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Abstract We consider the fractional boundary problem

− [Dν
0+ y

]
(t) = λ f

(
t, y(t)

)
, 0 < t < 1

y(i)(0) = 0, 0 ≤ i ≤ n − 2
[
Dα
0+ y

]
(1) = H

(
ϕ(y)

)
,

where n ∈ N4, n − 1 < ν ≤ n, α ∈ [1, n − 2], and λ > 0 is a parameter. Here
the element ϕ is a linear functional that represents a nonlocal boundary condition.
We show that by introducing a new order cone, we can ensure that this functional is
coercive, which is of importance in proving existence results for the above boundary
value problem under minimal assumptions on the functions f and H . We also develop
a new open set attendant to the cone. By means of examples we investigate both
the usefulness of the new set as well as the strength of the coercivity condition and
its dependence on the order, ν, of the fractional derivative. Finally, the methods we
develop are applicable to a range of fractional-order boundary value problems.
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1 Introduction

In this paper we consider the nonlocal boundary value problem

− [
Dν
0+ y

]
(t) = λ f

(
t, y(t)

)
, 0 < t < 1

y(i)(0) = 0, 0 ≤ i ≤ n − 2
[
Dα
0+ y

]
(1) = H

(
ϕ(y)

)
, (1.1)

where ν ∈ (n − 1, n] for n ∈ N4 := {4, 5, 6, . . .}, α ∈ [1, n − 2], and λ > 0 is a
parameter; here we utilize the Riemann–Liouville derivative. In addition, the maps
H : [0,+∞) → [0,+∞) and f : [0, 1] × [0,+∞) → [0,+∞) are continuous.
The nonlocal element ϕ : C([0, 1]) → R is a linear functional, which is realizable
as a Stieltjes integral with signed measure, namely

ϕ(y) =
∫ 1

0
y(t) dα(t), (1.2)

where α ∈ BV ([0, 1]; R) is not necessarily monotone increasing—i.e., it may occur
that ϕ(y) < 0 even though y is nonnegative. As the example will demonstrate in
Sect. 3, although it may occur that H is nonlinear, it need not necessarily be so.

The primary contribution of this paper is to introduce a neworder cone and attendant
open set with which to study fractional differential equation (1.1). In particular, we
utilize the cone

K :=
{

y ∈ C([0, 1]) : y ≥ 0, ϕ(y) ≥
(
inf

s∈S0

1

G(s)

∫ 1

0
G(t, s) dα(t)

)
‖y‖

}
, (1.3)

where α is as in (1.2) above, G is the Green’s function, see (2.1), associated to problem
(1.1), and G(s) := maxt∈[0,1] G(t, s). The set S0 in (1.3) is a set of full measure on
which the infimum is positive. The precise assumption leading to this set is given in
Sect. 2. The motivation behind including the coercivity condition in (1.3) is so that
we can weaken the growth conditions imposed on both H and f . In particular, we
can use asymptotic or even, as we shall see, pointwise conditions on H that, without
some sort of coercivity and thus lower control over ϕ, might not be possible to achieve
easily.

As previously intimated, in addition to the use of a new cone in fractional nonlocal
boundary value problems, we alsomake use of the coercivity generated byK by taking
advantage of a new open set in the study of such problems. In particular, we define
here the open set V̂ρ by

V̂ρ := {y ∈ K : ϕ(y) < ρ} . (1.4)

As shall be seen in both Sects. 2 and 3, the use of this open set is only viable since
we have that ϕ is a coercive functional by means of K. In any case, as shall be shown
in Sect. 3, the use of the set V̂ρ as defined in (1.4) can produce better existence
results. In particular, we can treat cases where H is piecewise linear and no particular
growth conditions are imposed on f . Alternatively, we can treat cases where H has
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only pointwise conditions imposed, which is one interesting and somewhat unusual
consequence of our approach. And in each case these conditions are accommodated
with λ > 0 essentially unrestricted.

It should be mentioned at this juncture that the methods we introduce here, namely
the use of the new cone K and the set V̂ρ , are applicable to a range of fractional-order
boundary value problems. We prefer the specificity and concreteness of (1.1), as it
provides an application of the abstract results. But the techniques developed herein
should be able to be extended to a variety of settings such as semipositone fractional
BVPs, singular fractional BVPs, and fractional-order differential equations equipped
with boundary conditions other than those utilized in (1.1).

