally disconnected spectra and
– uniformly continuous on commutative Banach algebras.

By the “spectrum function” we mean the function from a Banach algebra into the
set of all compact subsets of the complex plane, with the Hausdorff metric, which
maps an element onto its spectrum. The spectral radius function is just the function
from a Banach algebra into the positive real numbers mapping an element onto its
spectral radius. Continuity of the spectrum function would imply continuity of the
spectral radius function, but not vice versa.

Since 1951 this subject has been studied extensively, and several authors have
made contributions. Most of the important earlier results were presented in [7], and
in her survey paper [14] of 1994 Burlando gave an extensive account of these and of
subsequent results up to that time, supplying several useful references. A more recent
paper on the subject is [15].

However, spectral continuity in the context of an ordered Banach algebra has only
been studied in recent years. A well-known example by Kakutani illustrates that the
spectrum and spectral radius functions are, in particular, not continuous on the set of
positive elements in an ordered Banach algebra:

Example 4.4.1 ([7], Example p. 49) Let l2(N) be the complex Banach lattice of all
square-summable sequences. Then there exist a sequence of positive operators (Tn) ∈
L(l2(N)) and a positive operator T ∈ L(l2(N)) such that the spectrum of Tn is zero
for all n ∈ N and Tn → T as n → ∞, but the spectrum of T is not zero.

Motivated by this fact, it seems indicated to investigate results of the following
types:

I. If a is a positive element, then there exists a setC(a) such that a ∈ C(a), contained
in the set of all positive elements and with C(0) = C , such that the restriction of
the spectral radius function to C(a) is continuous at a.

II. If a is a positive element satisfying certain properties, then the restriction of the
spectral radius function to the set of all positive elements is continuous at a.

Let A be an OBA with algebra cone C . For a ∈ C , define [45] the subsets A(a)

and C(a) of A by

A(a) = {x ∈ A : a ≤ x, (ax ≤ xa or xa ≤ ax) and

d(r(x), σ (a)) ≥ d(λ, σ (a)) for all λ ∈ σ(x)}

and

C(a) = {x ∈ A : a ≤ x and (ax ≤ xa or xa ≤ ax)}.

It is clear that a ∈ A(a) ⊆ C(a) ⊆ C and that A(0) = C = C(0). Both A(a) and
C(a) can, informally, be considered as generalisations of the commutant of a.

Now, from Newburgh’s early results we know the following:
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Theorem 4.4.2 ([7], Theorem 3.4.1; [54]) If a is an element of a Banach algebra A,
then

σ(x) ⊆ σ(a) + r(a − x)

for all x in the commutant of a.

The meaning of the displayed formula in the above theorem is that
d(λ, σ (a)) ≤ r(a − x) for all λ ∈ σ(x).

Analogously, it is possible to show that, in an OBA, we have the following property:

Theorem 4.4.3 ([45], Theorem 4.2) Let A be anOBAwith closed and normal algebra
cone C. If a ∈ C, then

σ(x) ⊆ σ(a) + r(a − x)

for all x ∈ A(a).

Analogous results are available for a number of sets defined similarly as A(a), but
with the condition “d(r(x), σ (a)) ≥ d(λ, σ (a)) for all λ ∈ σ(x)” replaced by other
spectral properties — see [45].

Similarly, in general and in an OBA, respectively, we have the following results:

Theorem 4.4.4 ([7], Theorem 3.4.1; [54]) If a is an element of a Banach algebra A
and {a}c denotes the commutant of a, then r|{a}c is continuous at a.

Theorem 4.4.5 ([45], Corollary 4.9) Let A be an OBA with a normal algebra cone
C. If a ∈ C, then r|C(a)

is continuous at a.

It is now apparent that Theorem 4.4.5 is a spectral continuity result of Type I.
Theorems 4.4.3 and 4.4.5 were proved using a number of fundamental properties of
positive elements. In view of Theorems 4.4.2 and 4.4.4, it should be checked that the
sets A(a) and C(a) contain elements which do not commute with a. In this sense,
Theorems 4.4.3 and 4.4.5 can be applied to A = L(l p(N)), where 1 ≤ p ≤ ∞
and l p(N) is the complex Banach lattice of all p-summable sequences, as well as to
A = l∞(Mu

2 (C)) (see [45, Examples 5.1 and 5.2]).
Our next result is a spectral continuity result of Type II:

Theorem 4.4.6 ([43], Theorem 4.5) Let A be an OBA with closed algebra cone C
and I a closed inessential ideal of A such that the spectral radius in A/I is weakly
monotone. If a ∈ C is such that r(a) is a Riesz point of σ(a), then r|C is continuous
at a.

