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Abstract By a composition operator between two f -algebras we mean a positive
algebra homomorphism. This paper intends to give a systematic study of such opera-
tors. A particular attention is paid to their connection with separating regular operators
as well as to their global behavior in the module of regular operators. The paper ends
with some open problems.
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1 Introduction

Let X,Y be two topological spaces with X realcompact (i.e., X is homeomorphic with
a closed set in an appropriate product of real lines) and τ be a continuous function
from a clopen (i.e., closed an open) set � into Y . The composition operator C�,τ

defined from C (X) into C (Y ) by

(T f ) (y) = ( f ◦ τ) (y) if y ∈ � and (T f ) (y) = 0 if y /∈ �.

is a positive algebra homomorphism. Conversely, for any algebra homomorphism C
from C (X) into C (Y ), there exist a clopen set � in X and a continuous function
τ from � into Y such that T is the composition operator C�,τ (see Theorem 10.8
in [14]). This remarkable fact lies behind our motivation to introduce the notion of
composition operators on the more general setting of f -algebras. A synopsis of the
content of this paper seems to be in order.

Let A be an f -algebra with identity e and B be a semiprime f -algebra (both are
assumed to be Archimedean). By a composition operator from A into B we mean a
positive algebra homomorphism from A into B. It should be pointed out by the way
that, unlike the C (X)-C (Y ) case, an algebra homomorphism from A into B need
not be positive (an example in this direction can be found in [16, Example 5.2]). It is
readily checked that any composition operator C from A into B is separating, i.e.,

C f Cg = 0 for all f, g ∈ A with f g = 0.

The converse does not hold, of course. In spite of that, we shall prove that any separating
regular operator T from A into B with T e idempotent is a composition operator.
Another characterization of composition operators will be obtained. Indeed, we will
show that an operator T from A into B is a composition operator if and only if
T e is idempotent and T is a B-discrete element in the B-module Lr (A, B) of all
regular operators from A into B. This fact can be obtained as a consequence of results
by Kutateladze [17] and Zaanen [26] if B is, in addition, Dedekind complete. Our
results allow us to extend and reprove in a more direct approach a representation
theorem of separating operators in Lr (A, B). Indeed, it has been proved in [8] that if
T ∈ Lr (A, B) is separating then there exist w ∈ B and a composition operatorC from
A into the maximal ring of quotients Q (B) of B such that T = wC . We shall prove that
we can get the same conclusion if T ∈ Lr (A, B) and T e is von Neumann regular (i.e.,
the equality (T e)2 v = T e holds for some v ∈ B). In addition to the aforementioned
representation theorem, we shall obtain as a corollary of our result that ifT ∈ Lr (A, B)

is a biseparating operator (i.e., T is bijective with T and T−1 separating) then A and B
are isomorphic as f -algebras. The last application of our main result is global in nature
and deals with vector spaces of separating operators in Lr (A, B). More precisely, we
shall prove that any vector subspace ofLr (A, B) the operators in which are separating
is contained in a one-dimensional B-submodule of Lr (A, Q (B)) generated by a
composition operator from A into Q (B). This result is based upon the Hausdorff
Maximal Principle and a representation theorem by Wickstead [25], who proved that
Q (B) can be identified with the f -algebra Orthw (B) of all weak orthomorphisms
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on B. All these results lead to some open problems which are collected in a separate
section at the end of the paper.

2 Preliminaries

We take it for granted that the reader is familiar with the notions of vector lat-
tices (also called Riesz spaces) and regular operators such as lattice homomorphisms
and orthomorphisms. For terminology, notations and concepts not explained in this
paper we refer to the standard monographs [3] by Aliprantis-Burkinshaw and [20] by
Luxemburg-Zaanen.

Beginning with the next paragraph, we shall impose as blanket assumptions that
all vector lattices under consideration are real and Archimedean. Moreover, all
given operators are supposed to be linear.

