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Abstract We supply a Fourier characterization for the real, continuous, isotropic and
strictly positive definite kernels on a product of circles. In other words, if S1 is the unit
circle in R

2, · is the usual inner product of R2 and f is a real continuous function on
[−1, 1]2, we determine necessary and sufficient conditions in order that f (x · y, z ·w)

be a strictly positive definite kernel on S1 × S1.
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1 Introduction

Positive definite functions and kernels have a long history in mathematics, entering as
an important tool in harmonic analysis and other areas as well. In the spherical setting,
they can be traced back to the remarkable paper of Schoenberg published in 1942 [19],
where a characterization for the continuous, isotropic and positive definite kernels on a
single sphere was obtained. This characterization is far-reaching, having applications
in approximation theory, spatial statistics, geomathematics, discrete geometry, etc.We
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mention [3,4,6,16] and references therein for some applications of positive definite
functions and kernels on spheres.

In this paper, we will be concerned with positive definite kernels on a product of
circles. As so, we will recast the basic concepts and results from Schoenberg’s work
that applies to circles, up to the point we can state what the main contribution in the
present paper is.

We will write S1 to denote the unit circle in R
2. Continuity of a kernel K on S1

will be attached to the usual geodesic distance on S1 and that will be extended to the
product S1 × S1 in the usual way. The isotropy or radiality of a kernel K on S1 refers
to the existence of a function Kr on [−1, 1] so that

K (x, y) = Kr (x · y), x, y ∈ S1,

in which · is the usual inner product of R2. For a kernel K on S1 × S1, isotropy
corresponds to the property

K ((x, z), (y, w)) = Kr (x · y, z · w), x, y, z, w ∈ S1,

in which the function Kr has now domain [−1, 1]2. In both cases, we will call Kr the
isotropic part of the kernel K . Finally, the positive definiteness of a real kernel K on
an infinite set X refers to the validity of the inequality

n∑

μ,ν=1

cμcνK (xμ, xν) ≥ 0,

whenever n is a positive integer, x1, x2, . . . , xn are distinct points on X and the cμ are
real scalars. The strict positive definiteness of K demands both, its positive definiteness
and that the inequalities above be strict whenever at least one of the cμ is nonzero. We
will apply these definitions to the cases in which either X = S1 or X = S1 × S1.

According to a result of Schoenberg in [19], a real, continuous and isotropic kernel
K on S1 is positive definite if, and only if, the isotropic part Kr of K has the form

Kr (t) =
∞∑

k=0

ak Pk(t), t ∈ [−1, 1],

in which all the ak are nonnegative, Pk is the Tchebyshev polynomial (of first kind) of
degree k (see [23]), and

∑∞
k=0 ak Pk(1) < ∞. In the nineties, due to the appearance of

the so-called radial basis interpolation on spheres, many attempts were made in order
to deduce a similar characterization for the strict case [11–15,18,20,22] but that only
appeared in [15] (see also [2]): a kernel having Schoenberg’s representation described
above is strictly positive definite on S1 if, and only if, the set {k : a|k| > 0} intersects
every full arithmetic progression in Z. Both results described above extends to the
complex setting, that is, to the case in which S1 is replaced with the unit circle in C,
the positive definite kernel is allowed to assume complex values and the scalars cμ are
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now complex numbers. This extension is also discussed in [15]. It is worth to mention
[21] where the very same problem was discussed.

Moving to S1 × S1, a theorem proved in [8] includes a characterization for the
positive definiteness of a real, continuous and isotropic kernel K on S1 × S1 as those
having an isotropic part in the form

Kr (t, s) =
∞∑

k,l=0

ak,l Pk(t)Pl(s), t, s ∈ [−1, 1], (1.1)

where all the coefficients ak,l are nonnegative and
∑∞

k,l=0 ak,l Pk(1)Pl(1) < ∞. This
characterization can also be deduced from abstract versions of a classical result of S.
Bochner on positive definiteness, a typical example being Theorem 4.11 in [1]. For a
function Kr representable as in (1.1), we will write

JK := {
(k, l) ∈ Z

2+ : ak,l > 0
}
.