The proof of Theorem 4.4.6 relies on the upper semi-continuity of spectrum,
another one of Newburgh’s theorems and Aupetit’s perturbation theorem. The weak
monotonicity condition implies that this result has applications to sequences of posi-
tive operators on aDedekind complete Banach lattice which converge in the r -norm, as
well as to uniformly convergent sequences of positive operators on a Hilbert space—
see [43, Corollaries 4.9–4.10].
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In [47] the concept of boundary spectrum was utilised to obtain the following
spectral continuity result:

Theorem 4.4.7 ([47], Theorem 4.6) Let A be anOBAwith closed and normal algebra
cone C. If a ∈ C such that S∂ (a) ∩ R

+ = {r(a)}, then r|C is continuous at a.

The proof of Theorem 4.4.7, which is a spectral continuity result of Type II, relies
on the upper semicontinuity of the map a �→ T (a) [47, Theorem 4.5], where

T (a) := {λ ∈ C : |λ| ∈ S∂ (a)}.

For each a ∈ A the set T (a) is a compact subset of the complex plane. If a is a positive
element, then T (a) is not empty and T (a) contains the spectral radius of a. However,
if a is not positive, then T (a) may be empty and even if T (a) is not empty, it does not
necessarily contain the spectral radius of a [47, Lemma 4.3 and Example 4.4].

In order to illustrate applications of Theorem 4.4.7, we start with the following:

Example 4.4.8 ([26], Problem 84; [47], Example 4.7) Let l2(Z) be the complex
Banach lattice of all bilateral square-summable sequences, and consider the OBA
A = L(l2(Z)), with algebra cone

K = {T ∈ L(l2(Z)) : TC ⊆ C},

where

C = {x ∈ l2(Z) : x = |x |}.

If W : l2(Z) → l2(Z) is the bilateral shift

W (. . . , ξ−2, ξ−1, (ξ0), ξ1, . . .) = (. . . , ξ−2, (ξ−1), ξ0, ξ1, . . .)

(where the term in round brackets indicates the one corresponding to index zero), then
W ∈ K and σ(W ) = C(0, 1). Hence

S∂ (W ) ∩ R
+ = {r(W )}.

However, since σ(W ) ⊆ C(0, r(W )), the continuity of the spectral radius function
at W follows already from the upper semicontinuity of the spectrum. Therefore we
consider the following lemma, which will provide us with additional examples to
which the theorem can be applied.

Lemma 4.4.9 ([47], Lemma 4.8) Let A be an OBA with closed and normal algebra
cone C, and let a ∈ C be such that σ(a) = C(0, 1). If 0 < λ < 1 and bλ = a + λ,
then bλ ∈ C and S∂ (bλ) ∩ R

+ = {r(bλ)}.
We see that σ(bλ) � C(0, r(bλ)), so that the conclusion of Theorem 4.4.7 is not

trivial in this case.
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In particular, we note that if

α(a) = sup{inf{|μ| : μ ∈ ω} : ω is a component of σ(a)},

then α(bλ) < r(bλ), so that bλ does not satisfy the sufficient condition α(bλ) = r(bλ)

for continuity of r at bλ given in 1981 by Murphy in [53, Proposition 1]. On the other
hand, bλ does satisfy the sufficient condition S∂ (bλ)∩ R

+ = {r(bλ)} for continuity of
the restriction of r to C at bλ given in Theorem 4.4.7.

In addition, let, in Lemma 4.4.9, A = L(l2(Z)) and let C be the positive operators
on l2(Z). Then Conway and Morrel showed in 1979 (see [17, Theorem 2.6]) that the
spectral radius r is not continuous at bλ. However, by Theorem 4.4.7 the restriction of
r to C is continuous at bλ.