We conclude the introduction by mentioning some of the relevant literature on
both fractional-order and nonlocal boundary value problems and its connection to
this present work. Problem (1.1) was studied in both the local and nonlocal bound-
ary condition settings by the author [9,10]. Many other authors have studied either
extensions of (1.1) or similar problems—see, for example, [7,29,39,50,59]. More
generally, there has been substantial research interest in fractional-order differential
equations over the past 10 to 15 years, and there are numerous papers within the
area. For a representative but certainly not exhaustive sampling, one may consult
[1,2,4,8,20,30,41] and the references therein. At the same time, the study of non-
local boundary value problems has seen intense research recently, and these studies
have spanned such topics as nonlinear boundary conditions, linear boundary condi-
tions, semipositone problems, and the construction of various cones to allow for more
general linear boundary conditions—see, for example, the contributions by Anderson
[3], Cabada, et al. [6], Goodrich [11–15], Graef and Webb [19], Infante [22], Infante
and Pietramala [23,25], Infante, Pietramala, and Minhós [24], Infanate, Pietramala,
and Tenuta [26], Jankowski [28], Karakostas and Tsamatos [31,32], Karakostas [33],
Webb and Infante [47], and Yang [53–56]. More generally, the study of various per-
turbed Hammerstein integral equations, which, as in our work, are typically utilized
in the study of boundary value problems, have also been studied by many authors
such as Goodrich [17], Lan and Lin [36], Liu and Wu [38], Webb [46], Xu and Yang
[51], Yang [57], and Zhao [60]. The articles by Picone [42] and Whyburn [49], while
classical, are of interest for their historical value.

It should also be mentioned in particular that the cone we introduce here is inspired
by the not dissimilar cones utilized first by Graef et al. [18] and then subsequently
by Webb [45] and Ma and Zhong [40]. In addition, the type of open set we introduce
here (i.e., one in which a functional is utilized as part of the defining condition) is
similar to constructions found in some other works—see, for example, Infante and
Maciejewski [27]. However, we have not seen before the particular cone and open set
we introduce here, nor used in the specific ways in which we utilize them here.

All in all, then, in thisworkwe join several of these strands of research bydeveloping
a new cone and open set in order to study a nonlocal boundary value problem in the
context of fractional differential equations. Furthermore, since ν can be an integer
in (1.1) and, in fact, the case ν = 4 is important in beam deflection models, the
results here also have some interest in the integer-order setting. And, indeed, there
have appeared many works on specifically fourth-order BVPs with nonlocal boundary
conditions—see, for example, [5,34,37,48,52,61]. Thus, our results, while couched
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in the fractional-order setting, also complement those papers specifically treating the
fourth-order setting.

2 Preliminary lemmata and notation

We begin by first stating some notation that will be used throughout the reminder of
this paper.

Notation 2.1 For use in the sequel, we appeal to the following notational conventions.

• Define the map G : [0, 1] → [0,+∞) as in Sect. 1—namely, put

G(s) := sup
t∈[0,1]

G(t, s),

where the map (t, s) �→ G(t, s) is defined in (2.1) below. Note that for each fixed
s ∈ [0, 1] it holds that G(t, s) ≤ G(s), for all t ∈ [0, 1].

• Given a function f : [0, 1] × [0,+∞) → [0,+∞) and a set X ⊆ [0,+∞)

define the number f̃ M
X to be

f̃ M
X := sup

(t,y)∈[0,1]×X
f (t, y).

• Given a number ρ > 0 define the open set �ρ by �ρ := {y ∈ K : ‖y‖ < ρ},
where K is as in (1.3) above.

A couple of basic definitions regarding fractional derivatives and integrals of
Riemann–Liouville type are recalled next. For a more detailed exposition on this
and a variety of related topics in the continuous fractional calculus, the reader may
consult the monograph by Podlubny [43].

Definition 2.2 Let ν > 0 with ν ∈ R. Suppose that y : [a,+∞) → R. Then the νth
order Riemann–Liouville fractional integral is defined to be

D−ν
a+ y(t) := 1

�(ν)

∫ t

a
y(s)(t − s)ν−1 ds,

whenever the right-hand side is defined.

Definition 2.3 For y : [a,+∞) → R and with ν > 0 and ν ∈ R, we define the νth
order Riemann–Liouville fractional derivative to be

Dν
a+ y(t) := 1

�(n − ν)

dn

dtn

∫ t

a

y(s)

(t − s)ν+1−n
ds,

where n ∈ N is the unique positive integer satisfying n − 1 ≤ ν < n and t > a,
whenever the right-hand side is defined.
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We also need to recall some preliminary lemmata regarding the Green’s function
associated to problem (1.1). In particular, we recall the following results, which may
be found in a paper by the author [9].

