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1 Introduction

The fractional order differential equations has been received much attention due to its
various applications in science and engineering such as fluid dynamics, heat conduc-
tion, control theory, electroanalytical chemistry, economics, fractal theory, fractional
biological neurons, etc. It is proved that the fractional order differential equation
is a better tool for the description of hereditary properties of various materials and
processes than the corresponding integer order differential equation. For a systematic
development of the topic, we refer the books [1–7]. A variety of results on initial and
boundary value problems of fractional differential equations and inclusions can easily
be found in the literature on the topic. For some recent results, we can refer to [8–18]
and references cited therein.

Recently in [19] the authors studied the existence of positive solutions to the bound-
ary value problems of fractional differential equations of the form

Dqu(t) + f (t, u(t)) = 0, 1 < q ≤ 2, 0 < t < 1, (1.1)

subject to three point multi-term fractional integral boundary conditions

u(0) = 0, u(1) =
m∑

i=1

αi (I pi u)(η), 0 < η < 1, (1.2)

where Dq is the standard Riemann–Liouville fractional derivative of order q, I pi is
the Riemann–Liouville fractional integral of order pi > 0, i = 1, 2, . . . , m, f ∈
C([0, 1] × R) and αi ≥ 0, i = 1, 2, . . . , m, are real constants. The existence and
multiplicity of positive solutions were obtained by using fixed point theorems. For
some recent results on positive solutions of fractional differential equations we refer
to [20–25] and references cited therein.

The main purpose in this paper is to investigate some sufficient conditions for exis-
tence of positive solutions to the following fractional system of differential equations
subject to the nonlocal Riemann–Liouville fractional integral boundary conditions of
the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D px(t) + f (t, x(t), y(t)) = 0, 1 < p ≤ 2, t ∈ (0, 1),
Dq y(t) + g(t, x(t), y(t)) = 0, 1 < q ≤ 2, t ∈ (0, 1),

x(0) = 0, x(1) =
m∑

i=1
αi I γi y(η),

y(0) = 0, y(1) =
n∑

j=1
β j I μ j x(ξ),

(1.3)

where Dφ are Riemann–Liouville fractional derivatives of orders φ ∈ {p, q}, f, g ∈
C([0, 1] × R

2+,R+), I � are Riemann–Liouville fractional integrals of order � ∈
{γi , μ j }, αi , β j > 0, i = 1, . . . , m, j = 1, . . . , n and the fixed constants 0 < η <

ξ < 1.
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Many researchers have shown their interest in the study of systems of fractional
differential equations. The motivation for those works stems from both the intensive
development of the theory of fractional calculus itself and the applications. See for
example [26–30] where systems for fractional differential equations were studied by
using Banach contraction mapping principle and Schaefer’s fixed point theorem.

In this paper, we firstly derive the corresponding Green’s function and some of its
properties are proved. Consequently problem (1.3) is deduced to a equivalent Fred-
holm integral equation of the second kind. Finally, by the means of some fixed-point
theorems, the existence and multiplicity of positive solutions are obtained. Illustrative
examples are also presented.

2 Preliminaries

In this section, we introduce some notations and definitions of Riemann–Liouville
fractional calculus (see [4]) and present preliminary results needed in our proofs later.

Definition 2.1 The (left-sided) fractional integral of order α > 0 of a function
f : (0,∞) → R is given by

(I α f )(t) = 1

	(α)

∫ t

0
(t − s)α−1 f (s)ds, t > 0, (2.1)

provided the right-hand side is pointwise defined on (0,∞), where 	(α) is the Euler
gamma function defined by 	(α) = ∫ ∞

0 tα−1e−t dt.

Definition 2.2 The Riemann–Liouville fractional derivative of order α ≥ 0 for a
function f : (0,∞) → R is given by

(Dα f )(t) =
(

d

dt

)n

(I n−α f )(t)= 1

	(n − α)

(
d

dt

)n ∫ t

0

f (s)

(t − s)α−n+1 ds, t > 0,

(2.2)

n − 1 < α < n, provided that the right-hand side is pointwise defined on (0,∞).
We also denote the Riemann–Liouville fractional derivative of f by Dα f (t). If α =
m ∈ N then Dm f (t) = f (m)(t) for t > 0, and if α = 0 then D0 f (t) = f (t) for
t > 0.

Lemma 2.1 Let α > 0 and u ∈ C(0, 1) ∩ L1(0, 1). Then the fractional differential
equation Dαu(t) = 0 has a unique solution

u(t) = c1tα−1 + c2tα−2 + · · · + cntα−n, 0 < t < 1, (2.3)

where c1, c2, . . . , cn are arbitrary real constants, and n − 1 < α < n.
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Lemma 2.2 Let α > 0, n − 1 < α ≤ n and y ∈ AC(0, 1). (By AC we denote the
space of absolutely continuous functions). The solution of the fractional differential
equation Dαu(t) + y(t) = 0, 0 < t < 1, is

u(t) = − 1

	(α)

∫ t

0
(t − s)α−1y(s)ds + c1tα−1 + · · · + cntα−n, 0 < t < 1,

(2.4)

where c1, c2, . . . , cn are arbitrary real constants.