4.5 The scarcity theorem

This section is devoted to the role of Aupetit’s scarcity theorem (Theorem 2.3) in
ordered Banach algebras. As mentioned in Sect. 4.2, a corollary of the scarcity theo-
rem (Corollary 2.5) was employed in [38] to solve the domination problem for radical
elements in ordered Banach algebras—see Theorem 4.2.10. In the same paper a char-
acterisation of the radical in OBAs with generating algebra cones is obtained (see [49,
Theorem 4.10] for a slightly stronger version):

Theorem 4.5.1 ([38], Theorem 4.17) Let A be an OBA with generating algebra cone
C. Then Rad(A) = {a ∈ A : aC ⊆ QN(A)}.

In [49] this line of thought was expanded to obtain stronger versions of many
spectral theoretical results in ordered Banach algebras in which the algebra cone is
suitably well-behaved.

Relying heavily on the scarcity theorem, the main result Theorem 4.5.2 shows that
several spectral properties extend from certain subsets of the algebra cone C of an
ordered Banach algebra to the linear spans of larger subsets of C :

Theorem 4.5.2 ([49], Lemma 4.1 and Theorem 4.2) Let A be an OBA with algebra
cone C, G a subset of A and B a subset of C which is a space cone of A containing a
point which is absorbing in G. Also, let g : A → A be a C-analytic map.

1. If #σ(g(c)) < ∞ for all c ∈ B∩G, then there exists m ∈ N such that #σ(g(x)) ≤
m for all x ∈ span(B).

2. If n ∈ N and #σ(g(c)) ≤ n for all c ∈ B ∩ G, then #σ(g(x)) ≤ n for all
x ∈ span(B).

3. If σ(g(c)) = {0} for all c ∈ B ∩ G, then σ(g(x)) = {0} for all x ∈ span(B).

The above theorem applies, for instance, to G = A and B = B1 ∩C for any vector
subspace B1 of A. The most important case is when G = A and B = C , which shows
that, when the algebra cone C is generating, then certain properties extend from C to
all of A. It is also useful in cases where the algebra cone generates other subsets of
the algebra, such as the set of quasinilpotent elements—see [49].
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A typical application of Theorem 4.5.2 follows by considering characterisations of
finite dimensional Banach algebras. Theorem 2.6 says that, for A a general Banach
algebra, A/Rad(A) is finite dimensional provided that the spectrum is finite on a very
“small” part of A, namely on an absorbing set. Theorem 4.5.3 below shows that if
A is an ordered Banach algebra with a generating algebra cone C , then in order for
A/Rad(A) to be finite-dimensional, it is sufficient that the spectrum is finite on an
even “smaller” part of A: for any subset G of A which contains a point of C which is
absorbing in G, the spectrum only has to be finite at all positive elements of G.

Theorem 4.5.3 ([49], Theorem 4.4) Let A be an OBA with generating algebra cone
C, and let G be any subset of A which contains a point of C which is absorbing in G.

1. If #σ(c) < ∞ for all c ∈ C ∩ G, then dim A/Rad(A) < ∞.
2. If n ∈ N and #σ(c) ≤ n for all c ∈ C ∩ G, then dim A/Rad(A) ≤ n6.
3. If #σ(c) = 1 for all c ∈ C ∩ G, then A/Rad(A) ∼= C.

It is well known that the spectrum of each element in a finite-dimensional Banach
algebra is a finite set, and therefore, by taking G = A−1 in Theorem 4.5.3, we have
the following property:

Corollary 4.5.4 Let A be a semisimple OBA with generating algebra cone C. Then:

1. dim A < ∞ if and only if the spectrum of each positive invertible element in A is
finite.

2. A ∼= C if and only if the spectrum of each positive invertible element in A consists
of one element only.

More applications of Theorem4.5.2 are obtainedwhen the sets of rank one andfinite
rank elements are investigated. In analogy with Theorem 2.7, we have the following
characterisations of these sets in semisimple OBAs with generating algebra cones:

Theorem 4.5.5 ([49], Theorems 4.8 and 4.9) Let A be a semisimple OBA with gener-
ating algebra cone C, and let G be any subset of A which contains a point of C which
is absorbing in G. Then

{a ∈ A : there exists n ∈ N such that #σ ′(ca) ≤ n for all c ∈ C ∩ G}

= Soc(A) = {a ∈ A : #σ ′(ca) < ∞ for all c ∈ C ∩ G},

and if dim A = ∞ and 0 �= a ∈ A, then a is rank one if and only if #σ ′(ca) ≤ 1 for
all c ∈ C ∩ G.