Lemma 2.4 Let g ∈ C([0, 1]) be given. Then the unique solution to problem
−Dν y(t) = g(t) together with the boundary conditions

y(i)(0) = 0, i ∈ {0, 1, 2, . . . , n − 2}
[
Dα
0+ y

]
(1) = 0,

where α ∈ [1, n − 2], is

y(t) =
∫ 1

0
G(t, s)g(s) ds,

where

G(t, s) =
{

tν−1(1−s)ν−α−1−(t−s)ν−1

�(ν)
, 0 ≤ s ≤ t ≤ 1

tν−1(1−s)ν−α−1

�(ν)
, 0 ≤ t ≤ s ≤ 1

(2.1)

is the Green’s function for this problem.

Lemma 2.5 Let G be as given in the statement of Lemma 2.4. Then we find that:

(1) G(t, s) is a continuous function on the unit square [0, 1] × [0, 1];
(2) G(t, s) ≥ 0 for each (t, s) ∈ [0, 1] × [0, 1]; and
(3) G(s) = G(1, s), for each s ∈ [0, 1].
We state next the structural and regularity conditions that we impose on problem

(1.1). Throughout this work we denote by ‖ · ‖ the usual supremum norm on the space
C([0, 1]). In summary, condition (A1) concerns the basic structure of ϕ, conditions
(A2)–(A3) concern the growth properties of the maps H and f , condition (A4) con-

cerns the existence of the coercivity constant C0 := inf
s∈S0

1

G(s)

∫ 1

0
G(t, s) dα(t), and,

finally, condition (A5) is a technical condition that ensures that the cone K is neither
empty nor trivial. It should be noted that not all of these conditions are used in each
existence result—e.g., we are able to weaken or remove conditions (A2) and (A3) by
replacing them with other assumptions.

A1: The functional ϕ(y) may be written in the form

ϕ(y) :=
∫

[0,1]
y(t) dα(t),

where α : [0, 1] → R satisfies α ∈ BV ([0, 1]). Moreover, we denote by C1 > 0
some finite constant such that

|ϕ(y)| ≤ C1‖y‖,

for each y ∈ C([0, 1]).
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A2: The map H : [0,+∞) → [0,+∞) is continuous, and there exists a number
ρ1 > 0 such that

H (ρ1)

ρ1
>

1

ϕ(β)
,

where the map β : [0, 1] → R is defined by

β(t) := �(ν − α)

�(ν)
tν−1. (2.2)

A3: The function f : [0, 1] × [0,+∞) → [0,+∞) is continuous and satisfies

lim
y→+∞

f (t, y)

y
= 0, uniformly for t ∈ [0, 1].

A4: Assume that the map

s �→ 1

G(s)

∫ 1

0
G(t, s) dα(t)

is defined for s ∈ S0, where S0 ⊆ [0, 1] has full measure (i.e., |S0| = 1), and the
constant defined by

C0 := inf
s∈S0

1

G(s)

∫ 1

0
G(t, s) dα(t)

satisfies C0 ∈ (0, C1).
A5: It holds that

ϕ(β) ≥ C0‖β‖,
where β is defined in (2.2)

Remark 2.6 Seeing as condition (A5) implies that β ∈ K with ‖β‖ 
= 0, it follows
that this condition ensures both that K 
= ∅ and that K is nontrivial; here K is as
defined earlier in (1.3). Moreover, observe that condition (A5) implies that ϕ(β) > 0
since ‖β‖ > 0 evidently.

Remark 2.7 As will be shown explicitly by the example in Sect. 3, the range of admis-
sible values for the parameter λ, appearing in (1.1), is explicitly computable. Thus, we
do not state our results here for some uncomputable, “sufficiently small” parameter
λ. Moreover, the computation of the coercivity constant C0, appearing in (A4), is also
reasonable to compute as will be shown in Sect. 3.

