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Abstract In the paper, we develop some calculus of Studniarski derivatives for set-
valued maps. Then, we establish relationships between Studniarski derivatives of a
given objective map and that of the weak perturbation map. Finally, applications to
sensitivity analysis of a constrained set-valued optimization problem are obtained.
Several examples are given to illustrate some advantages of our results over recent
existing ones in the literature.
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1 Introduction

Sensitivity analysis means the quantitative analysis. It provides informations about
derivatives of the perturbationmap in case of an optimization problembeing perturbed.
For sensitivity results, the readers are referred to [11] (for nonlinear programming)
[18,26,30,31] (for nonsmooth optimization) [9,28,29] (for set-valued optimization)
and the references therein. Recently, many kinds of higher-order generalized deriva-
tives have been proposed with their applications to optimization. We can divide them
into two groups. In the first group, the existence of higher-order derivatives depends
on lower-order directions, for example, higher-order contingent (adjacent) derivatives
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in [7], higher-order generalized contingent (adjacent) derivatives in [32], higher-order
generalized contingent (adjacent) epiderivatives in [19], higher-order variational sets in
[6,17], higher-order radial derivatives in [3,4], etc. In the second one, a higher-order
direction exists without informations of lower-order ones, such as the Studniarski
derivative introduced by Studniarski in [27] and higher-order radial derivative in the
sense of Studniarski in [2]. In recent years, there has been an increasing interest in
the study of the Studniarski derivative. We mention here some papers relative to this
concept and its applications to optimization. In [28], the lower Studniarski derivative
was introduced and applied to sensitivity analysis in parametrized vector optimiza-
tion. A new notion of the weak lower Studniarski derivative was proposed in [29]
with its applications to optimality conditions for a set-valued optimization problem.
The Studniarski derivative was employed to obtain optimality conditons and duality
in set-valued optimization in [1] and sensitivity analysis for nonsmooth vector opti-
mization in [9]. Its properties and calculus were discussed in [5]. Almost all results
in [5,9] were obtained by virtue of the semi-Studniarski derivative property [called
“proto-contingent-type derivative” and “proto-Studniarki derivative” in [9] and [5],
respectively (resp)]. This property is quite heavy. In this case, we expect that it can be
replaced by a weaker concept.

Motivated by the preceding observations and [10], in the paper we first improve
calculus of the Studniarski derivative for set-valuedmapswithout the semi-Studniarski
derivative property. Relationships between a weak perturbation map and the feasible-
objective map in terms of Studniarski derivatives are also re-established under relaxed
conditions. Then, we apply these results to get sensitivity analysis of a constrained
set-valued optimization problem (CSOP) in terms of Studniarski derivatives.

The layout of the paper is as follows. Section 2 is devoted to some main nota-
tions and concepts needed for our later use. In Sect. 3, we develop some calculus
rules of Studniarski derivatives for set-valued maps by virtue of the directional met-
ric subregularity. Relationships between Studniarski derivatives of a set-valued map
and its profile map are discussed in Sect. 4. Then, relationships between Studniarski
derivatives of a weak perturbation map and the feasible-objective map in set-valued
optimization are implied. Finally, we apply these results to sensitivity analysis of a
(CSOP). In detail, we discuss Studniarski derivatives of the feasible-objective map
into the decision space. Some possible developments are contained in Sect. 5.

2 Preliminaries

Throughout this paper, let X,Y, and Z be normed spaces, C ⊆ Y be a closed convex
cone. For A ⊆ Y , intA and clA denote the interior and closure of A, resp. BX (x, r)
stands for the open ball in X centered at x with radius r > 0. N, R, and R+ are used
for the sets of the natural numbers, real numbers, and nonnegative real numbers, resp.
If intC �= ∅, ŷ ∈ A is said to be a weak efficient point of A (ŷ ∈ WMinC A) iff
(A − ŷ) ∩ (−intC) = ∅.