The following lines discuss the notion of function algebras as introduced by Birkhoff
and Pierce in [5]. A vector lattice A which is simultaneously an associative algebra
such that the positive cone

A+ = { f ∈ A : 0 ≤ f }

is closed under multiplication, i.e.,

f g ∈ A+ for all f, g ∈ A+,

is called a lattice-ordered algebra (or a Riesz algebra). The Riesz algebra A is called
a function algebra (briefly, an f -algebra) if

f ∧ g = 0 and 0 ≤ h imply ( f h) ∧ g = (h f ) ∧ g = 0.

We call a subalgebra B of A an f -subalgebra of A if B is, in addition, a vector
sublattice of the underlaying vector lattice of A. Obviously, f -subalgebras of A are
in turn f -algebras. On the other hand, since the underlying vector lattice of the f -
algebra A is assumed to be Archimedean, A is commutative and have positive squares.
Hence, if A has an identity e then e ∈ A+. By the way, any f -algebra with identity
is semiprime, that is, 0 is the only nilpotent element in A. In any f -algebra A, the
condition | f | ∧ |g| = 0 implies f g = 0 and the converse holds if A is, in addition,
semiprime. Moreover,

| f g| = | f | |g| for all f, g ∈ A.

It follows that if the f -algebra is semiprime and f, g ∈ A then

f g = 0 if and only if | f | |g| = 0 if and only if | f | ∧ |g| = 0.
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All these elementary properties can be found in [27, Chapter 20] and will be used
throughout the paper without further mention. In spite of that, it is worth noting that
the class of semiprime f -algebras contains properly the algebra C (X) of all real-
valued continuous functions on a topological space X as well as the algebra of all
real μ-measurable functions on a set carrying a measure μ. More generally, the set
Orth (L) of all orthomorphisms on a vector lattice L is an Archimedean f -algebra
with composition as multiplication.

For brevity’s sake, we will assume throughout the paper that A is an Archimedean
f -algebra with identity e and B is an Archimedean semiprime f -algebra.

Recall that an operator T from A into B is said to be regular if T is the difference
of two positive operators in Lr (A, B) (equivalenty, if the inequality T ≤ S holds
for some positive operator S in Lr (A, B)). The set Lr (A, B) of all regular operators
from A into B is an ordered vector space with respect to the pointwise addition,
scalar multiplication, and ordering. Idempotents elements in f -algebras will play a
preponderant role in the context of our problem. Recall that an element p in the f -
algebra B is said to be idempotent if p2 = p. Obviously, an idempotent element in B
is positive. Let p ∈ B be an idempotent element and put

pB = {pu : u ∈ B} .

In other words, pB is the principal ring ideal of B generated by p. In particular, pB
is a subalgebra of B. Further properties of pB are given next.

Lemma 2.1 Let p be an idempotent element in B. Then the following assertions hold.

(i) pB is a projection band in B.
(ii) pB is an f -subalgebra of B with p as identity.

Proof (i) Define the multiplication operator πp on B by

πpu = pu for all u ∈ B.

Obviously, πp is a positive operator. Let u ∈ B+ and observe that

pu (u − pu) = 0.

Since B is semiprime, it follows that

|u − pu| ∧ |pu| = 0.

But then

0 ≤ pu ≤ |u − pu| ∨ |pu| = |u − pu + pu| = u.

This yields that the inequalities

0 ≤ πp ≤ IB
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hold in Lr (A, B), where IB denotes the identity operator of B. Using Theorem 1.44
in [3], we derive that πp is a projection band and thus the range Im πp of πp is a band
projection on B. The obvious equality Im πp = pB gives the conclusion.

(ii) We have observed already that pB is a subalgebra of B. Furthermore, from (i)
it follows that pB is a vector sublattice of B. We derive that pB is an f -subalgebra
of B. Finally, if v ∈ B then v = pu for some u ∈ B and so

pv = p (pu) = p2u = pu = v.

This means that p is an identity in pB and the proof is complete. ��

Actually, we may prove quite easily that if p is an idempotent element in B then
pB is the principal band of B generated by p.