In addition, [49, Theorems 4.18 and 4.19] illustrate that, in a semisimple OBAwith
closed and generating algebra cone, sharper characterisations of the sets of rank one
and finite rank elements, analogous to those in Theorems 2.8 and 2.9, can be obtained
by replacing the Banach algebra A in (2) and (3) by the smaller set of all positive
invertible elements.
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4.6 Irreducibility

In 2012, Alekhno [3] established and investigated the concept of irreducible elements
in OBAs. His main ideas can, very informally, be described as follows:

Let A be an OBA. Then under natural conditions:

– The spectrum of a positive element is determined by the spectra of certain irre-
ducible elements.

– A (positive) irreducible element has useful spectral properties.

In order to expand on these ideas, we need to recall a number of newOBA-concepts
introduced in [3]. For all unexplained terminology about Banach lattices and positive
operators, we refer the reader to [5].

A subset B of an OBA A is said to be order-bounded above if there exists a ∈ A
such that b ≤ a for all b ∈ B, and A is said to be Dedekind complete if every non-
empty order-bounded above set in A has a supremum. The OBAs C, Mn(C) and l∞
are Dedekind complete, but that is not in general the case for the continuous functions
C(K ) (with K a compact Hausdorff space). If E is a Dedekind complete Banach
lattice, then Lr (E) is a Dedekind complete OBA and if E is an AM-space with unit
or an AL-space, then Lr (E) = L(E) is a Dedekind complete OBA [5, §4.4].

Let A be an OBA with algebra cone C . An idempotent p ∈ A is called an order
idempotent if 0 ≤ p ≤ 1. The set of all order idempotents of A is denoted by OI (A). It
can be shown that if A is Dedekind complete andC is proper, then OI (A) is Dedekind
complete [3, Corollary 2.2]. If A = L(E), with E a Banach lattice, then T ∈ OI (A)

if and only if T is an order projection on E [5, Theorem 1.44].
If a ∈ A, then an order idempotent p is called a-invariant if (1 − p)ap = 0. If

a ∈ C and 0 < p ∈ OI (A), then a is said to be irreducible w.r.t. p if there exists no
q ∈ OI (A) with 0 < q < p such that (p − q)aq = 0, and a is irreducible if a is
irreducible w.r.t. 1, i.e. if a has no non-trivial invariant order idempotents. If a Banach
lattice E is Dedekind complete, then a positive operator T on E is an irreducible
element in L(E) if and only if T is a band irreducible operator on E [3, p. 144].

Let a ∈ A and p0, . . . , pn ∈ OI (A). If pi is a-invariant for each i ∈ {0, . . . , n}
and pn ≥ · · · ≥ p0, then the totally ordered set {pn, . . . , p0} is called an a-invariant
chain. For T ∈ L(E) (with E any Banach lattice) a T -invariant chain is of the form
{Bn, . . . , B0} where each Bi is a T -invariant projection band and Bn ⊇ · · · ⊇ B0.

For p ∈ OI (A) and a ∈ A, let pd = 1 − p and ap = pap. An element b ∈ A is
called a block of a positive element a if there exists an a-invariant chain {p2, p1}, with
p2 > p1, such that b = ap2 pd1

. Clearly, 0 ≤ b ≤ a. If C is proper, then r(b) ≤ r(a)

[3, Lemma 2.6], and b is said to be a spectral block of a if b is a block of a with
r(b) = r(a).