The results in this paper will converge to the characterization for strict positive defi-
niteness on S1 × S1 described in Theorem 1.1 below. The result is supplementary to
one of the main results proved in [7], where a similar problem was considered and
solved for the product of higher dimensional spheres.

Theorem 1.1 Let K be a real, continuous, isotropic and positive definite kernel on
S1 × S1. The following assertions are equivalent.

(i) K is strictly positive definite;
(ii) The set {(k, l) : (|k|, |l|) ∈ JK } intersects all the translations of each subgroup

of Z2 having the form {(pa, qb) : q, p ∈ Z}, a, b > 0;
(iii) The set {(k, l) : (|k|, |l|) ∈ JK } intersects all the translations of each subgroup

of Z2 having the form (a, b)Z + (0, d)Z, a, d > 0.

If this is the case, the set {(k, l) : (|k|, |l|) ∈ JK } intersects all the translations of each
lattice of Z2 infinitely many times.

At this time, we have found no practical problemswhere the characterization described
in Theorem 1.1 could enter in a decisive manner. Strict positive definiteness on a
product of manifolds is a quite new subject and we are sure that potential applications
will appear. In particular, we expect the result to have applicability in approximation
theory, probability theory, stochastic processes and code theory.

The paper proceeds as follows. In Sect. 2, we present a list of technical results that
will be needed in the presentation of the proof to Theorem 1.1. The proof itself appears
in Sect. 3.

2 Preliminary results

This section contains several technical results to be used in the proof of the main
theorem described in Sect. 1. They are presented following the order they will be
required in the proof of Theorem 1.1.
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In the first proposition, we explore a little bit deeper the concept of strict positive
definiteness on S1×S1. The outcome implies an obvious equivalence for that concept.

It is an easy matter to verify that the strict positive definiteness of the kernel K
with isotropic part given by (1.1) depends upon JK only and not on the actual values
of the Fourier coefficients ak,l . For distinct points (x1, w1), (x2, w2), . . . , (xn, wn) on
S1 × S1, we will write A = (Aμν), in which

Aμν = Kr (xμ · xν, wμ · wν), μ, ν = 1, 2, . . . , n.

We will also represent the points above in polar form:

xμ = (cos θμ, sin θμ), wμ = (cosφμ, sin φμ), θμ, φμ∈[0, 2π), μ = 1, 2, . . . , n.

Proposition 2.1 Let K be a nonzero, real, continuous, isotropic and positive definite
kernel on S1× S1. For distinct points (x1, w1), (x2, w2), . . . , (xn, wn) on S1× S1 and
a column vector c = (cμ) in Rn, the following statements are equivalent:

(i) ct Ac = 0;
(ii) The double equality

n∑

μ=1

cμe
ikθμeilφμ =

n∑

μ=1

cμe
ikθμe−ilφμ = 0

holds for all (k, l) ∈ JK .

Proof The normalization one decides to adopt for the Tchebyshev polynomials is of
no importance in this paper. So, we will write

Pk(xμ · xν) = 2

k
cos k(θμ − θν), k > 0, xμ ∈ S1, μ = 1, 2, . . . , n,

while P0(xμ · xν) = 1, μ = 1, 2, . . . , n. The equality ct Ac = 0 is equivalent to

n∑

μ,ν=1

cμcν Pk(xμ · xν)Pl(wμ · wν) = 0, (k, l) ∈ JK .

Introducing the polar representation for the points and arranging, the equality appear-
ing in the formula above becomes

∣∣∣∣∣∣

n∑

μ=1

cμ cos kθμ cos lφμ

∣∣∣∣∣∣

2

+
∣∣∣∣∣∣

n∑

μ=1

cμ cos kθμ sin lφμ

∣∣∣∣∣∣

2

+
∣∣∣∣∣∣

n∑

μ=1

cμ sin kθμ cos lφμ

∣∣∣∣∣∣

2

+
∣∣∣∣∣∣

n∑

μ=1

cμ sin kθμ sin lφμ

∣∣∣∣∣∣

2

= 0.
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Thus, ct Ac = 0 is equivalent to

n∑

μ=1

cμ cos kθμ cos lφμ =
n∑

μ=1

cμ cos kθμ sin lφμ = 0

and

n∑

μ=1

cμ sin kθμ cos lφμ =
n∑

μ=1

cμ sin kθμ sin lφμ = 0

for (k, j) ∈ JK . An obvious manipulation of these equations taking into account the
fact that cμ are real numbers leads to the double equality in (i i). ��

From now on, we will deal with subgroups of Z2 and their translations. We will
need a classification for the nontrivial subgroups of Z2. Let S be such a subgroup
and let{(1, 0), (0, 1)} be the canonical basis of Z2. Write p1 to denote the canonical
projection ofZ2 onto its first component. If p1(S) = 0, then S is a subgroup of (0, 1)Z.
Otherwise, p1(S) is a nontrivial subgroup of (1, 0)Z, say, (a, 0)Z, with a > 0, and
we can pick y ∈ Z

2 so that p1(y) = a. Now, if x ∈ S, then p1(x) ∈ aZ, that is,
x − αy ∈ (0, 1)Z, for some α ∈ Z. In other words, S = yZ ⊕ (S ∩ (0, 1)Z). If
S ∩ (0, 1)Z = 0, then S = yZ. Otherwise, S = yZ ⊕ bZ, in which bZ is a subgroup
of S ∩ (0, 1)Z. The outcome of this brief discussion is this one.

Lemma 2.2 A nontrivial subgroup of Z2 belongs to one of the following categories:

(i) (0, b)Z := {(0, pb) : p ∈ Z}, b > 0;
(ii) (a, b)Z := {(pa, pb) : p ∈ Z}, a > 0;
(iii) (a, b)Z + (0, d)Z := {(pa, pb + qd) : p, q ∈ Z}, a, d > 0.

We advise the reader that there are different ways to describe the subgroups of Z2

(for instance, the one presented in [17] is slightly different and quite elegant). The
subgroups that fit into Lemma 2.2-(iii) will be called lattices. The set of lattices of Z2

encompasses all the subgroups of rank 2. If ad = 1, then a lattice becomes the whole
Z
2, otherwise it is a proper subgroup of Z2. The lattices having the form

(aZ, bZ) := {(pa, qb) : q, p ∈ Z}, a, b > 0,

will be called rectangular lattices of Z2. By translates of subgroups of Z2, we will
mean sets of the form ( j, j ′) + S, in which ( j, j ′) is a fixed element of Z2 and S is a
subgroup of Z2.

Lemma 2.3 below provides a decomposition of a lattice through translations of
rectangular lattices.

Lemma 2.3 The lattice L = (a, b)Z + (0, d)Z, a, d > 0, can be decomposed in the
form

L =
⋃

( j, j ′)∈A

[
( j, j ′) + (adZ, adZ)

]
,
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in which A = L ∩ {(α, β) ∈ Z
2 : 0 ≤ α, β < ad}.

Proof For p, q ∈ Z, we can certainly write

(pa, pb + qd) = ( j + αad, j ′ + βad),

in which j, j ′ ∈ {0, 1, . . . , ad − 1}. Since

( j, j ′) = (p − αd)(a, b) + (αb + q − βa)(0, d),

it is clear that ( j, j ′) ∈ L . These arguments show that L is a subset of the union
quoted in the statement of the lemma. As for the reverse inclusion, first observe that
if α, β ∈ Z, we have that

(αad, βad) = dα(a, b) + (aβ − bα)(0, d) ∈ L .

Since L is a subgroup of Z2, ( j, j ′) + (αad, βad) ∈ L whenever ( j, j ′) ∈ A. ��
Next, we recall an elementary bi-dimensional version of the Skolem-Mahler-Lech

Theorem due to Laurent [9,10]. The original Skolem-Mahler-Lech Theorem is dis-
cussed in details in [5]. This very same bi-dimensional versionwas used in [17] in order
to characterize certain strictly positive definite kernels on complex Hilbert spaces.