The next paragraph deal with separating regular operators on f -algebras. An oper-
ator T ∈ Lr (A, B) is said to be separating (or disjointness preserving) if

f g = 0 in A implies T f Tg = 0 in B.

Since both A and B are semiprime, we derive that T ∈ Lr (A, B) is separating if and
only if

|T f | ∧ |Tg| = 0 for all f, g ∈ A with | f | ∧ |g| = 0.

Thus, a positive operator T ∈ Lr (A, B) is separating if and only if T is a lattice
homomorphism. Recall that an operator T ∈ Lr (A, B) is called a lattice (or Riesz)
homomorphism if T f ∧ Tg = 0 in B whenever f ∧ g = 0 in A. It is well-known
that the Lr (A, B) need not be a vector lattice (unless, for instance, B is Dedekind
complete). However, it turns out that any separating operator T ∈ Lr (A, B) has a
modulus (i.e., an absolute value) |T | in Lr (A, B). Moreover, if T ∈ Lr (A, B) then
|T | is a lattice homomorphism and the equalities

|T f | = ||T | f | = |T | | f | (1)

hold in B for every f ∈ A. Therefore, the positive part T+ and the negative part T−
of the separating operator T ∈ Lr (A, B) exist in Lr (A, B) and we have

T+ f = (T f )+ and T− f = (T f )− for all f ∈ A+.

Notice that T+ and T− are again lattice homomorphisms (see Theorem 3.1.4 in [22]).
More about disjointness preserving operators on vector lattices can be found in the
survey paper [9]. We end this preliminaries section with a lemma which will often
come in handy.

Lemma 2.2 Let T ∈ Lr (A, B) be separating. Then T = 0 if and only if T e = 0.
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Proof Only sufficiency needs a proof. Hence, we assume that T e = 0. Let f ∈ A and
n be a natural number. Since A is commutative and squares in A are positive, we may
check quite easily that

0 ≤ 2n | f | ≤ f 2 + n2e.

Combining these inequalities with (1), we get

0 ≤ 2n |T f | = 2n |T | | f |
≤ |T |

(
f 2

)
+ n2 |T | e

= |T |
(
f 2

)
+ n2 |T e| = |T |

(
f 2

)
.

But then T f = 0 because B is Archimedean, which completes the proof of the lemma.
��

3 Characterizations of composition operators

Recall from the introduction that a positive operator C ∈ Lr (A, B) is a composition
operator if

C ( f g) = C f Cg for all f, g ∈ A.

The set of all composition operators in Lr (A, B) is denoted by C (A, B). It is easily
seen that if C ∈ C (A, B) then C is separating and Ce is an idempotent element of B.
It turns out that the converse holds as we can see next.

Proposition 3.1 Let T ∈ Lr (A, B). Then T is a composition operator if and only if
T is separating and T e is an idempotent element of B.

Proof Necessity being obvious, we prove sufficiency. From the equality (T e)2 = T e
it follows that T e is positive. Therefore, we may write

T−e = (T e)− = 0.

Moreover, T− is a lattice homomorphism and so a separating operator in Lr (A, B).
Using Lemma 2.2, we derive that T− = 0. Accordingly, T = T+ and thus T is a
lattice homomorphism with T e idempotent. Corollary 5.5 in [16] ends the proof. ��

At this point, recall after Kusraev [18] that if M is an ordered module over B (see
[24]) then a ∈ M+ is called a B-discrete element if the equality b = wa holds for
some w ∈ B whenever b ∈ M and 0 ≤ b ≤ a. This extends in a natural way the
usual concept of discrete elements in ordered vector spaces (see, e.g., Definition 1.42
in [4]). Moreover, if v ∈ B and T ∈ Lr (A, B) then we may define vT ∈ Lr (A, B)

by putting

(vT ) f = vT f for all f ∈ A.
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Clearly, this turns Lr (A, B) into an ordered module over B. Next, we intend to char-
acterize composition operators in terms of B-discrete elements in Lr (A, B). Let’s
discuss the question in a particular case. Assume that B is Dedekind complete (and
so Lr (A, B) is a Dedekind complete vector lattice) and let T ∈ Lr (A, B) with T e
idempotent. By Zaanen’s Theorem [3, Theorem 2.60], we have B = Orth (B). More-
over, using Kutateladze’s Theorem [3, Theorem 2.50], it turns out that T is a lattice
homomorphism if and only if T is an Orth (B)-discrete element in Lr (A, B) (notice
here that Lr (A, B) has a natural structure of a module over Orth (B) [18]). As T e
is idempotent, it follows directly that T is a composition operator if and only if T
is a B-discrete element in Lr (A, B). Surprisingly enough, the same conclusion can
be obtained without imposing any extra conditions on B. The details are given in the
following.

Theorem 3.2 Let T ∈ Lr (A, B). Then T is a composition operator if and only if T
is a B-discrete element in Lr (A, B) with T e idempotent.

Proof Put p = T e and assume that T is a composition operator. Hence, p is an
idempotent element in B. We claim that T is B-discrete in Lr (A, B). To this end,
choose S ∈ Lr (A, B) with 0 ≤ S ≤ T . Hence,

0 ≤ Se ≤ T e = p.

Taking into consideration Lemma 2.1, we derive that

Se ∈ pB and pSe = Se.

Consequently,
(S − SeT ) e = Se − pSe = 0. (2)

On the other hand, T is a lattice homomorphism and 0 ≤ S ≤ T . Hence, an easy
calculation shows that S − SeT is separating. This together with (2) and Lemma 2.2
yields that S = SeT , which means that T is a B-discrete element in Lr (A, B), as
required.

Conversely, we suppose that p is idempotent and T is B-discrete in Lr (A, B).
First, we claim that T sends A to pB. To this end, let f ∈ A+ and n ∈ {1, 2, . . .}. By
Theorem 2.57 in [3], we have

0 ≤ n ( f − f ∧ ne) ≤ f 2.

As T is positive, we get

0 ≤ nT f − nT ( f ∧ ne) ≤ T
(
f 2

)
. (3)

Whence,
0 ≤ npT f − npT ( f ∧ ne) ≤ pT

(
f 2

)
. (4)
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Moreover,

0 ≤ T ( f ∧ ne) ≤ nT e = np,

which shows by Lemma 2.1 (i) that T ( f ∧ ne) ∈ pB. Using Lemma 2.1 (ii), we see
that

pT ( f ∧ ne) = T ( f ∧ ne)

and (4) becomes

0 ≤ npT f − nT ( f ∧ ne) ≤ pT
(
f 2

)
.

Combining these inequalities with (3), we may write

0 ≤ n |T f − pT f | ≤ T
(
f 2

)
+ pT

(
f 2

)
.

But then
T f = pT f ∈ pB

because n is arbitrary in {1, 2, . . .} and B is Archimedean. Consequently, T maps A
into pB, as desired. Accordingly, T can be seen as a positive operator in Lr (A, pB).
Moreover, p is the identity of the f -algebra pB (see again Lemma 2.1). That is,

T ∈ M = {
S ∈ Lr (A, pB) : S is positive and Se = p

}
.

Observe that M the convex set of the so-called Markov operators from A into pB (for
Markov operators see, e.g., [16]). Let R, S ∈ M such that

2T = (R + S) .

In particular,

0 ≤ R ≤ 2T .

Considering R as an operators in Lr (A, B) and using the fact that T is B-discrete in
Lr (A, B), we derive that the equality

R = uT (5)

holds for some u ∈ B. In particular,

pu = uT e = Re = p. (6)

Now, recall that both R and T take their values in pB. Hence, multiplying (5) by p
(which is the identity of pB) and using (6), we obtain
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R = pR = puT = pT = T .