Lemma 2.3 Assume that u, v ∈ AC([0, 1],R+). Then the following system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D px(t) + u(t) = 0, t ∈ (0, 1),
Dq y(t) + v(t) = 0, t ∈ (0, 1),

x(0) = 0, x(1) =
n∑

i=1
αi I γi y(η),

y(0) = 0, y(1) =
m∑

j=1
β j I μ j x(ξ),

(2.5)

can be written in the equivalent integral equations of the form

x(t) = − 1

	(p)

∫ t

0
(t − s)p−1u(s)ds + t p−1

[
1


	(p)

∫ 1

0
(1 − s)p−1u(s)ds

− 1




m∑

i=1

αi

	(q + γi )

∫ η

0
(η − s)q+γi −1v(s)ds + �1


	(q)

∫ 1

0
(1 − s)q−1v(s)ds

−�1




n∑

j=1

β j

	(p + μ j )

∫ ξ

0
(ξ − s)p+μ j −1u(s)ds

]
, (2.6)

and

y(t) = − 1

	(q)

∫ t

0
(t − s)q−1v(s)ds + t p−1

[
1


	(q)

∫ 1

0
(1 − s)q−1v(s)ds

− 1




n∑

j=1

β j

	(p + μ j )

∫ ξ

0
(ξ − s)p+μ j −1u(s)ds+ �2


	(p)

∫ 1

0
(1−s)p−1u(s)ds

−�2




m∑

i=1

αi

	(q + γi )

∫ η

0
(η − s)q+γi −1v(s)ds

]
, (2.7)

where

 := 1 − �1�2 > 0,

with

�1 :=
m∑

i=1

αiη
q+γi −1	(q)

	(q + γi )
, �2 :=

n∑

j=1

β jξ
p+μ j −1	(p)

	(p + μ j )
.
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Proof Applying Lemma 2.2, the first two equations of problem (2.5) can be expressed
as

x(t) = − 1

	(p)

∫ t

0
(t − s)p−1u(s)ds + c1t p−1 + c2t p−2,

y(t) = − 1

	(q)

∫ t

0
(t − s)q−1v(s)ds + k1tq−1 + k2tq−2,

where c1, c2, k1, k2 ∈ R.
From the initial conditions of (2.5) that x(0) = 0, y(0) = 0, we have c2 = k2 = 0.

Therefore, we get the following equations

x(t) = − 1

	(p)

∫ t

0
(t − s)p−1u(s)ds + c1t p−1, (2.8)

and

y(t) = − 1

	(q)

∫ t

0
(t − s)q−1v(s)ds + k1tq−1. (2.9)

Taking the Riemann–Liouville fractional integral of orders μ j and γi to (2.8) and
(2.9), and also substitution t = ξ and t = η, respectively, we obtain

I μ j x(ξ) = − 1

	(p + μ j )

∫ ξ

0
(ξ − s)p+μ j −1u(s)ds + c1

ξ p+μ j −1	(p)

	(p + μ j )
,

and

I γi y(η) = − 1

	(q + γi )

∫ η

0
(η − s)q+γi −1v(s)ds + k1

ηq+γi −1	(q)

	(q + γi )
.

Using the second nonlocal boundary conditions of (2.5), we deduce the following
system

c1 − k1

m∑

i=1

αiη
q+γi −1	(q)

	(q + γi )
= 1

	(p)

∫ 1

0
(1 − s)p−1u(s)ds

−
m∑

i=1

αi

	(q + γi )

∫ η

0
(η − s)q+γi −1v(s)ds,

−c1

n∑

j=1

β jξ
p+μ j −1	(p)

	(p + μ j )
+ k1 = 1

	(q)

∫ 1

0
(1 − s)q−1v(s)ds

−
n∑

j=1

β j

	(p + μ j )

∫ ξ

0
(ξ − s)p+μ j −1u(s)ds.
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Solving the above system to find constants c1 and k1, we obtain

c1 = 1


	(p)

∫ 1

0
(1 − s)p−1u(s)ds − 1




m∑

i=1

αi

	(q + γi )

∫ η

0
(η − s)q+γi −1v(s)ds

+ �1


	(q)

∫ 1

0
(1 − s)q−1v(s)ds− �1




n∑

j=1

β j

	(p+μ j )

∫ ξ

0
(ξ − s)p+μ j −1u(s)ds,

and

k1 = 1


	(q)

∫ 1

0
(1 − s)q−1v(s)ds − 1




n∑

j=1

β j

	(p + μ j )

∫ ξ

0
(ξ − s)p+μ j −1u(s)ds

+ �2


	(p)

∫ 1

0
(1 − s)p−1u(s)ds − �2




m∑

i=1

αi

	(q+γi )

∫ η

0
(η − s)q+γi −1v(s)ds.

Substituting the values of c1 and k1 in (2.8) and (2.9), we deduce the integral equations
(2.6) and (2.7), respectively, as desired. The converse follows by direct computation.
This completes the proof. �	

Lemma 2.4 (Green’s function) The integral equations (2.6) and (2.7) in Lemma 2.3
can be expressed in the form of Green functions as

x(t) =
∫ 1

0
G1(t, s)u(s)ds, (2.10)

y(t) =
∫ 1

0
G2(t, s)v(s)ds, (2.11)

where G1, G2 are the Green’s functions given by

G1(t, s) = gp(t, s) + �1




n∑

j=1

β j t p−1

	(p + μ j )
g p
μ j

(ξ, s)

+ 1




m∑

i=1

αi t p−1

	(q + γi )
gq
γi

(η, s), (2.12)

G2(t, s) = gq(t, s) + �2




m∑

i=1

αi tq−1

	(q + γi )
gq
γi

(η, s)

+ 1




n∑

j=1

β j tq−1

	(p + μ j )
g p
μ j

(ξ, s), (2.13)
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where

gφ(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − s)φ−1tφ−1 − (t − s)φ−1

	(φ)
, 0 ≤ s ≤ t ≤ 1,

(1 − s)φ−1tφ−1

	(φ)
, 0 ≤ t ≤ s ≤ 1,

(2.14)

and

gφ
ψ(ρ, s) =

{
ρφ+ψ−1(1 − s)φ−1 − (ρ − s)φ+ψ−1, 0 ≤ s ≤ ρ ≤ 1,
ρφ+ψ−1(1 − s)φ−1, 0 ≤ ρ ≤ s ≤ 1,

(2.15)

with φ ∈ {p, q}, ψ ∈ {μ j , γi }, ρ ∈ {ξ, η}.