In order to study problem (1.1) we consider instead the operator T : C([0, 1]) →
C([0, 1]) defined by

(T y)(t) := β(t)H(ϕ(y)) + λ

∫ 1

0
G(t, s) f (s, y(s)) ds (2.3)
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and then look for solutions of the Hammerstein-type equation (T y)(t) = y(t). Note
that (see [10, Lemma 4.3]) it has been shown that the map β occurring in (2.2) has
the property that it is increasing in t , it holds that β(i)(0) = 0 for each 0 ≤ i ≤ n − 2
with i ∈ N, and that

[
Dα
0+β

]
(1) = 1. These facts combine to show that a solution of

the Hammerstein equation is thus a solution of the boundary value problem (1.1).
Ordinarily it is trivial to show that T (K) ⊆ K. In this case because of the use of a

new cone, we provide part of this proof in detail.

Lemma 2.8 Let T be the operator defined in (2.3). Then it holds that T (K) ⊆ K.

Proof It is obvious that whenever y ∈ K it holds that (T y)(t) ≥ 0, for each t ∈ [0, 1].
Therefore, we focus on the coercivity condition. To this end, let y ∈ K be fixed but
arbitrary. Observe that

‖T y‖ ≤ H(ϕ(y))‖β‖ + λ

∫ 1

0
G(s) f (s, y(s)) ds.

Thus, recalling that S0 is a set of full measure, we write

ϕ(T y) = ϕ(β)H(ϕ(y)) + λ

∫ 1

0

∫ 1

0
G(t, s) f (s, y(s)) dα(t) ds

= ϕ(β)H(ϕ(y)) + λ

∫

S0

[∫ 1

0
G(t, s) dα(t)

]
f (s, y(s)) ds

= ϕ(β)H(ϕ(y)) + λ

∫

S0

[
1

G(s)

∫ 1

0
G(t, s) dα(t)

]
G(s) f (s, y(s)) ds

≥ ϕ(β)H(ϕ(y)) + λ

∫

S0

[
inf

s∈S0

1

G(s)

∫ 1

0
G(t, s) dα(t)

]
G(s) f (s, y(s)) ds

= ϕ(β)H(ϕ(y)) + C0λ

∫

S0
G(s) f (s, y(s)) ds

≥ C0

[
H(ϕ(y))‖β‖ + λ

∫ 1

0
G(s) f (s, y(s)) ds

]

≥ C0‖T y‖.

As this establishes that T y ∈ K, we conclude that T (K) ⊆ K, as claimed. ��
We next discuss the set V̂ρ , whose definition was given preliminarily in (1.4) in

Sect. 1. We first state and prove two elementary lemmata regarding this set. That these
hold is essential for the use of V̂ρ in the existence arguments.

Lemma 2.9 For each fixed ρ > 0 it holds that

� ρ
C1

⊆ V̂ρ ⊆ � ρ
C0

. (2.4)
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Proof That (2.4) holds is both a consequence of the linearity of ϕ and the coercivity
condition. To see this, first fix y ∈ V̂ρ . Then we note that

ρ > ϕ(y) ≥ C0‖y‖.

In light of the coercivity condition above, we see that y ∈ V̂ρ implies that

‖y‖ ≤ ρ

C0
,

and this establishes that
V̂ρ ⊆ � ρ

C0
.

On the other hand, fix y ∈ � ρ
C1
. Then it follows that

ϕ(y) ≤ C1‖y‖ < ρ,

whence y ∈ V̂ρ so that V̂ρ ⊇ � ρ
C1
.

Finally, let us note that it does, in fact, hold that

� ρ
C1

� � ρ
C0

,

for each ρ > 0. This follows from the observation that C0 < C1. Thus, the inclusion
is well defined, and this completes the proof. ��
Lemma 2.10 For each fixed ρ ∈ (0,+∞) the set V̂ρ defined in (1.4) is a (relatively)
open set in K and, furthermore, is bounded.

Proof Since this is an obvious consequence of the continuity of the linear functional
ϕ, inclusion (2.4), and the strict inequality in the definition of V̂ρ , we omit the formal
proof of this fact. ��
Remark 2.11 We note that the set V̂ρ is similar in spirit to the set commonly denoted
Vρ in the literature, which is defined, for an appropriate order cone K0 and fixed
(a, b) � (0, 1), by

Vρ :=
{

y ∈ K0 : min
t∈[a,b] y(t) < ρ

}
,

and which was originally utilized by Lan [35]. In fact, the reason we have denoted
our new set in (1.4) by V̂ρ is since it is clearly inspired by Lan’s construction, Vρ ,
above. Moreover, as mentioned in Sect. 1 sets similar to V̂ρ have been utilized in other
works—e.g., [27].