Theorem 2.4 Let {(x1, w1), (x2, w2), . . . , (xn, wn)} be a subset of (C\{0})2. For n
complex numbers c1, c2, . . . , cn, define a double sequence {bk,l : k, l ∈ Z} through
the formula

bk,l :=
n∑

μ=1

cμx
k
μwl

μ, k, l ∈ Z.

Then, the set {(k, l) : bk,l = 0} is the union of a finite number of translates of subgroups
of Z2.

The technical lemma below adds to Theorem 2.4 when the points are distinct and
belong to �2 × �2, in which �2 is the unit circle in C.

Lemma 2.5 Let (x1, w1), (x2, w2), . . . , (xn, wn) be distinct points in �2 × �2. For
complex numbers c1, c2, . . . , cn, define

bk,l =
n∑

μ=1

cμx
k
μwl

μ, k, l ∈ Z.

If {(k, l) : bk,l = 0} = Z
2, then all the cμ are zero.
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Proof Wewill write the components of the points in polar form xμ = eiθμ ,wμ = eiφμ ,
μ = 1, 2, . . . , n, and will assume, as we can, that the n points (θ1, φ1), (θ2, φ2), . . . ,

(θn, φn) are distinct in [0, 2π)2. Choose α, β ∈ Z in such a way that all the elements
in the set

{
α

θμ − θν

2π
+ β

φμ − φν

2π
: μ, ν = 1, 2, . . . , n;μ �= ν

}

are nonzero. Next, pick γ ∈ Z+ arbitrarily large so that

{
α

γ

θμ − θν

2π
+ β

γ

φμ − φν

2π
: μ, ν = 1, 2, . . . , n;μ �= ν

}
⊂ (−1, 1)\{0}.

For each pair (μ, ν), μ �= ν, for which

α

γ

θμ − θν

2π
+ β

γ

φμ − φν

2π
∈ Q,

let pμν be a positive integer > γ satisfying

pμν

(
α

γ

θμ − θν

2π
+ β

γ

φμ − φν

2π

)
∈ Z.

Finally, select an integer q so that q is greater then all the pμν and each set {q, pμν}
is coprime. If {(k, l) : bk,l = 0} = Z

2, then we may infer that

n∑

μ=1

cμe
iθμkeiφμl = 0, (k, l)=(0, 0), (αq, βq), . . . , ((n−1)αq, (n−1)βq).

The matrix of the system above has μν-entries given by

[
ei(αθμ+βφμ)q

]ν

, μ, ν = 1, 2, . . . , n,

and, consequently, it is a Vandermonde matrix. So, the proof of the lemma will be
complete as long as we show that the n points ei(αθμ+βφμ)q , μ = 1, 2, . . . , n, are
distinct. But, for μ �= ν,

ei(αθμ+βφμ)q = ei(αθν+βφν)q

if, and only if,

q

(
α

θμ − θν

2π
+ β

φμ − φν

2π

)
∈ Z.
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If all the numbers

(
α

θμ − θν

2π
+ β

φμ − φν

2π

)
, μ �= ν,

are irrational, we are done. Otherwise, there would be integers j and j ′ such that

j

γ q
= j ′

pμν

∈ (−1, 1)\{0},

for some pair (μ, ν), μ �= ν. Since {q, pμν} is coprime, then pμν would divide γ ,
contradicting our choice of pμν . ��

The next result reveals that if a proper subset A of Z2 is a finite union of translates
of subgroups of Z2, then there exists a rectangular lattice H of Z2 and ( j, j ′) ∈ Z

2 so
that [( j, j ′) + H ] ∩ A = ∅.
Lemma 2.6 Let A be a proper subset of Z2. If A is a finite union of translates of
subgroups of Z2 and ( j, j ′) ∈ Z

2\A, then there exists a rectangular lattice H of Z2

such that ( j, j ′) + H ⊂ Z
2\A.