An element a ∈ C is said to be order continuous if pαa ↓ 0 and apα ↓ 0 whenever
pα ∈ OI (A) with pα ↓ 0 in OI (A) (where pα ↓ 0 means that the net (pα) is
decreasing and infα pα exists and is zero). If the algebra coneC is proper, then an order
continuous element a ∈ C is said to be spectrally order continuous if every spectral
block b of a satisfies the property that if r(b) is a pole of the resolvent (λ − b)−1

of b of order m, then the coefficient b−m in the Laurent series of (λ − b)−1 is order
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continuous. In OBAs such as C, Mu
n (C) and l∞ every positive element is spectrally

order continuous. If a Banach lattice E is Dedekind complete, then a positive operator
T on E is a spectrally order continuous element inL(E) if and only if T is a spectrally
order continuous operator on E [3, Example 2.9(a)].

If a ∈ C , then r(a) is said to be an f -pole of the resolvent of a if 0 ≤ b ≤ a implies
r(b) ≤ r(a), and r(b) is a pole of the resolvent of b whenever r(b) = r(a). We have
the following relationship between Riesz points and f -poles:

Proposition 4.6.1 ([11], Proposition 5.19) Let A be a semisimple OBA with closed
and normal algebra cone C and I a closed inessential ideal such that the spectral
radius in A/I is weakly monotone. If b ∈ C is such that r(b) is a Riesz point of σ(b),
then r(b) is an f -pole of the resolvent of b.

It can be shown that if a ∈ A and {1 = pn, pn−1, . . . , p1, p0 = 0} is an a-invariant
chain, then σ(a) ⊆ ∪n

i=1σ(api pdi−1
) [3, Lemma 2.4]. Therefore, if C is proper and

a ∈ C , then r(api pdi−1
) ≤ r(a) for all i ∈ {1, . . . , n} and there exists i0 ∈ {1, . . . , n}

such that r(a) = r(api0 p
d
i0−1

).

If a ∈ C , then a has a Frobenius normal form (or its Frobenius normal form
exists) if there exists an a-invariant chain {1 = pn, pn−1, . . . , p1, p0 = 0} such
that, for any i ∈ {1, . . . , n}, the element api pdi−1

is irreducible w.r.t. pi pdi−1 whenever

r(api pdi−1
) = r(a). It follows that a positive operator T on aDedekind completeBanach

lattice E has a Frobenius normal form if and only if there exists a T -invariant chain
{E = Bn, Bn−1, . . . , B1, B0 = {0}} such that the restriction of PQi T PQi to Qi is a
band irreducible operator whenever r(PQi T PQi ) = r(T ), where Qi = Bi ∩ Bd

i−1—
see [11, Remark 5.17].

Theorem 4.6.2 ([3], Theorem 2.11) Let A be a Dedekind complete OBA with closed
and normal algebra cone C and let a ∈ C be a spectrally order continuous element
such that r(a) > 0 and r(a) is an f -pole of the resolvent of a. Then a has a Frobenius
normal form.

Theorem 4.6.2 illustrates that, under certain natural conditions, the spectrum of a
positive element in an OBA is determined by the spectra of certain associated irre-
ducible elements.

AnOBA A is said to have a disjunctive product if for any order continuous elements
a and b with ab = 0 there exists p ∈ OI (A) such that ap = 0 = (1 − p)b. The
OBAsC, Mu

n (C) and l∞ all have disjunctive products and if E is a Dedekind complete
Banach lattice, then L(E) and Lr (E) have disjunctive products [3, Example 3.3(a)].

Irreducible elements in an OBA with a disjunctive product have useful spectral
properties, similar to those of irreducible operators. In particular, we have:

Theorem 4.6.3 ([3], Lemma 5.2) Let A be an OBA with a disjunctive product and
such that O I (A) is Dedekind complete, with proper and closed algebra cone. Let
0 < p ∈ OI (A) and a ∈ A such that ap is a non-zero order continuous element
irreducible w.r.t. p, with r(ap) a pole of the resolvent of ap of order m and the
coefficient (ap)−m order continuous. Then r(ap) > 0 and r(ap) is a simple pole of
the resolvent of ap.
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Using the above concepts, and in particular Theorems 4.6.2 and 4.6.3, Alekhno
proved the following application:

Theorem 4.6.4 ([3], Theorem 5.5) Let A be aDedekind complete OBAwith a disjunc-
tive product and with closed and normal algebra cone C. Let a ∈ C be a spectrally
order continuous element such that r(a) is an f -pole of the resolvent of a and |a−1|
exists. Then r(a) /∈ σ(a + λ|a−1|), for all 0 �= λ ∈ C.