Proof From Lemma 2.3, by direct computation, we have

x(t) = − 1

	(p)

∫ t

0
(t − s)p−1u(s)ds + t p−1

[
1


	(p)

∫ 1

0
(1 − s)p−1u(s)ds

− 1




m∑

i=1

αi

	(q + γi )

∫ η

0
(η − s)q+γi −1v(s)ds + �1


	(q)

∫ 1

0
(1 − s)q−1v(s)ds

−�1




n∑

j=1

β j

	(p + μ j )

∫ ξ

0
(ξ − s)p+μ j −1u(s)ds

]

=
∫ 1

0

(1 − s)p−1t p−1

	(p)
u(s)ds − 1

	(p)

∫ t

0
(t − s)p−1u(s)ds

− (1 − �1�2)


	(p)

∫ 1

0
(1 − s)p−1t p−1u(s)ds + 1


	(p)

∫ 1

0
(1 − s)p−1t p−1u(s)ds

− t p−1




m∑

i=1

αi

	(q + γi )

∫ η

0
(η − s)q+γi −1v(s)ds

+ t p−1�1


	(q)

∫ 1

0
(1−s)q−1v(s)ds− t p−1�1




n∑

j=1

β j

	(p + μ j )

∫ ξ

0
(ξ − s)p+μ j −1u(s)ds

=
∫ 1

0
gp(t, s)u(s)ds + �1




n∑

j=1

β j t p−1

	(p + μ j )

∫ 1

0
ξ p+μ j −1(1 − s)p−1u(s)ds

−�1




n∑

j=1

β j t p−1

	(p + μ j )

∫ ξ

0
(ξ − s)p+μ j −1u(s)ds

− t p−1




m∑

i=1

αi

	(q + γi )

∫ η

0
(η − s)q+γi −1v(s)ds + t p−1�1


	(q)

∫ 1

0
(1 − s)q−1v(s)ds

=
∫ 1

0
gp(t, s)u(s)ds + �1




n∑

j=1

β j t p−1

	(p + μ j )

∫ 1

0
g p
μ j (ξ, s)u(s)ds
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+ 1




m∑

i=1

αi t p−1

	(q + γi )

∫ 1

0
gq
γi (η, s)v(s)ds

=
∫ 1

0
G1(t, s)u(s)ds,

which implies that (2.10) holds. In a similar way, we obtain

y(t) = − 1

	(q)

∫ t

0
(t − s)q−1v(s)ds + tq−1


	(q)

∫ 1

0
(1 − s)q−1v(s)ds

− tq−1




n∑

j=1

β j

	(p + μ j )

∫ ξ

0
(ξ − s)p+μ j −1u(s)ds

+ tq−1�2


	(p)

∫ 1

0
(1 − s)p−1u(s)ds

− tq−1�2




m∑

i=1

αi

	(q + γi )

∫ η

0
(η − s)q+γi −1v(s)ds

+
∫ 1

0

(1 − s)q−1tq−1

	(q)
v(s)ds −

∫ 1

0

(1 − s)q−1tq−1

	(q)
v(s)ds

=
∫ 1

0

(1 − s)q−1tq−1

	(q)
v(s)ds − 1

	(q)

∫ t

0
(t − s)q−1v(s)ds

+�2




m∑

i=1

αi tq−1

	(q + γi )

∫ 1

0
(1 − s)q−1ηq+γi −1v(s)ds

−�2




m∑

i=1

αi tq−1

	(q + γi )

∫ η

0
(η − s)q+γi −1v(s)ds

+ 1




n∑

j=1

β j tq−1

	(p + μ j )

∫ 1

0
(1 − s)p−1ξ p+μ j −1u(s)ds

− 1




n∑

j=1

β j tq−1

	(p + μ j )

∫ ξ

0
(ξ − s)p+μ j −1u(s)ds

=
∫ 1

0
gq(t, s)v(s)ds + �2




m∑

i=1

αi tq−1

	(q + γi )

∫ 1

0
gq
γi

(η, s)v(s)ds

+ 1




n∑

j=1

β j tq−1

	(p + μ j )

∫ 1

0
g p
μ j

(ξ, s)u(s)ds

=
∫ 1

0
G2(t, s)v(s)ds,

which proves that (2.11) is true. This completes the proof. �	
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Before establishing some properties of the Green’s functions, we set the following
constants

�3 = 	(p)

	(2p)
+ �1




n∑

j=1

(
μ j + p(1 − ξ)

p	(p + μ j + 1)

)
β jξ

p+μ j −1

+ 1




m∑

i=1

(
γi + q(1 − η)

q	(q + γi + 1)

)
αiη

q+γi −1,

�4 = 	(q)

	(2q)
+ �2




m∑

i=1

(
γi + q(1 − η)

q	(q + γi + 1)

)
αiη

q+γi −1

+ 1




n∑

j=1

(
μ j + p(1 − ξ)

p	(p + μ j + 1)

)
β jξ

p+μ j −1,

�5 = �1




n∑

j=1

β jξ
2p+μ j −2(1 − ξ)p

p	(p + μ j )
+ 1




m∑

i=1

αiη
p+q+γi −2(1 − η)q

q	(q + γi )
,

�6 = �2




m∑

i=1

αiη
2q+γi −2(1 − η)q

q	(q + γi )
+ 1




n∑

j=1

β jξ
p+q+μ j −2(1 − ξ)p

p	(p + μ j )
.