Remark 2.12 The dual use of the new cone K together with the new open set V̂ρ will
make the proof of the existence results very simple. This is one of the advantages of
the dual use of these two constructions.
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We conclude by stating the fixed point theorem, which we use in the existence
arguments in Sect. 3. In particular, our approach here is index theoretic. To this end,
we recall a basic result in this direction, and one may consult Infante et al. [26], Guo
and Lakshmikantham [21], or Zeidler [58] for further details on these types of results.

Lemma 2.13 Let D be a bounded open set and, with K a cone in a Banach space
X , suppose both that D ∩ K 
= ∅ and that D ∩ K 
= K. Let D1 be open in X with
D1 ⊆ D ∩ K. Assume that T : D ∩ K → K is a compact map such that T x 
= x
for x ∈ K ∩ ∂ D. If iK (T, D ∩ K) = 1 and iK (T, D1 ∩ K) = 0, then T has a fixed
point in (D ∩ K)\ (D1 ∩ K). Moreover, the same result holds if iK(T, D ∩ K) = 0
and iK (T, D1 ∩ K) = 1.

3 Main result and example

We begin by stating and proving the existence results for the Hammerstein-type equa-
tion (T y)(t) = y(t) and thus for problem (1.1).

Theorem 3.1 Assume that conditions (A1)–(A2) and (A4)–(A5) hold. Fix λ > 0 and
assume that there exists a number ρ2 > C1

C0
ρ1 such that

H (ρ2)

ρ2
ϕ(β) + λ

ρ2
f̃ M[
0, ρ2

C0

]

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds < 1.

Then problem (1.1) has at least one positive solution.

Proof Having showed that T (K) ⊆ K in Lemma 2.4 and in observation of the fact
that T is completely continuous, we focus on the actual index calculations. To this
end, we begin by noting that by condition (A2) there exists ρ1 > 0 such that

H (ρ1)

ρ1
>

1

ϕ(β)
. (3.1)

We show now for each y ∈ ∂ V̂ρ1 and each μ ≥ 0 that y 
= T y + μe, where we put
e(t) := β(t). Recall here that β ∈ K by condition (A5), and, moreover, that ‖β‖ 
= 0;
thus, β represents a valid selection for themap t �→ e(t). So, suppose for contradiction
the existence of fixed y ∈ ∂ V̂ρ1 and μ ≥ 0 such that y = T y + μe. Then applying
ϕ to both sides of the equality y = T y + μe and using the fact that ϕ(μe) ≥ 0, we
obtain that

ρ1 = ϕ(y)

≥ ϕ(β)H(ϕ(y)) + λ

∫ 1

0

∫ 1

0
G(t, s) f (s, y(s)) dα(t) ds

≥ ϕ(β)H(ϕ(y)) = ϕ(β)H (ρ1) ,

whence
H (ρ1)

ρ1
≤ 1

ϕ(β)
.
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Since this is a contradiction to inequality (3.1), we deduce that

iK
(
T, V̂ρ1

) = 0. (3.2)

On the other hand, we now show that for ρ2 > C1
C0

ρ1, where ρ2 is the number given
in the statement of the theorem, we have

iK
(
T, V̂ρ2

) = 1. (3.3)

In order to prove (3.3) we show that for each μ ≥ 1 and each y ∈ V̂ρ2 it holds that
T y 
= μy. Therefore, suppose not. Then we have ϕ(T y) = μϕ(y) ≥ ϕ(y) for some
y ∈ ∂ V̂ρ2 . Consequently, we may write

ϕ(y) ≤ ϕ(β)H(ϕ(y)) + λ

∫ 1

0

∫ 1

0
G(t, s) f (s, y(s)) dα(t) ds, (3.4)

which, since ϕ(y) = ρ2, implies that

1 ≤ H (ρ2)

ρ2
ϕ(β) + λ

ρ2

∫ 1

0

∫ 1

0
G(t, s) f (s, y(s)) dα(t) ds

≤ H (ρ2)

ρ2
ϕ(β) + λ

ρ2

∫ 1

0

∫ 1

0
G(t, s) f̃ M[

0, ρ2
C0

] dα(t) ds

< 1, (3.5)

which is a contradiction, and so, establishes (3.3). Observe that to establish (3.5) we
are tacitly using the fact that since s �→ G(s) is a nonnegative map, it follows from
condition (A4) that ∫ 1