For a set-valued map F : X ⇒ Y , the domain and graph of F are defined by

dom F := {x ∈ X |F(x) �= ∅}, gr F := {(x, y) ∈ X × Y |y ∈ F(x)}, resp.
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F + C is called the profile map of F defined by (F + C)(x) := F(x) + C .
Recall that F is said to be metric regular at (x0, y0) ∈ gr F iff there exist μ, λ > 0

such that for all x ∈ BX (x0, λ), y ∈ BY (y0, λ),

d(x, F−1(y)) ≤ μd(y, F(x)). (1)

If we fix y = y0 in (1), F is said to be metric subregular at (x0, y0). Let S be a
nonempty subset in X , F is metric subregular at (x0, y0) wrt S iff there exist μ, λ > 0
such that for all x ∈ BX (x0, λ) ∩ S, y ∈ BY (y0, λ),

d(x, F−1(y) ∩ S) ≤ μd(y, F(x)).

It is well known that the metric regularity property of (the metric subregularity)F is
equivalent to theAubin property (the calmness, resp) of the inversemap F−1 : Y ⇒ X ,
see [7]. More properties and applications of metric (sub)regularity can be found in
books [7,20,21,25] and papers [8,12,13].

In the paper, we only use a weaker concept of metric subregularity as follows. Let
F : X × Y ⇒ Z , ((x0, y0), z0) ∈ gr F and (u, v) ∈ X × Y . For m ∈ N, F is said to
be directionally metric subregular of order m in Y at ((x0, y0), z0) in direction (u, v)

with respect to (wrt) a subset S in X × Y iff there exist μ, λ > 0 such that for all
t ∈ (0, λ), u′ ∈ BX (u, λ), v′ ∈ BY (v, λ) with (x0 + tu′, y0 + tmv′) ∈ S,

d((x0 + tu′, y0 + tmv′), F−1(z0) ∩ S) ≤ μd(z0, F(x0 + tu′, y0 + tmv′)).

It is obvious to see that if F is metric subregular at ((x0, y0), z0) wrt a subset S, then
F is directionally metric subregular of orderm in Y at ((x0, y0), z0) in direction (u, v)

wrt S, for all m ∈ N and (u, v) ∈ X × Y .

3 Studniarski derivatives of set-valued maps

In this section, we recall the concept of Studniarski derivative for set-valued maps and
develop calculus rules of this concept.

Definition 3.1 ([1]) Let m ∈ N, F : X ⇒ Y , and (x0, y0) ∈ gr F .

(i) The mth-order upper Studniarski derivative of F at (x0, y0) is a set-valued map
DmF(x0, y0) : X ⇒ Y defined by

DmF(x0, y0)(u) := Limsup
t↓0, u′→u

F(x0 + tu′) − y0
tm

.

(ii) The mth-order lower Studniarski derivative of F at (x0, y0) is a set-valued map
Dm
l F(x0, y0) : X ⇒ Y defined by

Dm
l F(x0, y0)(u) := Liminf

t↓0, u′→u

F(x0 + tu′) − y0
tm

.
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Equivalently, we obtain the following formulae

DmF(x0, y0)(u) = {
v∈Y |∃tn ↓ 0, ∃(un, vn) → (u, v), y0 + tmn vn ∈F(x0 + tnun)

}
,

Dm
l F(x0, y0)(u) = {

v∈Y |∀tn ↓ 0,∀un → u, ∃vn → v, y0 + tmn vn ∈F(x0 + tnun)
}
.

Definition 3.2 ([29]) Let m ∈ N and (x0, y0) ∈ gr F . The mth-order weak lower
Studniarski derivative of F at (x0, y0) is a set-valued map Dm

w F(x0, y0) : X ⇒ Y
defined by

Dm
w F(x0, y0)(u)={

v∈Y |∀tn ↓ 0, ∃(un, vn) → (u, v), y0 + tmn vn ∈ F(x0 + tnun)
}
,

It is easy to see that

Dm
l F(x0, y0)(u) ⊆ Dm

w F(x0, y0)(u) ⊆ DmF(x0, y0)(u). (2)

The above inclusions were illustrated by Examples 3.4-3.6 in [29]. By virtue of the
converse inclusions of (2), we have the following definition.