Lemma 2.5 The Green’s functions G1(t, s) and G2(t, s) in (2.12)–(2.13) satisfy the
following properties:

(P1) G1(t, s), G2(t, s) are continuous on [0, 1] × [0, 1];
(P2) G1(t, s), G2(t, s) ≥ 0 for all 0 ≤ s, t ≤ 1;

(P3) G1(t, s) ≤ sup0≤t≤1 G(t, s) ≤ gp(s, s) + �1




∑n

j=1

β j g
p
μ j (ξ, s)

	(p + μi )
+

1




∑m

i=1

αi g
q
γi (η, s)

	(q + γi )
, G2(t, s) ≤ sup0≤t≤1 G(t, s) ≤ gq(s, s) + �2




∑m

i=1

αi g
q
γi (η, s)

	(q + γi )
+ 1




∑n

j=1

β j g
p
μ j (ξ, s)

	(p + μ j )
;

(P4)

∫ 1

0
sup0≤t≤1 G1(t, s)ds ≤ �3 and

∫ 1

0
sup0≤t≤1 G2(t, s)ds ≤ �4;

(P5) infξ≤t≤1 G1(t, s) ≥ �1




∑n

j=1

β jξ
p−1

	(p + μ j )
g p
μ j

(ξ, s)+ 1




∑m

i=1

αiη
p−1

	(q + γi )

gq
γi

(η, s), infξ≤t≤1 G2(t, s) ≥ �2




∑m

i=1

αiη
q−1

	(q + γi )
gq
γi

(η, s) + 1




∑n

j=1

β jξ
q−1

	(p + μ j )
g p
μ j

(ξ, s);

(P6)

∫ 1

η

infξ≤t≤1 G1(t, s)ds ≥ �5 and
∫ 1

η

infξ≤t≤1 G2(t, s)ds ≥ �6.

Proof It is easy to prove that the condition (P1) holds. For 0 ≤ s, t ≤ 1, using the
results in [19], we have gφ(t, s) ≥ 0, gφ

ψ(ρ, s) ≥ 0, where φ ∈ {p, q}, ρ ∈ {η, ξ} and
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ψ ∈ {μ j , γi }, i = 1, 2, . . . , m, j = 1, 2, . . . , n, which leads toG1(t, s), G2(t, s) ≥ 0.
Therefore, the property (P2) is true.

From [19], we have gφ(t, s) ≤ gφ(s, s) for φ ∈ {p, q}, (t, s) ∈ [0, 1], which yields

G1(t, s) ≤ sup
0≤t≤1

G1(t, s) ≤ gp(s, s) + �1




n∑

j=1

β j g
p
μ j (ξ, s)

	(p + μi )

+ 1




m∑

i=1

αi g
q
γi (η, s)

	(q + γi )
, s ∈ [0, 1], (2.16)

and also

G2(t, s) ≤ sup
0≤t≤1

G2(t, s) ≤ gq(s, s) + �2




m∑

i=1

αi g
q
γi (η, s)

	(q + γi )

+ 1




n∑

j=1

β j g
p
μ j (ξ, s)

	(p + μ j )
, s ∈ [0, 1]. (2.17)

Thus the condition (P3) is proved. Consequently, by direct integration, we get

∫ 1

0
sup

0≤t≤1
G1(t, s)ds ≤

∫ 1

0
gp(s, s)ds + �1




n∑

j=1

β j

	(p + μi )

∫ 1

0
g p
μ j

(ξ, s)ds

+ 1




m∑

i=1

αi

	(q + γi )

∫ 1

0
gq
γi

(η, s)ds = �3

and

∫ 1

0
sup

0≤t≤1
G2(t, s)ds ≤

∫ 1

0
gq(s, s)ds + �2




m∑

i=1

αi

	(q + γi )

∫ 1

0
gq
γi

(η, s)ds

+ 1




n∑

j=1

β j

	(p + μ j )

∫ 1

0
g p
μ j

(ξ, s)ds = �4.

Therefore, the condition (P4) holds.
From the positivity of the Green functions in (P2), we have

inf
ξ≤t≤1

G1(t, s) = inf
ξ≤t≤1

(
gp(t, s) + �1




n∑

j=1

β j t p−1

	(p + μ j )
g p
μ j

(ξ, s)

+ 1




m∑

i=1

αi t p−1

	(q + γi )
gq
γi

(η, s)

)
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≥ inf
ξ≤t≤1

gp(t, s) + inf
ξ≤t≤1

⎛

⎝�1




n∑

j=1

β j t p−1

	(p + μ j )
g p
μ j

(ξ, s)

⎞

⎠

+ inf
ξ≤t≤1

(
1




m∑

i=1

αi t p−1

	(q + γi )
gq
γi

(η, s)

)

≥ �1




n∑

j=1

β jξ
p−1

	(p + μ j )
g p
μ j

(ξ, s) + inf
η≤t≤1

(
1




m∑

i=1

αi t p−1

	(q + γi )
gq
γi

(η, s)

)

≥ �1




n∑

j=1

β jξ
p−1

	(p + μ j )
g p
μ j

(ξ, s) + 1




m∑

i=1

αiη
p−1

	(q + γi )
gq
γi

(η, s).

In the same method of the above inequalities, we obtain

inf
ξ≤t≤1

G2(t, s) ≥ �2




m∑

i=1

αiη
q−1

	(q + γi )
gq
γi

(η, s) + 1




n∑

j=1

β jξ
q−1

	(p + μ j )
g p
μ j

(ξ, s).

Therefore, the inequalities in (P5) are satisfied.
To prove (P6), by directly integration, we have

∫ 1

η

inf
ξ≤t≤1

G1(t, s)ds ≥ �1




n∑

j=1

β jξ
p−1

	(p + μ j )

∫ 1

η

g p
μ j

(ξ, s)ds

+ 1




m∑

i=1

αiη
p−1

	(q + γi )

∫ 1

η

gq
γi

(η, s)ds

≥ �1




n∑

j=1

β jξ
p−1

	(p + μ j )

∫ 1

ξ

g p
μ j

(ξ, s)ds

+ 1




m∑

i=1

αiη
p−1

	(q + γi )

∫ 1

η

gq
γi

(η, s)ds = �5

and

∫ 1

η

inf
ξ≤t≤1

G2(t, s)ds ≥ �2




m∑

i=1

αiη
q−1

	(q + γi )

∫ 1

η

gq
γi

(η, s)ds

+ 1




n∑

j=1

β jξ
q−1

	(p + μ j )

∫ 1

ξ

g p
μ j

(ξ, s)ds = �6.