0
G(t, s) dα(t) > 0,

for a.e. s ∈ [0, 1], seeing as
∣∣[0, 1]\S0

∣∣ = 0. We are also appealing to Lemma 2.9 so

that since y ∈ V̂ ρ2 , it thus follows that y ∈ � ρ2
C0
, whence

0 ≤ f (s, y(s)) ≤ f̃ M[
0, ρ2

C0

],

for each s ∈ [0, 1].
All in all, then, combining (3.2)–(3.3) we conclude the existence of a map

y0 ∈ V̂ρ2\V̂ ρ1

such that T y0 = y0. Note that

V̂ρ2\V̂ ρ1 
= ∅ (3.6)
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since from Lemma 2.9 we see that V̂ρ1 ⊆ � ρ1
C0

and that V̂ρ2 ⊇ � ρ2
C1
. Thus, we see that

if ρ2 > C1
C0

ρ1, then it follows that

V̂ρ2 ⊇ � ρ2
C1

� � ρ1
C0

⊃ V̂ ρ1 � V̂ρ1 ,

which establishes (3.6). Since this map y0 solves (1.1) and satisfies ‖y0‖ 
= 0, the
proof is thus complete. ��
Remark 3.2 As the proof of Theorem 3.1 demonstrates, the solution to (1.1) guaran-
teed by Theorem 3.1 satisfies the norm localization

0 <
ρ1

C1
< ‖y0‖ <

ρ2

C0
,

where here we appeal to Lemma 2.9, noting especially that

K\V̂ ρ1 ⊆ K\� ρ1
C1

(3.7)

and
V̂ρ2 ⊆ � ρ2

C0
, (3.8)

whereupon combining inclusions (3.7)–(3.8) we obtain

V̂ρ2\V̂ ρ1 ⊆ � ρ2
C0

\� ρ1
C1

,

which provides the desired localization.

Next we state two selected corollaries of Theorem 3.1. Since the proofs are mostly
obvious modifications of the proof of Theorem 3.1, we omit parts of them. In partic-
ular, the first of these, Corollary 3.3, demonstrates that we may replace the pointwise
condition in (A2) with a limit condition; the upshot of this is that we no longer have
to require that ρ2 > C1

C0
ρ1. On the other hand, the second of these, Corollary 3.4,

demonstrates that if we assume condition (A3) in addition to (A2) and a limit condi-
tion on the behavior of H(z)

z as z → +∞, then we can obtain an existence result that
is applicable no matter the value of λ > 0.

Corollary 3.3 Suppose that conditions (A1) and (A4)–(A5) hold. Fix λ > 0 and
assume that there exists a number ρ2 > 0 such that

H (ρ2)

ρ2
ϕ(β) + λ

ρ2
f̃ M[
0, ρ2

C0

]

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds < 1.

If, in addition, it holds that

lim inf
z→0+

H(z)

z
>

1

ϕ(β)
,

then problem (1.1) has at least one positive solution.
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Proof Omitted. ��
Corollary 3.4 Suppose that conditions (A1)–(A5) hold. Let λ ∈ (0,+∞) be fixed but
arbitrary. If, in addition, it holds that

lim sup
z→+∞

H(z)

z
<

1

ϕ(β)
,

then problem (1.1) has at least one positive solution.

Proof The first part of the proof is identical to the first part of the proof of Theorem 3.1.
For the second part, by the assumption in the statement of the corollary we may fix a
number ε > 0 sufficiently small such that for each z ≥ z0 := z0(ε) it holds that

H (z)

z
<

1

ϕ(β)
− ε.

Note that without loss of generality we may assume that ε satisfies the inequality

ε <
1

ϕ(β)
,

where here we use the assumption from (A5) that ϕ(β) > 0. It then follows that there
exists a number ρ2 > 0 sufficiently large, which may be assumed without loss to

satisfy ρ2 > max
{

z0,
C1
C0

ρ1

}
, with ρ1 as before, such that each of

f̃ M
[0,ρ2]

ρ2
< εϕ(β)

(
λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

)−1

(3.9)

and
H (ρ2)

ρ2
<

1

ϕ(β)
− ε (3.10)

holds; note that (3.9) is well defined due to condition (A4). Here to obtain inequality
(3.9) we are using [16, Lemma 3.2]—see also [44, Lemma 2.8]; this, in partic-
ular, allows us to assert that if condition (A3) is in force, then it follows that

limρ→+∞
f̃ M[0,ρ]
ρ

= 0. Then putting estimates (3.9)–(3.10) into inequality (3.4), for

any y ∈ ∂ V̂ρ2 we obtain

ρ2 < ϕ(β)