Definition 3.3 (i) The map F is said to have themth-order semi-Studniarski deriv-
ative at (x0, y0) if Dm

l F(x0, y0)(u) = DmF(x0, y0)(u) for all u ∈ X .
(ii) The map F is said to have the mth-order proto-Studniarski derivative at (x0, y0)

if Dm
w F(x0, y0)(u) = DmF(x0, y0)(u) for all u ∈ X .

Remark 3.1 (i) If F has the mth-order semi-Studniarski derivative at (x0, y0), then
F has the mth-order proto-Studniarski derivative at (x0, y0).

(ii) Definitions 3.3(i), (ii) are called the mth-order proto-Studniarski derivative and
the mth-order strict Studniarski derivative, resp, in [5], while the authors named
Definition 3.3(i) the mth-order proto-contingent-type derivative in [9]. In the
paper, we use the terminologies “semi-derivative” and “proto-derivative” accord-
ing to the idea of [23] and [24], resp.

We now consider the following operations.

Definition 3.4 ([5]) (i) Let F1, F2 : X ⇒ Y , the sum of F1 and F2 is the set-valued
map F1 + F2 : X ⇒ Y definedby (F1 + F2)(x) := {y1 + y2 ∈ Y |y1 ∈ F1(x), y2 ∈ F2(x)} .

(ii) If Y = R
k (an Euclidean space), then the product of F1 and F2 is the set-valued

map 〈F1, F2〉 : X ⇒ R defined by 〈F1, F2〉 (x) :={〈y1, y2〉 ∈ R|y1∈F1(x), y2∈
F2(x)} .

(iii) If Y = R, then the quotient of F1 and F2 is the set-valued map F1/F2 : X ⇒ R

defined by (F1/F2)(x) := {y1/y2 ∈ R|y1 ∈ F1(x), y2 ∈ F2(x), y2 �= 0} .

(iv) Let F : X ⇒ Y , G : Y ⇒ Z , the chain of F and G is the set-valued map
G ◦ F : X ⇒ Z defined by (G ◦ F)(x) := {z ∈ Z |∃y ∈ F(x), z ∈ G(y)} .

Calculus rules for the above-mentioned operations in terms of Studniarski deriva-
tives were discussed in [5]. The semi-Studniarski derivative property plays an essential
role to get inclusions concerning calculus for the operators of set-valued maps, espe-
cially Propositions 3.1-3.4 in [5]. However, it is a quite strong condition. Thus, we
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prefer to lighten this assumption by using aweaker hypothesis of the proto-Studniarski
derivative property.

Proposition 3.1 Let F1, F2 : X ⇒ Y , x0 ∈ dom F1 ∩ dom F2, and yi ∈ F1(x0),
i = 1, 2. Suppose that either F1 or F2 has themth-order proto-Studniarski derivative at
(x0, y1) or (x0, y2), resp, and the map g : (X×Y )2 → R+ defined by g(α, β, γ, δ) :=
||α−γ ||m is directionally metric subregular of order m in Y ×Y at ((x0, y1, x0, y2), 0)
in the direction (u, v, u, v̂) wrt gr F1 × gr F2, for all (u, v) ∈ gr DmF1(x0, y1) and
(u, v̂) ∈ gr DmF2(x0, y2). Then,

(i) DmF1(x0, y1)(u) + DmF2(x0, y2)(u) ⊆ Dm(F1 + F2)(x0, y1 + y2)(u).

(ii) If Y = R
k , then

〈
y2, D

mF1(x0, y1)(u)
〉+〈

y1, D
mF2(x0, y2)(u)

〉 ⊆ Dm(〈F1, F2〉)(x0, 〈y1, y2〉)(u).