Therefore, we get the required inequality in (P6).
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3 Main results

Let E = C([0, 1],R) × C([0, 1],R) be the Banach space with the norm ‖(x, y)‖ :=
‖x‖+‖y‖, where ‖x‖ = supt∈[0,1] |x(t)|, ‖y‖ = supt∈[0,1] |y(t)|. Then we define the
positive cone P ⊂ E by

P = {(x, y) ∈ E : x(t) ≥ 0 and y(t) ≥ 0, 0 ≤ t ≤ 1}.

Define an operator Q on E by

Q(x, y)(t) = (A(x, y)(t), B(x, y)(t)), for all t ∈ [0, 1], (3.1)

where the operators A : P → E and B : P → E are defined by

⎧
⎪⎪⎨

⎪⎪⎩

A(x, y)(t) :=
∫ 1

0
G1(t, s) f (s, x(s), y(s))ds,

B(x, y)(t) :=
∫ 1

0
G2(t, s)g(s, x(s), y(s))ds.

(3.2)

Lemma 3.1 The operator Q : P → P is completely continuous.

Proof Since G1(t, s) ≥ 0, G2(t, s) ≥ 0 for s, t ∈ [0, 1], we have A(x, y) ≥
0, B(x, y) ≥ 0 for all x, y ∈ P . Hence, A, B : P → P .

For a constant R > 0, we define U = {(x, y) ∈ P : ‖(x, y)‖ < R}. Let

L = max
0≤t≤1, 0≤x≤R, 0≤y≤R

| f (t, x, y)| .

Then for (x, y) ∈ U , from Lemma 2.5, one has

|A(x, y)(t)| =
∣∣∣∣
∫ 1

0
G1(t, s) f (s, x(s), y(s))ds

∣∣∣∣

≤ L
∫ 1

0
G1(t, s)ds

≤ L
∫ 1

0

⎛

⎝gp(s, s) + �1




n∑

j=1

β j g
p
μ j (ξ, s)

	(p + μi )
+ 1




m∑

i=1

αi g
q
γi (η, s)

	(q + γi )

⎞

⎠ ds

= L

[
	(p)

	(2p)
+ �1




n∑

j=1

(
μ j + p(1 − ξ)

p	(p + μ j + 1)

)
β jξ

p+μ j −1

+ 1




m∑

i=1

(
γi + q(1 − η)

q	(q + γi + 1)

)
αiη

q+γi −1
]

:= M1.

Therefore, ‖A(x, y)‖ ≤ M1. Similarly we can prove that ‖B(x, y)‖ ≤ M2, and
so Q(U ) is uniformly bounded. In addition, it follows from the continuity of f, g,
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the uniform continuity of G1(t, s), G2(t, s) on [0, 1] × [0, 1] that Q : E → E is
continuous.

Also as in Lemma 2.5 of [19] we can prove thatQ(U ) is equi-continuous. Applying
the Arzelá-Ascoli Theorem, we have that Q(U ) is compact, i.e., Q : P → P is a
completely continuous operator. This completes the proof. �	

3.1 Existence result via Leggett–Williams fixed point theorem

In this subsection, the existence of at least three positive solutions will be proved using
the Leggett–Williams fixed point theorem.

Definition 3.1 A continuous mapping ω : P → [0,∞) is said to be a nonnegative
continuous concave functional on the cone P of a real Banach space E provided that

ω(λx + (1 − λ)y) ≥ λω(x) + (1 − λ)ω(y)

for all x, y ∈ P and λ ∈ [0, 1].
Let a, b, d > 0 be given constants and define Pd = {(x, y) ∈ P : ‖(x, y)‖ < d},

Pd = {(x, y) ∈ P : ‖(x, y)‖ ≤ d} and P(ω, a, b) = {(x, y) ∈ P : ω((x, y)) ≥
a, ‖(x, y)‖ ≤ b}.
Theorem 3.1 (Leggett–Williams fixed point theorem) Let P be a cone in the real
Banach space E and c > 0 be a constant. Assume that there exists a concave
nonnegative continuous functional ω on P with ω(x) ≤ ‖x‖ for all x ∈ Pc. Let
Q : Pc → Pc be a completely continuous operator. Suppose that there exist constants
0 < a < b < d ≤ c such that the following conditions hold:

(i) {x ∈ P(ω, b, d) : ω(x) > b} �= ∅ and ω(Qx) > b for x ∈ P(ω, b, d);
(ii) ‖Qx‖ < a for x ≤ a;
(iii) ω(Qx) > b for x ∈ P(ω, b, c) with ‖Qx‖ > d.

Then Q has at least three fixed points x1, x2 and x3 in Pc. In addition, ‖x1‖ < a,
ω(x2) > b, ‖x3‖ > a with ω(x3) < b.

Theorem 3.2 Let functions f, g : [0, 1] × R
2+ → R+ be continuous functions. Sup-

pose that there exist constants 0 < a < b < c such that the following assumptions
hold:

(H1) f (t, x, y) <
a

2�3
and g(t, x, y) <

a

2�4
, for (t, x, y) ∈ [0, 1] × [0, a] ×

[0, a];
(H2) f (t, x, y) >

b

2�5
and g(t, x, y) >

b

2�6
, for (t, x, y) ∈ [η, 1] × [b, c] ×

[b, c];
(H3) f (t, x, y) ≤ c

2�3
and g(t, x, y) ≤ c

2�4
, for (t, x, y) ∈ [0, 1] × [0, c] ×

[0, c].
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Then, the problem (1.3) has at least three positive solutions (x1, y1), (x2, y2) and
(x3, y3) such that ‖(x1, y1)‖ < a, infξ≤t≤1(x2, y2)(t) > b and ‖(x3, y3)‖ > a with
infξ≤t≤1(x3, y3)(t) < b.