(
1

ϕ(β)
− ε

)
ρ2 + λρ2

∫ 1

0

∫ 1

0

f̃ M[
0, ρ2

C0

]

ρ2
G(t, s) dα(t) ds

< ϕ(β)

(
1

ϕ(β)
− ε

)
ρ2 + λρ2

(
λ

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds

)−1

× εϕ(β)

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds,
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from which it follows that

1 < 1 − εϕ(β) + εϕ(β) = 1,

which is a contradiction, and so, (3.3) holds. Hence, as in the proof of Theorem 3.1
we conclude that problem (1.1) has at least one positive solution. ��

Remark 3.5 Note that Corollary 3.4 applies for any value of λ > 0—c.f., [6, Theorem
3.1] and [16, Theorem 3.3]. In some sense, both Theorem 3.1 and Corollary 3.3 also
allow for an unrestricted λ, although, in general, the larger λ is, the smaller the quantity
f̃ M[
0, ρ2

C0

] will have to be.

We conclude this section and the paper with an example to illustrate, in particular,
the computation and application of the coercivity constantC0 as well as the application
of the existence theorems.

Example 3.6 In this example we consider the nonlocal element

ϕ(y) := 1

2
y

(
1

4

)
− 1

20
y

(
1

10

)
.

We complete our calculations in the first place with arbitrary α ∈ [1, n − 2] and
ν ∈ (3,+∞) with n − 1 < ν ≤ n. In this general case we find that

1

G(s)

∫ 1

0
G(t, s) dα(t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
1
2

(
1
4

)ν−1− 1
20

(
1
10

)ν−1
]
(1−s)ν−α−1− 1

2

(
1
4−s

)ν−1+ 1
20

(
1
10−s

)ν−1

(1−s)ν−α−1−(1−s)ν−1 , 0 < s < 1
10

1
2

[(
1
4

)ν−1
(1−s)ν−α−1−

(
1
4−s

)ν−1
]
− 1

20

(
1
10

)ν−1
(1−s)ν−α−1

(1−s)ν−α−1−(1−s)ν−1 , 1
10 ≤ s < 1

4[
1
2

(
1
4

)ν−1− 1
20

(
1
10

)ν−1
]
(1−s)ν−α−1

(1−s)ν−α−1−(1−s)ν−1 , 1
4 ≤ s < 1

.

(3.11)

Observe from (3.11) that S0 := (0, 1) here, and so, S0 is indeed a set of full measure.
To compute the value of

C0 := inf
s∈S0

1

G(s)

∫ 1

0
G(t, s) dα(t)

some elementary calculus is required. These calculations, in part, rely on the observa-
tion that there exists a number N0 ∈ N such that ν−α−1−N0 ≤ 0 but ν−1−N0 > 0.
(This invokes the fact that α ≥ 1.) Thus, N0 applications of L’Hôpital’s rule yield
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lim
s→1−

[
1

2

(
1

4

)ν−1

− 1

20

(
1

10

)ν−1
]

(1 − s)ν−α−1

(1 − s)ν−α−1 − (1 − s)ν−1

L ′ H= lim
s→1−

[
1

2

(
1

4

)ν−1

− 1

20

(
1

10

)ν−1
]

(−1)N0 (1 − s)ν−α−N0−1
N0∏

j=1

(ν − α − j)

⎡

⎣(−1)N0 (1 − s)ν−α−1−N0

N0∏

j=1

(ν − α − j)

⎤

⎦−
⎡

⎣(−1)N0 (1 − s)ν−1−N0

N0∏

j=1

(ν − j)

⎤

⎦

= lim
s→1−

1

2

(
1

4

)ν−1

− 1

20

(
1

10

)ν−1

1 − (1 − s)ν−1−N0

(1 − s)ν−α−N0−1 ·

N0∏

j=1

(ν − j)

N0∏

j=1

(ν − α − j)

= 1

2

(
1

4

)ν−1

− 1

20

(
1

10

)ν−1

.

We also calculate by means of a single application of L’Hôpital’s rule that

lim
s→0+

[
1

2

(
1

4

)ν−1
− 1

20

(
1

10

)ν−1
]

(1 − s)ν−α−1 − 1

2

(
1

4
− s

)ν−1
+ 1

20

(
1

10
− s

)ν−1

(1 − s)ν−α−1 − (1 − s)ν−1

L ′ H= 1

α

{
1

2

[(
1

4

)ν−2
(ν − 1) −

(
1

4

)ν−1
(ν − α − 1)

]

+ 1

20

[(
1

10

)ν−1
(ν − α − 1) −

(
1

10

)ν−2
(ν − 1)

]}
.