In the operator case the above result has implications regarding Fredholm andWeyl
theory. We will elaborate on this in the next section.

4.7 Fredholm theory

The Fredholm theory has been thoroughly investigated, both in the operator case
and in the situation of general Banach algebras (see e.g. [27,39–41]). In [1,10] the
element of positivity was introduced in this context. For the purposes of our discus-
sion in this section, let E be a Banach lattice and let π : L(E) → L(E)/K(E),
φ : L(E) → L(E)/F(E) and πr : Lr (E) → Lr (E)/Kr (E) indicate the relevant
canonical homomorphisms. In addition, let A be a (general) OBA with algebra cone
C , B a Banach algebra and T : A → B any homomorphism. In [10] an element a ∈ A
is defined to be

– upper Weyl if there exist b ∈ A−1 and c ∈ C ∩ N (T ) such that a = b + c
and

– upper Browder if there exist commuting elements b ∈ A−1 and c ∈ C ∩ N (T )

such that a = b + c.

IfW+
T andB+

T denote the sets of upperWeyl and upperBrowder elements, respectively,
then clearly:

W+
T

⊆ ⊆
A−1 ⊆ B+

T WT ⊆ FT

⊆ ⊆
BT

The associated (non-empty, compact) spectra are the upper Weyl spectrum

ω+
T (a) = {λ ∈ C : λ − a /∈ W+

T } = ∩{σ(a + c) : c ∈ C ∩ N (T )}

and the upper Browder spectrum

β+
T (a) = {λ ∈ C : λ − a /∈ B+

T } = ∩{σ(a + c) : c ∈ C ∩ N (T ), ac = ca},
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respectively, of a ∈ A, which obviously satisfy

ω+
T (a)

⊆ ⊆
σ(Ta) ⊆ ωT (a) β+

T (a) ⊆ σ(a)

⊆ ⊆
βT (a)

for all a ∈ A. If T has the Riesz property then, remarkably, W+
T is closed under

multiplication with all non-zero scalars [10, Lemma 3.2.8], implying that, for a ∈ A,
λ ∈ ω+

T (a) if and only if λ − a /∈ W+
T if and only if a − λ /∈ W+

T (and similarly for
B+
T ).
The study of these new spectra was motivated by the concept of the upper Weyl

spectrum ω+
π (T ) = ∩{σ(T + K ) : 0 ≤ K ∈ K(E)} of a positive operator T on a

Banach lattice E , which was introduced by Alekhno in [1] (although the terminology
was only introduced in [10]).

In [2, Theorem 3] Alekhno showed that, in fact, W+
π = Wπ . In addition, W+

πr
=

Wπr (see [10, Example 3.1.2]). However, the inclusion W+
T ⊆ WT is in general

proper, as can be seen by investigating the OBA C(K ) with K = [0, 1]—see [10,
Example 3.1.4].

The proof of [2, Theorem 3] shows that F(E) = span (K ∩ F(E)), i.e. N (φ) =
span (K ∩ N (φ)), with K the algebra cone of all positive operators on E . However,
if T in the general case satisfies the Riesz property, then, whether or not the condition

N (T ) = span (C ∩ N (T )) is assumed, we only obtain W+
T = WT (see [10, p. 14]

and [41, Corollary 3.8]), while the condition N (T ) = span (C ∩ N (T )) implies that
W+

T = WT [10, Theorem 3.3.5]. It is the particular properties of a finite rank operator,
and not just the fact that F(E) is an inessential ideal, that makes it possible to say
more in the operator case.

We have the following relationship between the connected hulls of the Weyl and
upper Weyl spectra:

Theorem 4.7.1 ([10], Theorem 4.3.4) Let A be an OBA with algebra cone C, B a
Banach algebra and T : A → B a homomorphism with closed range satisfying the
Riesz property. If a ∈ A is such that

p(a, λ) ∈ span(C ∩ N (T )) for all λ ∈ (iso σ(a))\σ(Ta), (4.1)

then ηωT (a) = ηω+
T (a).