But then T is an extreme point in the convex set M. Taking into account Theorem 7.5
in [16], we derive that T is separating and Proposition 3.1 completes the proof. ��

4 Weighted composition operators

Recall once again that A is an Archimedean f -algebra with identity e and B is an
Archimedean semiprime f -algebra. The symbol C (A, B) is used to indicate the set
of all composition operators in Lr (A, B). An operator T ∈ Lr (A, B) is called a
weighted composition operator if there exist w ∈ B and C ∈ C (A, B) such that
T = wC . Obviously, any weighted composition operator in Lr (A, B) is separating.
The next simple example shows that a separating operator in Lr (A, B) need not be a
weighted composition operator.

Example 4.1 Let A be the vector lattice C (R) equipped with its usual structure of
f -algebra. On the other hand, assume that B is the same vector lattice furnished with
the multiplication ∗ defined by

( f ∗ g) (x) = x f (x) g (x) for all f, g ∈ C (R) and x ∈ R.

Clearly, B is an Archimedean semiprime f -algebra. Obviously, the identity operator
I of C (R) is a separating operator in Lr (A, B). However, I is not a weighted com-
position operator for the simple reason that 0 is the unique idempotent element of B
and so Lr (A, B) contains no non-trivial composition operators.

In spite of the counter-example provided above, we shall obtain a quite satisfactory
condition on T e for a separating operator T ∈ Lr (A, B) to be a weighted composition
operator. The extra condition we are talking about is largely motivated by the recent
paper [12]. In this prospect, we call a von Neumann regular element in B any element
w ∈ B for which the equality w2u = w holds for some u ∈ B. We have gathered thus
all the ingredients we need for the proof of the central result of this section (compare
with Theorem 3.3 in [12]).

Theorem 4.2 Let T ∈ Lr (A, B)with T e von Neumann regular. Then T is separating
if and only if there exists C ∈ C (A, B) such that T = T eC.

Proof Choose u ∈ B such that

(T e)2 u = T e

and define a map C ∈ Lr (A, B) by

C = uT .

Clearly, C is a separating. Moreover,

(Ce)2 = (uT e)2 = u2 (T e)2 = u (T e)2 u = uT e = Ce.
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This means that Ce is an idempotent element of B, which together with Proposition
3.1 yields that C is a composition operator. Now, we claim that

T = T eC.

To this end, let f, g ∈ A with f g = 0. Since T f Tg = 0, we get

(T − T eC) f (T − T eC) g = (T − uT eT ) f (T − uT eT ) g

= (T f − uT eT f ) (Tg − uT eTg)

= T f Tg − 2uT eT f Tg + (uT e)2 T f Tg = 0.

Thus, T − T eC is separating. Furthermore,

(T − T eC) e = T e − T eCe = T e − T euT e

= T e − (T e)2 u = T e − T e = 0.

From Lemma 2.2 it follows that T − T eC = 0, completing the proof of the theorem.
��

We proceed to the first application of Theorem 4.2, which is a characterization of
separating operators in Lr (A, B). We first have to recall some of the relevant notions.

From now on, let Q (B) denote the maximal ring of quotients of B (see [19]).
Since B is an Archimedean semiprime f -algebra, so is Q (B). Actually, B is an f -
subalgebra of Q (B) (see, e.g., [21] by Martinez and [25] by Wickstead). The ‘good
news’ is that Q (B) is von Neumann regular, that is, all elements in Q (B) are von
Neumann regular (see again [19]). This leads, via Theorem 4.2, to the following.

Corollary 4.3 An operator T ∈ Lr (A, B) is separating if and only if there exists
C ∈ C (A, Q (B)) such that T = T eC.

Proof It suffices to consider T as an operator in Lr (A, Q (B)) then apply the result
of the previous theorem. ��

We should point out that Corollary 4.3 has been obtained in [8] using a completely
different (and much more difficult) method.