Proof If A is a finite union of translates of subgroups of Z2, we can write

A = F ∪ [( j1, j ′1) + G1] ∪ [( j2, j ′2) + G2] ∪ . . . ∪ [( jr , j ′r ) + Gr ]

inwhich F is afinite (possibly empty) subset ofZ2, ( j1, j ′1), ( j2, j ′2), . . . , ( jr , j ′r ) ∈ Z
2

and G1,G2, . . . ,Gr are nontrivial subgroups of Z2. It suffices to prove the lemma in
the case in which F = ∅. Indeed, if a solution ( j, j ′)+H is available for that case, we
can pick a convenient subgroup H1 of H so that ( j, j ′) + H1 avoids all the elements
of F . So, assume that F = ∅ and fix ( j, j ′) ∈ Z

2\A. We can assume all the Gi have
rank 2. Indeed, if Gi has rank 1 for some i , we can pick (α, β) ∈ Z

2 such that

(α, β)Z ∩ [( ji − j, j ′i − j ′) + Gi ] = ∅.

Hence,

[( j, j ′) + (α, β)Z] ∩ [( ji , j ′i ) + Gi ] = ∅,

and, therefore,

( j, j ′) /∈ ( ji , j
′
i ) + (α, β)Z + Gi .

In particular, (α, β)Z + Gi is a subgroup of rank 2 and we can replace ( ji , ji ) + Gi

with ( ji , j ′i )+(α, β)Z+Gi in the union decomposition for A keeping ( j, j ′) inZ2\A.
If all the Gi have rank 2, the proof of the lemma proceeds as follows. Let mi be the
index of Gi in Z

2, i = 1, 2, . . . , r , and pick a common multiple m of all the mi .
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The subgroup (mZ,mZ) is a rectangular lattice and, by the definition of index of a
subgroup, it follows that

(mZ,mZ) ⊂ Gi i = 1, 2, . . . , r.

In particular,

[( j, j ′) + (mZ,mZ)] ∩ Gi = ∅, i = 1, 2, . . . , r,

and, consequently, ( j, j ′) + (mZ,mZ) ⊂ Z
2\A. ��

We conclude the section with a technical result on sets that intersect all the trans-
lations of each lattice in Z

2.

Lemma 2.7 If A is a subset of Z2 that intersects all the translations of each lattice in
Z
2, then each intersection is an infinite set.

Proof Let A be a subset of Z2 that intersects all the translations of each lattice in Z2.
Let L = ( j, j ′) + (a, b)Z+ (0, d)Z, a, d > 0, and assume that A∩ L is finite. Write

( j+ p1a, j ′+ p1b+q1d), ( j+ p2a, j ′+ p2b + q2d), . . . , ( j+ pna, j ′ + pnb + qnd),

to denote the elements in the intersection and define

p := max{|p1|, |p2|, . . . , |pn|} and q := max{|q1|, |q2|, . . . , |qn|}.

We will reach a contradiction, analyzing four different cases.

Case 1. p = q = 0: The intersection contains just one element, ( j, j ′). We now look
at the translation

L ′ := ( j + 2a, j ′ + 2b) + (3a, 3b)Z + (0, d)Z ⊂ L

of the sublattice (3a, 3b)Z + (0, d)Z of (a, b)Z + (0, d)Z. If ( j, j ′) ∈ L ′, then
{
j + 2a + 3ar = j
j ′ + 2b + 3br + ds = j ′

for some r, s ∈ Z. But, since a(3r + 2) �= 0, r ∈ Z, this is impossible. In particular,
A ∩ L ′ = ∅, a contradiction to our basic assumption.

Case 2. p = 0 and q > 0: Here we consider the sublattice (a, b)Z+(0, 2(2q + 1)d)Z

of (a, b)Z + (0, d)Z and look at its translation

L ′′ := ( j, j ′ + 2qd) + (a, b)Z + (0, 2(2q + 1)d)Z ⊂ L .
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If ( j + ra, j ′ + 2qd + rb+ 2s(2q + 1)d) = ( j, j ′ +qμd) for some μ ∈ {1, 2, . . . , n}
and r, s ∈ Z, then

{
ra = 0
2qd + rb + 2s(2q + 1)d = qμd

and, consequently, 2q + 2s(2q + 1) = qμ. However, due to the definition of q, no
integer s can satisfy the previous equality. Thus, L ′′ ∩ A = ∅, another contradiction.
Case 3. p > 0 and q = 0: Its is similar to the previous case.