It follows from [41, Theorem2.4] (see also [10, Lemma2.0.6]) that p(a, λ) ∈ N (T )

for all λ ∈ (iso σ(a))\σ(Ta). Condition (4.1) in Theorem 4.7.1, although stronger, is
a fairly natural condition; it is, for instance, satisfied by all elements of L(E) as well
as by all elements of Lr (E) [10, Lemma 4.3.3]. (Of course, in those cases the Weyl
and upper Weyl spectra themselves are equal.)
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It is clear from Theorem 2.11 that, in general,

r(a) /∈ σ(Ta) ⇒ r(a) /∈ βT (a) ⇒ r(a) /∈ ωT (a)

for all a ∈ A. Together with Theorem 4.7.1 we have that, if a ∈ A satisfies (4.1), then

ησ(Ta) = ηωT (a) = ηω+
T (a) = ηβT (a), (4.2)

and therefore the implication

r(a) /∈ σ(Ta) ⇒ r(a) /∈ ω+
T (a)

holds. However, [10, Example 4.3.1] shows that ηβ+
T (a) cannot be added to the list in

(4.2). This motivates the study of the implication

r(a) /∈ σ(Ta) ⇒ r(a) /∈ β+
T (a). (4.3)

In view of Theorem 4.1.1 it seems reasonable to restrict the discussion to positive
elements, so in [11] a positive element a of an OBA is defined to have the upper
Browder spectrum property if a satisfies (4.3).

In view of Theorem 2.11, Proposition 4.6.1 and Alekhno’s Theorem 4.6.4 we have
the following result (with a−1 the coefficient of (λ−r(a))−1 in the Laurent expansion
of the resolvent of a around r(a)):

Theorem 4.7.2 ([11], Corollary 5.22) Let A be a Dedekind complete semisimple OBA
with a disjunctive product and with closed and normal algebra cone C. Also suppose
that B is a Banach algebra and T : A → B is a homomorphism with closed range sat-
isfying the Riesz property such that the spectral radius in A/N (T ) is weaklymonotone.
Let a ∈ C be a spectrally order continuous element such that r(a) /∈ σ(Ta) and |a−1|
exists. Then r(a) /∈ σ(a + λ|a−1|), for all 0 �= λ ∈ C.

However, unlike in the operator case (where the modulus of a finite rank operator
automatically exists and is compact), in general |a−1| does not necessarily exist, and
even if |a−1| exists, the fact that a−1 = p(a, r(a)) ∈ N (T ) does not imply that |a−1| ∈
N (T ), so that Theorem 4.7.2 does not propose that r(a) /∈ ω+

T (a) (and, therefore,
neither that r(a) /∈ β+

T (a)). Therefore it would be interesting to obtain additional
results where the existence of a modulus is not required. Building on Alekhno’s work,
the following partial result can be established, where we note that a Frobenius normal
form {1 = pn, pn−1, . . . , p1, p0 = 0} of a exists by Theorems 2.11 and 4.6.2 and
Proposition 4.6.1:

Theorem 4.7.3 ([11], Theorem 5.24) Let A be a Dedekind complete semisimple OBA
with a disjunctive product and with closed and normal algebra cone C. Also sup-
pose that B is a Banach algebra and T : A → B is a homomorphism with closed
range satisfying the Riesz property such that the spectral radius in A/N (T ) is weakly
monotone. Let a ∈ C be a spectrally order continuous element. If r(a) /∈ σ(Ta), then
r(a) /∈ ∪n

i=1β
+
T (aqi ), where qi = pi pdi−1.
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The above result can be applied to the regular operators—see [11, Corollaries 5.25–
5.27].

A finite-dimensional semisimple OBA is algebraically isomorphic to an OBA A
with the property that all positive elements in A have the upper Browder spectrum
property relative to arbitrary Banach algebra homomorphisms T : A → B—see [11,
Corollary 5.13]. In addition, we have the following result:

Theorem 4.7.4 ([11], Corollaries 5.4 and 5.3) Let A be a semisimple OBAwith closed
and normal algebra cone C, B a Banach algebra and T : A → B a homomorphism
with closed range satisfying the Riesz property. If a ∈ C, then under each of the
following conditions a has the upper Browder spectrum property:

1. A is commutative.
2. C is inverse-closed.

The research on Fredholm theory in OBAs continues.
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