Proof Firstly, we will show that Q : Pc → Pc. For (x, y) ∈ Pc, it follows that
‖(x, y)‖ ≤ c. From the condition (H3) and Lemma 2.5, we have

‖Q(x, y)‖ = sup
t∈[0,1]

|A(x, y)(t)| + sup
t∈[0,1]

|B(x, y)(t)|

≤
∫ 1

0
sup

t∈[0,1]
G1(t, s) f (s, x(s), y(s))ds

+
∫ 1

0
sup

t∈[0,1]
G2(t, s)g(s, x(s), y(s))ds

≤ c

2�3

∫ 1

0
sup

t∈[0,1]
G1(t, s)ds + c

2�4

∫ 1

0
sup

t∈[0,1]
G2(t, s)ds = c.

This implies that Q : Pc → Pc.
Let (x, y) ∈ Pa . The condition (H1) implies that

‖Q(x, y)‖ ≤
∫ 1

0
sup

t∈[0,1]
G1(t, s) f (s, x(s), y(s))ds

+
∫ 1

0
sup

t∈[0,1]
G2(t, s)g(s, x(s), y(s))ds

<
a

2�3

∫ 1

0
sup

t∈[0,1]
G1(t, s)ds + a

2�4

∫ 1

0
sup

t∈[0,1]
G2(t, s)ds = a.

Hence, the condition (ii) of Theorem 3.1 is fulfilled.
Now, we let a concave nonnegative continuous functional ω on P by ω(x, y) =

inf t∈[ξ,1] |x(t)| + inf t∈[ξ,1] |y(t)|. Choosing (x, y)(t) = ((b + c)/2, (b + c)/2) for all
t ∈ [0, 1], we have that (x, y)(t) ∈ P(ω, b, c) and ω((x, y)) = ω((b + c)/2, (b +
c)/2)) > b. Then we obtain {(x, y) ∈ P(ω, b, c) : ω((x, y)) > b} �= ∅. Thus, if
(x, y) ∈ P(ω, b, c), then b ≤ x(t) ≤ c and b ≤ y(t) ≤ c for t ∈ [ξ, 1]. Using the
condition (H2) and Lemma 2.5, we have

ω(Q(x, y)(t)) = inf
ξ≤t≤1

|A(x, y)(t)| + inf
ξ≤t≤1

|B(x, y)(t)|

≥
∫ 1

η

inf
ξ≤t≤1

G1(t, s) f (s, x(s), y(s))ds

+
∫ 1

η

inf
ξ≤t≤1

G2(t, s)g(s, x(s), y(s))ds

>
b

2�5

∫ 1

η

inf
ξ≤t≤1

G1(t, s)ds + b

2�6

∫ 1

η

inf
ξ≤t≤1

G2(t, s)ds = b.
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Hence ω(Q(x, y)) > b for all (x, y) ∈ P(ω, b, c). This implies that the condition (i)
of Theorem 3.1 is fulfilled.

Finally, we suppose that (x, y) ∈ P(ω, b, c) with ‖Q(x, y)‖ > d, where b < d ≤
c. This implies that b ≤ x(t) ≤ c and b ≤ y(t) ≤ c for all t ∈ [ξ, 1]. By (H2) and
Lemma 2.5, we obtain

ω(Q(x, y)(t)) = inf
ξ≤t≤1

|A(x, y)(t)| + inf
ξ≤t≤1

|B(x, y)(t)|

>
b

2�5

∫ 1

η

inf
ξ≤t≤1

G1(t, s)ds + b

2�6

∫ 1

η

inf
ξ≤t≤1

G2(t, s)ds = b,

which leads to satisfy condition (iii) of Theorem 3.1. Therefore, by applying Theorem
3.1, we deduce that the problem (1.3) has at least three positive solutions (x1, y1),
(x2, y2) and (x3, y3) such that

‖(x1, y1)‖<a, infξ≤t≤1(x2, y2)(t)>b and

‖(x3, y3)‖>a with infξ≤t≤1(x3, y3)(t)<b.

This completes the proof. �	

3.2 Existence result via Guo–Krasnoselskii fixed point theorem

In this subsection, the existence theorems of at least one positive solution will be
established using the Guo–Krasnoselskii fixed point theorem.

Theorem 3.3 (Guo–Krasnoselskii fixed point theorem) Let E be a Banach space, and
let P ⊂ E be a cone. Assume that �1,�2 are bounded open subsets of E with 0 ∈ �1,
�1 ⊂ �2, and let Q : P ∩ (�2\�1) → P be a completely continuous operator such
that:

(i) ‖Qx‖ ≥ ‖x‖, x ∈ P ∩ ∂�1, and ‖Qx‖ ≤ ‖x‖, x ∈ P ∩ ∂�2; or
(ii) ‖Qx‖ ≤ ‖x‖, x ∈ P ∩ ∂�1, and ‖Qx‖ ≥ ‖x‖, x ∈ P ∩ ∂�2.

Then Q has a fixed point in P ∩ (�2\�1).

Theorem 3.4 Let f, g : [0, 1] × R
2+ → R+ be continuous functions. Suppose that

there exist constants λ2 > λ1 > 0, κ1 ∈ (�−1
5 ,∞), κ2 ∈ (�−1

6 ,∞), κ3 ∈ (0,�−1
3 )

and κ4 ∈ (0,�−1
4 ). In addition, assume the the following condition hold:

(H4) f (t, x, y) ≥ κ1λ1

2
for (t, x, y) ∈ [0, 1] × [0, λ1] × [0, λ1] and g(t, x, y) ≥

κ2λ1

2
for (t, x, y) ∈ [0, 1] × [0, λ1] × [0, λ1];

(H5) f (t, x, y) ≤ κ3λ2

2
for (t, x, y) ∈ [0, 1] × [0, λ2] × [0, λ2] and g(t, x, y) ≤

κ4λ2

2
for (t, x, y) ∈ [0, 1] × [0, λ2] × [0, λ2].
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Then the problem (1.3) has at least one positive solution (x, y) such that

λ1 < ‖(x, y)‖ < λ2.