Case 4. p, q > 0: Here we consider the sublattice (2(2p + 1)a, 2(2p + 1)b)Z +
(0, qd)Z of (a, b)Z + (0, d)Z and its translation

L ′′′ := ( j + 2pa, j ′ + 2pb) + (2(2p + 1)a, 2(2p + 1)b)Z + (0, qd)Z ⊂ L .

If

( j + 2pa + 2r(2p + 1)a, j ′ + 2pb + 2r(2p + 1)b + sqd)

= ( j + pμa, j ′ + pμb + qμd)

for some μ ∈ {1, 2, . . . , n} and r, s ∈ Z, we will have that 2p+2r(2p+1) = pμ. As
in Case 2, we can deduce that L ′′′ ∩ A = ∅, a contradiction to our initial assumption
on A. ��

3 The proof of Theorem 1.1

This section contains a proof for the main theorem announced in the introduction.

Proof (i) ⇒ (i i) Assume K is strictly positive definite and write S = (aZ, bZ) with
a, b > 0. We will show that

{(k, l) : (|k|, |l|) ∈ JK }

intersects ( j, j ′) + S, whenever j ∈ {0, 1, . . . , a − 1} and j ′ ∈ {0, 1, . . . , b − 1}.
There is nothing to prove if a = b = 1. In the other cases, we will assume that

{(k, l) : (|k|, |l|) ∈ JK } ∩ ( j + aZ, j ′ + bZ) = ∅,

and will reach a contradiction. In the case in which a = 1 and b ≥ 2, the assumption
on {(k, l) : (|k|, |l|) ∈ JK } implies that l − j ′,−l − j ′ /∈ bZ, whenever (k, l) ∈ JK .
In particular,

b∑

μ=1

(
ei2πμ/b

)l− j ′ =
b∑

μ=1

(
ei2πμ/b

)−l− j ′ = 0,
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and, consequently,

b∑

μ=1

[
Re

(
ei2πμj ′/b

)] (
ei2πμ/b

)l = 0, (k, l) ∈ JK .

The real scalars cμ := Re (ei2πμj ′/b),μ = 1, 2, . . . , b, are not all zero and the points

(xμ,wμ) = (1, ei2πμ/b), μ = 1, 2, . . . , b,

are distinct in S1×S1. Thus, under the light of Proposition 2.1, we have a contradiction
with the strict positive definiteness of K . The case in which a ≥ 2 and b = 1 is similar.
To conclude the proof, we now assume a, b ≥ 2 and adapt the procedure employed
in the first case. If (k, l) /∈ ( j + aZ, j ′ + bZ), then either k − j /∈ aZ or l − j ′ /∈ bZ.
Hence, we may conclude that

a∑

μ=1

(
ei2πμ/a

)k− j b∑

ν=1

(
ei2πν/b

)l− j ′ = 0,

that is,

a∑

μ=1

b∑

ν=1

e−i2πμj/ae−i2πν j ′/b
(
ei2πμ/a

)k (
ei2πν/b

)l = 0.

Repeating the argument with the assumption (−k,−l) /∈ ( j + aZ, j ′ + bZ), we
conclude that

a∑

μ=1

b∑

ν=1

ei2πμj/aei2πν j ′/b
(
ei2πμ/a

)k (
ei2πν/b

)l = 0.

Thus, since (k, l) is arbitrary,

a∑

μ=1

b∑

ν=1

[
Re

(
ei2πμj/aei2πν j ′/b

)] (
ei2πμ/a

)k (
ei2πν/b

)l = 0, (k, l) ∈ JK .