Then essentially routine but tedious computations,whose detailswe omit, demonstrate
that for each ν and each admissible α we have that

C0 := C0(ν) = 1

2

(
1

4

)ν−1

− 1

20

(
1

10

)ν−1

> 0.

The table provided below can then be generated from the map ν �→ C0(ν), and
it summarizes how the coercivity constant changes as we alter the order, ν, of the
fractional differential equation; here we have approximated C0 to three decimal places
of accuracy.

ν 3.01 3.05 3.5 3.8 4 5.5
C0 0.030 0.029 0.015 0.010 0.008 0.001
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Note, in particular, that C0(ν) > 0, for each ν > 3, and, moreover, that

lim
ν→+∞

(
1

2

(
1

4

)ν−1

− 1

20

(
1

10

)ν−1
)

= lim
ν→+∞

(
21−2ν − 2−ν−15−ν

)
= 0.

In addition, note that

ϕ(β) = �(ν − α)

�(ν)

[
1

2

(
1

4

)ν−1

− 1

20

(
1

10

)ν−1
]

= �(ν − α)

�(ν)
C0(ν).

In observance of the fact that ‖β‖ = �(ν − α)

�(ν)
, it follows that

ϕ(β) ≥ C0‖β‖ = �(ν − α)

�(ν)
C0(ν).

Thus, condition (A5) will be satisfied for any admissible choice of α and ν for the

functional ϕ given in this example. Since the quantity
1

ϕ(β)
occurs in the application

of the existence results, we present in the following table values of
1

ϕ(β)
for selected

choices of α and ν.

ν 3.01 3.01 3.01 3.8 3.8 4
α 1 1.5 1.95 1 1.5 1
1

ϕ(β)
5.449 75.064 68.699 273.721 393.319 386.473

Finally, to see how to apply the existence theorems, let us suppose that ν = 3.01
and α = 1. Let us also define the map H by

H(z) :=
{
6z, z < 2

5(z − 2) + 12, z ≥ 2
.

Note that H is a piecewise linear map. Then we conclude that the boundary value
problem

−
[

D3.01
0+ y

]
(t) = λ f (t, y(t)), 0 < t < 1

y(0) = y′(0) = y′′(0) = 0

y′(1) = H(ϕ(y)) (3.12)

has at least one positive solution:
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• for any λ ∈ (0,+∞) if condition (A3) holds; or
• for each given λ ∈ (0,+∞) such that there exists a number ρ2 > 0 satisfying

H (ρ2)

ρ2
ϕ(β) + λ

ρ2
f̃ M[

0,ρ2

(
1
2

(
1
4

)2.01− 1
20

(
1
10

)2.01)−1
]

∫ 1

0

∫ 1

0
G(t, s) dα(t) ds < 1,

where these conclusions hold, respectively, by Corollaries 3.4 and 3.3 since we note
that

5 = lim
z→+∞

H(z)

z
<

1

ϕ(β)
< lim

z→0+
H(z)

z
= 6.

By altering the form of H and utilizing the above tables, we can apply the existence
results for other choices of α and ν. Finally, we note that the boundary condition at
t = 1 can be written in the form

y′(1) =
{
3y
( 1
4

)− 3
10 y

( 1
10

)
, 0 ≤ 1

2 y
( 1
4

)− 1
20 y

( 1
10

)
< 2

5
2 y
( 1
4

)− 1
4 y
( 1
10

)+ 2, 2 ≤ 1
2 y
( 1
4

)− 1
20 y

( 1
10

) .

Remark 3.7 The localization from Remark 3.2 assures us that the solution, say y0, of
(3.12) must satisfy

0 <
20

11
ρ1 < ‖y0‖ < ρ2

[
1

2

(
1

4

)2.01

− 1

20

(
1

10

)2.01
]−1

≈ 32.969ρ2,

where the numbers ρ1 and ρ2 would depend upon which existence result was used as
well as the choice of f and H .

Remark 3.8 Note that in Example 3.6 we see that the strength of the coercivity con-
dition is maximized as ν → 3+ and weakened as ν increases away from 3. This can
affect the applicability of the existence results since, in general, a larger value of C0
will impose less of a restriction on f in Theorem 3.1 and Corollary 3.3, for example.
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