(iii) If Y = R and y2 �= 0, then

1

y22
(y2D

mF1(x0, y1)(u) − y1D
mF2(x0, y2)(u)) ⊆ Dm(F1/F2)(x0, y1/y2)(u).

Proof Let v ∈ DmF1(x, y1)(u) and v̂ ∈ DmF2(x, y2)(u), then there exist tn ↓ 0,
(un, vn) → (u, v) such that

y1 + tmn vn ∈ F1(x0 + tnun).

Suppose that F2 has the mth-order proto-Studniarski derivative at (x0, y2), with tn
above, there are (ûn, v̂n) → (u, v̂) such that

y2 + tmn v̂n ∈ F2(x0 + tnûn).

It follows from the directionallymetric subregularity assumption that there existμ > 0
and λ > 0 such that for every t ∈ (0, λ) and (u1, v1, u2, v2) ∈ BX×Y ((u, v), λ) ×
BX×Y ((u, v̂), λ) with (x0 + tu1, y2 + tmv1, x0 + tu2, y2 + tmv2) ∈ gr F1 × gr F2,

d
(
(x0 + tu1, y2 + tmv1, x0 + tu2, y2 + tmv2), g

−1(0) ∩ (gr F1 × gr F2)
)

≤
μd

(
0, g

(
x0 + tu1, y2 + tmv1, x0 + tu2, y2 + tmv2

))
. (3)

For n large enough, we have tn ∈ (0, λ) and (un, vn, ûn, v̂n) ∈ BX×Y ((u, v), λ) ×
BX×Y ((u, v̂), λ). Thus, from (3), there exist (xn, yn, x̂n, ŷn) ∈ gr F1 × gr F2 with
xn = x̂n for all n such that

∥
∥(
x0 + tnun, y1 + tmn vn, x0 + tnûn, y2 + tmn v̂n

) − (
xn, yn, x̂n, ŷn

)∥∥

≤ μtn
m

∣
∣
∣
∣un − ûn

∣
∣
∣
∣m ,
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which implies

‖x0 + tnun − xn‖ ≤ ∥
∥(
x0 + tnun, y1 + tmn vn, x0 + tnûn, y2 + tmn v̂n

)

− (
xn, yn, x̂n, ŷn

)∥∥

≤ μtmn
∣
∣
∣
∣un − ûn

∣
∣
∣
∣m .

Similarly, we have

∥
∥y1 + tmn vn − yn

∥
∥ ≤ μtmn ||un − ûn||m,

∥
∥y2 + tmn v̂n − ŷn

∥
∥ ≤ μtmn

∣
∣
∣
∣un − ûn

∣
∣
∣
∣m .

Consequently,

∥
∥
∥
∥
xn − x0

tn
− un

∥
∥
∥
∥ ≤ μtm−1

n ||un − ûn||m,

∥
∥
∥
∥
yn − y1

tmn
− vn

∥
∥
∥
∥ ≤ μ

∣
∣
∣
∣un − ûn

∣
∣
∣
∣m ,

∥
∥
∥
∥
ŷn − y2
tmn

− v̂n

∥
∥
∥
∥ ≤ μ

∣
∣
∣
∣un − ûn

∣
∣
∣
∣m . (4)

By setting v1n := yn − y1
tmn

, v2n := ŷn − y2
tmn

and un := xn − x0
tn

, then v1n → v, v2n → v̂,

un → u (take n → +∞ in (4)) and

y1 + tmn v1n = yn ∈ F1(xn) = F1(x0 + tnun),

y2 + tmn v2n = ŷn ∈ F2(x̂n) = F2(xn) = F2(x0 + tnun).

Thus,

(y1 + y2) + tmn (v1n + v2n) ∈ (F1 + F2)(x0 + tnun),

i.e., v + v̂ ∈ Dm(F1 + F2)(x0, y1 + y2)(u).
For the proofs of parts (ii) and (iii), one refers to Propositions 3.3 and 3.4 in [5].