By an analogous procedure, now taking into account that

(−k, l), (k,−l) /∈ ( j + aZ, j ′ + bZ),

the conclusion is

a∑

μ=1

b∑

ν=1

[
Re

(
ei2πμj/aei2πν j ′/b

)] (
ei2πμ/a

)k (
e−i2πν/b

)l = 0, (k, l) ∈ JK .
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Therefore, since the numbers Re
[
ei2πμj/aei2πν j ′/b

]
are not all zero and the ab points

(xμ,wν) = (ei2πμ/a, ei2πν/b), μ = 1, 2, . . . , a, ν = 1, 2, . . . , b,

are distinct in S1 × S1, we have reached a contradiction once again.
(i i) ⇔ (i i i) One implication is a consequence of Lemma 2.3. The other one is obvi-
ous.
(i i) ⇒ (i) Let us assume that {(k, l) : (|k|, |l|) ∈ JK } intersects all the trans-
lations of each rectangular lattice of Z

2. For a fixed n ≥ 2, n distinct points
(θ1, φ1), (θ2, φ2), . . . , (θn, φn) in [0, 2π)2 and real numbers c1, c2, . . . , cn , not all
zero, we intend to show that either

∑n
μ=1 cμeiθμke−iφμl �= 0 or

∑n
μ=1 cμeiθμkeiφμl �=

0, for some (k, l) ∈ JK . A help of Proposition 2.1 will lead to the strict positive
definiteness of K . In order to achieve the conclusion mentioned above, define

bk,l =
n∑

μ=1

cμe
iθμkeiφμl , k, l ∈ Z.

On one hand, Lemma 2.5 and the fact that at least one cμ is nonzero imply that {(k, l) :
bk,l = 0} �= Z

2. Theorem 2.4 asserts that {(k, l) : bk,l = 0} is the union of a finite
number of translations of subgroups of Z2 while Lemma 2.6 guarantees the existence
of a rectangular lattice of Z2, a translation of which belongs to Z2\{(k, l) : bk,l = 0}.
Thus, due to our assumption on {(k, l) : (|k|, |l|) ∈ JK }, we immediately have that

{(k, l) : (|k|, |l|) ∈ JK } �⊂ {(k, l) : bk,l = 0}.

Therefore, there must exist at least one pair (k, l) in {(k, l) : (|k|, |l|) ∈ JK } for which
n∑

μ=1

cμe
iθμkeiφμl �= 0.

Since the cμ are real, the result follows.
The final statement in the proof of Theorem 1.1 is a consequence of Lemma 2.7.

��
The results demonstrated in this paper can be adapted to hold for positive definite-

ness on the complex circle�2. In that case, we replace S1 with�2, we allow the kernels
to assume complex values and the scalars cμ in the definition of positive definiteness
can be complex numbers (the quadratic form in the definition of positive definiteness
is Hermitian). We will sketch what these results are and refer the interested reader to
[8,15] where the necessary adaptations for the proofs can be prospected from.

Let K : �2 × �2 → C be a continuous kernel and assume that

K ((x, z), (y, w)) = Kr (x · y, z · w), x, y, z, w ∈ �2,
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for some function Kr : �2 × �2 → C, in which · is now the usual inner product of
C. It is positive definite if, and only if, the function Kr is of the form

Kr (z, w) =
∑

k,l∈Z
ak,l z

kwl , z, w ∈ �2,

in which ak,l ≥ 0, k, l ∈ Z and
∑

k,l∈Z ak,l < ∞. Taking the above represen-
tation for granted, we can define IK := {(k, l) : ak,l > 0}. For distinct points
(x1, w1), (x2, w2), . . . , (xn, wn) on�2×�2 and a columnvector c inCn , the quadratic
form ct Ac = 0 corresponds to

n∑

μ=1

cμe
ikθμeilφμ = 0, (k, l) ∈ IK ,

in which θμ and φμ are the arguments in the polar representation of xμ and wμ

respectively. In particular, this reveals that the proofs we have developed in Sects. 2
and 3 simplify in the present complex setting. In particular, a continuous and positive
definite kernel K on �2 × �2 as described above is strictly positive definite if, and
only if, IK intersects all the translations of each rectangular lattice of Z2.

It is worth to mention that, after some period of research, we have not found yet a
characterization for the real, continuous, isotropic and strictly positive definite kernels
on S1 × Sm . An elegant characterization seems to demand a mix of arguments, some
presented here and others developed in [7].
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