Proof From Lemma 3.1, the operator Q : P → P is completely continuous. Let
�1 = {(x, y) ∈ E : ‖(x, y)‖ < λ1}. Hence, for any (x, y) ∈ P ∩ ∂�1, we get
0 ≤ x(t) ≤ λ1 and 0 ≤ y(t) ≤ λ1 for all t ∈ [0, 1]. Using the condition (H4) and
Lemma 2.5, one has

‖Q(x, y)‖ = sup
t∈[0,1]

∫ 1

0
G1(t, s) f (s, x(s), y(s))ds

+ sup
t∈[0,1]

∫ 1

0
G2(t, s)g(s, x(s), y(s))ds

≥
∫ 1

η

inf
ξ≤t≤1

G1(t, s) f (s, x(s), y(s))ds

+
∫ 1

η

inf
η≤t≤1

G2(t, s)g(s, x(s), y(s))ds

≥ κ1λ1

2

∫ 1

η

inf
ξ≤t≤1

G1(t, s)ds + κ2λ1

2

∫ 1

η

inf
η≤t≤1

G2(t, s)ds ≥ λ1,

which means that ‖Q(x, y)‖ ≥ ‖(x, y)‖ for (x, y) ∈ P ∩ ∂�1.
Define �2 = {(x, y) ∈ E : ‖(x, y)‖ < λ2}. Therefore, for any (x, y) ∈ P ∩ ∂�2,

we get 0 ≤ x(t) ≤ λ2 and 0 ≤ y(t) ≤ λ2 for all t ∈ [0, 1]. From assumption (H5),
we obtain

‖Q(x, y)‖ ≤
∫ 1

0
sup

t∈[0,1]
G1(t, s) f (s, x(s), y(s))ds

+
∫ 1

0
sup

t∈[0,1]
G2(t, s)g(s, x(s), y(s))ds

≤ κ3λ2

2

∫ 1

0
sup

t∈[0,1]
G1(t, s)ds + κ4λ2

2

∫ 1

0
sup

t∈[0,1]
G2(t, s)ds ≤ λ2,

which yields ‖Q(x, y)‖ ≤ ‖(x, y)‖ for (x, y) ∈ P ∩ ∂�2.
Therefore, the first part of Theorem 3.3 implies that the operatorQ has a fixed point

in P ∩ (�2\�1) which is a positive solution of problem (1.3). Hence, the problem
(1.3) has at least on positive solution (x, y) such that

λ1 < ‖(x, y)‖ < λ2.

The proof is complete. �	
Similarly to the previous theorem, we can prove the following result.
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Theorem 3.5 Let f, g : [0, 1] × R
2+ → R+ be continuous functions. Assume that

there exist constants λ2 > λ1 > 0, κ1 ∈ (�−1
5 ,∞), κ2 ∈ (�−1

6 ,∞), κ3 ∈ (0,�−1
3 )

and κ4 ∈ (0,�−1
4 ). In addition, assume the the following condition hold.

(H6) f (t, x, y) ≤ κ3λ1

2
for (t, x, y) ∈ [0, 1] × [0, λ1] × [0, λ1] and

g(t, x, y) ≤ κ4λ1

2
for (t, x, y) ∈ [0, 1] × [0, λ1] × [0, λ1];

(H7) f (t, x, y) ≥ κ1λ2

2
for (t, x, y) ∈ [0, 1] × [0, λ2] × [0, λ2] and

g(t, x, y) ≥ κ2λ2

2
for (t, x, y) ∈ [0, 1] × [0, λ2] × [0, λ2].

Then the problem (1.3) has at least one positive solution (x, y) such that

λ1 < ‖(x, y)‖ < λ2.

4 Examples

In this section, we present two examples to illustrate our results.

Example 4.1 Consider following fractional system of differential equations subject to
the nonlocal fractional integral boundary conditions of the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
3
2 x(t) + f (t, x(t), y(t)) = 0, t ∈ (0, 1),

D
5
3 y(t) + g(t, x(t), y(t)) = 0, t ∈ (0, 1),

x(0) = 0, x(1) = 2

3
I
1
2 y

(
1

4

)
+

√
3

5
I
3
2 y

(
1

4

)
+ π

12
I
5
2 y

(
1

4

)
,

y(0) = 0, y(1)=
√
2

5
I
1
3 x

(
4

7

)
+ 1√

7
I
2
3 x

(
4

7

)
+ 2√

e
I
4
3 x

(
4

7

)
+ 8

13
I
5
3 x

(
4

7

)
,

(4.1)
where

f (t, x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x

(
2

3
− x

)
+ 1

2
y

(
2

3
− y

)
+ 1

5
(t + 1); 0 ≤ t ≤ 1; 0 ≤ x, y ≤ 2/3,

1

5
(t + 1)| cos(xπ)| + 1

5
(t + 1)| cos(yπ)|

+ 45

(
x − 2

3

)(
y − 2

3

)
; 0 ≤ t ≤ 1; 2/3 ≤ x, y ≤ 4/3,

1

5
(t + 101) + sin2

((
x − 4

3

)(
y − 4

3

))
; 0 ≤ t ≤ 1; 4/3 ≤ x, y < ∞,
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and

g(t, x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xy

(
2

3
− x

)(
2

3
− y

)
+ 1

8
(t + 2); 0 ≤ t ≤ 1; 0 ≤ x, y ≤ 2/3,

1

8
√
3
(t + 2)| sin(xπ)| + 1

8
√
3
(t + 2)| sin(yπ)|

+ 27

(
x − 2

3

) (
y − 2

3

)
; 0 ≤ t ≤ 1; 2/3 ≤ x, y ≤ 4/3,

1

8
(t + 98) + sin4

((
x − 4

3

) (
y − 4

3

))
; 0 ≤ t ≤ 1; 4/3 ≤ x, y < ∞.