Now, a bijective operator T ∈ Lr (A, B) is said to be biseparating if both T and
T−1 are separating (see, e.g., [15]). Hence, T ∈ Lr (A, B) is biseparating if and only
if T is bijective and

f g = 0 in A if and only if T f Tg = 0 in B.

It plausible to think that if there exists a biseparating operator in Lr (A, B) then A and
B are isomorphic as f -algebras (i.e., there exists an algebra and lattice isomorphism).
Unfortunately, this fails to be true as the next example shows.

Example 4.4 Keep the same f -algebras as previously defined in Example 4.1. Obvi-
ously, the identity operator I ∈ Lr (A, B) biseparating. However, A and B are not
isomorphic as f -algebras since B has no identity.
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It could be expected therefore that in the presence of such an identity the situation
improves and it does. That’s what we prove in the last result of this section.

Corollary 4.5 Assume that B has identity and that Lr (A, B) contains a biseparating
operator. Then A and B are isomorphic as f -algebras.

Proof Let u denote the identity of B and pick a biseparating operator T ∈ Lr (A, B).
Fix f ∈ A and define S ∈ Lr (A, B) by

Sg = T eT ( f g) − T f Tg for all g ∈ A.

Let g, h ∈ A with gh = 0. Hence,

( f g) ( f h) = f 2gh = 0.

Since T is separating, we get

T ( f g) T ( f h) = T ( f g) Th = T ( f h) Tg = TgTh = 0.

It follows that

SgSh = (T eT ( f g) − T f Tg) (T eT ( f h) − T f T h) = 0.

Hence, S is separating. Moreover,

Se = T eT f − T f T e = 0

and thus S = 0, where we use Lemma 2.2. This means that

T eT ( f g) = T f Tg for all f, g ∈ A.

Putting

f = g = T−1u

in the above equality, we obtain

T eT

((
T−1u

)2
)

= u.

This implies that T e has an inverse in B. In particular, T e is von Neumann regular in
B. By Theorem 4.2, there exist C ∈ C (A, B) such that

T = T eC.

Finally, it easily verified that C is an algebra and lattice isomorphism, which gives the
conclusion. ��
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As a matter a fact, Corollary 4.5 can also be obtained in an alternative way applying
Theorem 3.3 in [10].

5 Vector spaces of separating regular operators

This section contains another application of Theorem 4.2 (or rather Corollary 4.3). We
call a vector space of separating regular operators from A into B any vector subspace
W of Lr (A, B) the operators in which are separating. Our main purpose is to give
a complete description of such vector spaces. In order to achieve this aim, we need
further background information.

Let C be a composition operator in Lr (A, Q (B)), where Q (B) is the maximal
ring of quotients of B. Put

VC = {w ∈ B : wC maps A into B} .

Obviously, VC is a vector subspace of B. Moreover, if W is a vector subspace of VC
then the set

W = {wC : w ∈ W }

is a vector space of separating regular operators from A into B. As we shall see next,
it turns out that all vector spaces of separating regular operators from A into B are
of this form. The proof of this fact relies in part on a result by Wickstead on weak
orthomorphisms. Indeed, in his remarkable paper [25], Wickstead introduced weak
orthomorphism on a vector lattice L as a variant of the so-called extended orthomor-
phisms (see, e.g., [23]). The set of such orthomorphisms is denoted by Orthw (L).
What we are concerned with here is that Orthw (B) is a laterally complete semiprime
f -algebra. We may recall in passing that a vector lattice L is said to be laterally
complete if the supremum of every disjoint set in L+ exists in L (see Chapter 7 in
[2]). Moreover, Orthw (B) is isomorphic as an f -algebra with Q (B) and so B can be
considered as an f -subalgebra of Orthw (B). In summary, we have to keep in mind
in the following proof that Q (B) is a laterally complete and von Neumann regu-
lar f -algebra that contains B as an f -subalgebra. We also need to recall that any
Archimedean laterally complete vector lattice has a weak order unit.