Here p = 3/2,q = 5/3,m = 3,η = 1/4,α1 = 2/3,γ1 = 1/2,α2 = √
3/5,γ2 = 3/2,

α3 = π/12, γ3 = 5/2, n = 4, ξ = 4/7, β1 = √
2/5, μ1 = 1/3, β2 = 1/

√
7, μ2 =

2/3, β3 = 2/
√

e, μ3 = 4/3, β4 = 8/13, μ4 = 5/3. We find that �1 = 0.1173432604
and �2 = 0.6208838470 which leads to 
 = 0.9271434651 > 0. In addition, we can
compute that �3 = 0.5487565277, �4 = 0.6859288172, �5 = 0.03857691941 and
�6 = 0.1101600049.

Choosing a = 2/3, b = 4/3, c = 24, we get

f (t, x, y) ≤ 0.5666666667 and g(t, x, y) ≤ 0.4120370370,

which yields for 0 ≤ t ≤ 1 and 0 ≤ x, y ≤ 2/3,

f (t, x, y) < 0.6074339286 = a

2�3
and g(t, x, y) < 0.4859590749 = a

2�4
.

In addition, we obtain

f (t, x, y) ≥ 20.25000000 and g(t, x, y) ≥ 12.28125000,

which leads to

f (t, x, y) > 17.28149051 = b

2�5
and g(t, x, y) > 6.051803167 = b

2�6
,

for 1/4 ≤ t ≤ 1 and 4/3 ≤ x, y ≤ 24. Also we have

f (t, x, y) ≤ 21.40000000 and g(t, x, y) ≤ 13.37500000,

which gives

f (t, x, y) < 21.86762143 = c

2�3
and g(t, x, y) < 17.49452670 = c

2�4
,

for 0 ≤ t ≤ 1 and 0 ≤ x, y ≤ 24.
Therefore, the conditions (H1–H3) of Theorem3.2 hold.ApplyingTheorem3.2,we

deduce that the problem (4.1) has at least three positive solutions (x1, y1), (x2, y2) and
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(x3, y3) such that ‖(x1, y1)‖ < 2/3, inf 4
7≤t≤1(x2, y2)(t) > 4/3 and ‖(x3, y3)‖ > 2/3

with inf 4
7≤t≤1(x3, y3)(t) < 4/3.

Example 4.2 Consider following fractional system of differential equations subject to
the nonlocal fractional integral boundary conditions of the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
7
4 x(t) + f (t, x(t), y(t)) = 0, t ∈ (0, 1),

D
9
5 y(t) + g(t, x(t), y(t)) = 0, t ∈ (0, 1),

x(0) = 0, x(1) =
√

π

13
I
1
4 y

(
3

4

)
+ 7

12
I
1
2 y

(
3

4

)
+

√
2

15
I
3
4 y

(
3

4

)

+ 4√
11

I
5
4 y

(
3

4

)
,

y(0) = 0, y(1) = 3

16
I
1
5 x

(
16

19

)
+ 2√

5
I
2
5 x

(
16

19

)
+ 1

3e2
I
3
5 x

(
16

19

)

+ 3

8π
I
4
5 x

(
16

19

)
+ 4

13
√
7

I
6
5 x

(
16

19

)
,

(4.2)

where

f (t, x, y) =
{

x (2 − x) + y (2 − y) + 8(1 + t); 0 ≤ t ≤ 1; 0 ≤ x, y ≤ 2,
8(1 + t)e2−x + sin2(πy); 0 ≤ t ≤ 1; 2 ≤ x, y < ∞,

and

g(t, x, y)=
{

xy(2 − x)2e−y +7(
√

t+1)+| sin(πy)|; 0 ≤ t ≤ 1; 0 ≤ x, y ≤ 2,
7(

√
t+1) cos2(2−x)+4 sin2(πx) cos4(πy); 0 ≤ t ≤1; 2 ≤ x, y < ∞.

Here p = 7/4, q = 9/5, m = 4, η = 3/4, α1 = √
π/13, γ1 = 1/4, α2 = 7/12,

γ2 = 1/2, α3 = √
2/15, γ3 = 3/4, α4 = 4/

√
11, γ4 = 5/4, n = 5, ξ = 16/19,

β1 = 3/16, μ1 = 1/5, β2 = 2/
√
5, μ2 = 2/5, β3 = 1/3e2, μ3 = 3/5, β4 =

3/8π , μ4 = 4/5, β5 = 4/13
√
7, μ5 = 6/5. We find that �1 = 0.7502528482

and �2 = 0.9064443536 which yields 
 = 0.3199375420 > 0. Further, we can
compute that �3 = 0.8012222566, �4 = 0.9066096747, �5 = 0.1389153084 and
�6 = 0.1437856901.

Choosing λ1 = 2, λ2 = 40, κ1 = 8 ∈ (�−1
5 ,∞) = (7.198630673,∞), κ2 =

7 ∈ (�−1
6 ,∞) = (6.954795010,∞), κ3 = 1 ∈ (0,�−1

3 ) = (0, 1.248093137) and
κ4 = 1 ∈ (0,�−1

4 ) = (0, 1.103010510), we have

f (t, x, y) ≥ 8 ≥ κ1λ1

2
and g(t, x, y) ≥ 7 ≥ κ2λ1

2
,

for 0 ≤ t ≤ 1, 0 ≤ x, y ≤ 2. Also we have

f (t, x, y) ≤ 17 ≤ κ3λ2

2
and g(t, x, y) ≤ 18 ≤ κ4λ2

2
,
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for 0 ≤ t ≤ 1, 2 ≤ x, y < ∞.
Thus the conditions (H4–H5) hold. By Theorem 3.4, we conclude that the problem

(4.2) has at least one positive solution (x, y) such that 2 < ‖(x, y)‖ < 40.
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