As we have already mentioned, the ordered vector space Lr (A, B) need not be
a vector lattice. Hence, we cannot speak about vector sublattices of Lr (A, B). To
workaround this terminological problem, Abramovich and Wickstead in [1] call a
generalized vector sublattice ofLb (A, B) any ordered vector subspaceV ofLr (A, B)

which is a vector lattice such that the modulus of T ∈ V in Lr (A, B) exists and
coincides with its modulus in V. On the other hand, a nonvoid subset S of Lr (A, B)

is called a separating set if f g = 0 in A implies S f Tg = 0 for all S, T ∈ S. This
concept has been introduced in some form or others in [7]. A separating set M in
Lr (A, B) is said to be maximal if there is no strictly large separating set in Lr (A, B).
It is shown in [9] that any maximal separating set M in Lr (A, B) is a generalized
vector sublattice of Lr (A, B) the lattice operations of which are given pointwise,
namely, if S, T ∈ M and f ∈ A+ then
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(S ∨ T ) f = S f ∨ T f and (S ∧ T ) f = S f ∧ T f.

Moreover, the Hausdorff Maximal Principal (i.e., Zorn’s Lemma) tells us that any
separating set in Lr (A, B) is contained in a maximal separating set in Lr (A, B).

All these results will be used in the proof of the last result of this paper.

Theorem 5.1 A subset W of Lr (A, B) is a vector space of separating regular oper-
ators from A into B if and only if there exist C ∈ C (A, Q (B)) and a vector subspace
W of VC such that

W = {wC : w ∈ W } .

Proof The ‘if’ part is quite clear but the ‘only if’ is much less evident. Let W be a
vector subspace of Lr (A, B) such that all operators in W are separating. We claim
that W is a separating set in Lr (A, B). To this end, choose S, T ∈ W and f, g ∈ A
such that f g = 0. Since S, T are separating, we have

S f Sg = T f Tg = 0.

Moreover, S + T is again separating and thus

(S f + T f ) (Sg + Tg) = (S + T ) f (S + T ) g = 0.

It follows that
S f Tg + T f Sg = 0.

Therefore,
0 ≤ (S f Tg)2 = S f (S f Tg) Tg = −S f T f SgTg = 0.

But then S f Tg = 0 since B is semiprime. This shows that W is a separating set in
Lr (A, B), as required.

Now, we shall consider W as a separating set in Lr (A, Q (B)). Hence, W is
contained in a maximal separating set M in Lr (A, Q (B)). Using Theorem 5.3 in
[9], we derive that M is a generalized vector sublattice of Lr (A, Q (B)) the lattice
operations of which are given pointwise. Since Q (B) is a laterally complete vector
lattice, so is M (see Theorem 4 in [6]). But then M has a positive weak order unit E ,
where we use [2, Theorem 7.2]. Moreover, E is a separating operator inLr (A, Q (B)).
From Corollary 4.3, there exists C ∈ C (A, Q (B)) such that

E = EeC.

We claim that if T ∈ M then

T = T eC.

Indeed, observe that

(T e − T eCe) (EeCe) = T eEeCe − T eEe (Ce)2 = 0.
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Hence,

|T e − T eCe| ∧ EeCe = 0.

Since T − T eC is separating, we may write

|T e − T eCe| = |T − T eC | e.

Furthermore, as observed before, the supremum in M is given pointwise. This yields
that

(|T − T eC | ∧ E) e = (|T − T eC | ∧ EeC) e

= |T e − T eCe| ∧ EeCe = 0.

Using Lemma 2.2, we derive that the equality

|T − T eC | ∧ E = 0

holds in M. But then T = T eC because E is a weak order unit in M. Putting

W = {T e : T ∈ W} ,

we conclude that W is a vector subspace of B and that

W = {wC : w ∈ W } .

This completes the proof. ��
In particular, if W is a vector space of separating regular operators from A

into B, then W is contained in a one-dimensional B-submodule of the B-module
Lr (A, Q (B)) generated by some composition operator C from A into Q (B).

Let us end where we began. Consider two topological spaces X,Y with X realcom-
pact. From Theorem 3.2 in [9] it follows that T ∈ Lr (C (X) ,C (Y )) is separating
if and only if there exists w ∈ C (Y ) and a function τ from Y into X such that τ is
continuous on

coz (w) = {y ∈ Y : w (y) 
= 0}

and

(T f ) (y) = w (y) ( f ◦ τ) (y) for all f ∈ C (X) and y ∈ Y.

It is not hard to see that for each f ∈ C (X) the function f ◦ τ is an element of the
maximal ring of quotients Q (C (Y )) of the f -algebraC (Y ) (see [13]). A composition
operator Cτ from C (X) into Q (C (Y )) can thus be defined by putting

Cτ f = f ◦ τ for all f ∈ C (X) .
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It follows from Theorem 5.1 that if W is a vector space of separating regular operators
from C (X) into C (Y ) then there exist a vector subspace W of C (Y ) and a function
τ from Y into X such that

W = {wCτ : w ∈ W } .

Moreover, τ has to be continuous on
⋃

w∈Wcoz (w).

6 Open problems

In this section, we discuss three open problems.

6.1 First problem

In Theorem 4.2, we have shown that if T ∈ Lr (A, B) with T e von Neumann regular,
then T is separating if and only if there exists C ∈ C (A, B) such that T = T eC .
Closely examining the proof 4.2, we realize that the equality T eB = CeB holds.
Accordingly Theorem 4.2 can be stated alternatively as follows.

Theorem 6.1 Let B be a semiprime f -algebra and p ∈ B+. Consider the following
assertions.

(i) p is von Neumann regular.
(ii) For every f -algebra A with identity e and every separating operator T ∈

Lr (A, B) with p = T e, there exists C ∈ C (A, B) such that T = pC and
pB = CeB.

Then (i) implies (ii).

It is plausible now that the converse holds, viz., (ii) implies (i). Indeed, adapting
the proof of Theorem 4.2 in [12], we derive that this is true for the C (X)-C (Y ) case.
But the situation remains unclear in general. Notice by the way that nothing about p
can be expected without the condition pB = CeB.

6.2 Second problem

Throughout the paper, the domain f -algebra A is supposed to have an identity. What we
think to be a very legitimate issue is to look at the situation when only semiprimeness
is assumed. For instance, does the result of Corollary 4.3 hold if we suppose that A
is semiprime with no identity? This question seems natural since this is true for the
C0 (X)-C0 (Y ) case (see Theorem 3.3 in [9]). Unfortunately, the result fails in general
(see Example 6.6 in [11]). In spite of that, a partial answer can be derived from Theorem
3.1 in [11]. Indeed, it is proved there that if A is semiprime and nth-root closed (i.e.,
for every n ∈ {1, 2, . . .} and f ∈ A+, there exists g ∈ A+ such that gn = f ) and
T ∈ Lr (A, B) is separating, then there exists C ∈ C (Orth (A) , Orthw (Bru)) such
that T = T eC , where Bru is the relatively uniform completion of B (see [20] for
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the relatively uniform topology on vector lattices). So, the question can be stated as
follows. What condition is missing on A for the conclusion to hold?

6.3 Third problem

In Theorem 5.1, we describe vector subspaces of Lr (A, B) the operators in which are
separating. Assuming that A = B, we can speak about subalgebras of Lr (A, B) =
Lr (A). For instance, Orth (A) is a subalgebra of Lr (A) such that all operators in
Orth (A) are separating. We can thus ask about the general case, that is, how can
we characterize subalgebras of separating operators in Lr (A)? In this prospect, we
conjecture the following. Let A be an f -algebra with identity and A be a subalgebra
of Lr (A) such that all operators in A are separating. Then there exists a vector lattice
L such that A has an algebra and lattice isomorphic copy in Orth (L). Nevertheless,
we have not been able, so far, to prove or disprove this conjecture.
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