��
Proposition 3.2 Let F : X ⇒ Y , G : Y ⇒ Z, (x0, y0) ∈ grF, and (y0, z0) ∈ grG.

(i) Suppose that G has the mth-order proto-Studniarski derivative at (y0, z0) and
the map g1 : X × Y × Y × Z → R+ defined by g1(α, β, γ, δ) := ||β − γ ||m
is directionally metric subregular of order m in Z at ((x0, y0, y0, z0), 0) in the
direction (u, v, v,w) wrt gr F × gr G, for all (u, v) ∈ gr D1F(x0, y0) and
(v,w) ∈ gr DmF2(y0, z0). Then,

DmG(y0, z0)(D
1F(x0, y0)(u)) ⊆ Dm(G ◦ F)(x0, z0)(u).
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(ii) Suppose that G has the first order proto-Studniarski derivative at (y0, z0) and
the map g2 : X × Y × Y × Z → R+ defined by g2(α, β, γ, δ) := ||β − γ || is
directionally metric subregular of order m in Y × Y × Z at ((x0, y0, y0, z0), 0)
in the direction (u, v, v,w) wrt gr F × gr G, for all (u, v) ∈ gr DmF(x0, y0) and
(v,w) ∈ gr D1G(y0, z0). Then,

D1G(y0, z0)(D
mF(x0, y0)(u)) ⊆ Dm(G ◦ F)(x0, z0)(u).

Proof By the similarity, we only prove (ii). Let w ∈ D1G(y0, z0)(DmF(x0, y0)(u)),
then there exists v ∈ DmF(x0, y0)(u) such that w ∈ D1G(y0, z0)(v). For v, there are
tn ↓ 0, (un, vn) → (u, v) with

y0 + tmn vn ∈ F(x0 + tnun).

SinceG has the first order proto-Studniarski derivative at (y0, z0), with tn above, there
are (v̂n, ŵn) → (v,w) such that

z0 + tmn v̂n ∈ G(y0 + tmn ŵn).

By the directionallymetric subregularity assumption, there existμ > 0 andλ > 0 such
that for every t ∈ (0, λ) and (u′, v1, v2, w′) ∈ BX×Y ((u, v), λ) × BY×Z ((v,w), λ)

with (x0 + tu′, y0 + tmv1, y0 + tmv2, z0 + tmw′) ∈ gr F × gr G,

d
(
(x0 + tu′, y0 + tmv1, y0 + tmv2, z0 + tmw′), g−1

2 (0) ∩ (gr F × gr G
)

≤
μd

(
0, g2(x0 + tu′, y0 + tmv1, y0 + tmv2, z0 + tmw′)

)
. (5)

For n large enough, we have (un, vn, v̂n, ŵn) ∈ BX×Y ((u, v), λ) × BY×Z ((v,w), λ)

and tn ∈ (0, λ). Thus, it follows from (5) that there exist (xn, yn, ŷn, ẑn) ∈ gr F×gr G
with yn = ŷn for all n such that

∥
∥(
x0 + tnun, y0 + tmn vn, y0 + tmn v̂n, z0 + tmn ŵn

) − (
xn, yn, ŷn, ẑn

)∥∥

≤ μtmn
∣
∣
∣
∣vn − v̂n

∣
∣
∣
∣ ,

which implies

∥
∥y0 + tmn vn − yn

∥
∥ ≤ ∥

∥(
x0 + tnun, y0 + tmn vn, y0 + tmn v̂n, z0 + tmn ŵn

)

− (
xn, yn, ŷn, ẑn

)∥∥
≤ μtmn

∣
∣
∣
∣vn − v̂n

∣
∣
∣
∣ ,

and

‖x0 + tnun − xn‖ ≤ μtmn
∣
∣
∣
∣un − ûn

∣
∣
∣
∣ ,

∥
∥z0 + tmn ŵn − ẑn

∥
∥ ≤ μtmn

∣
∣
∣
∣un − ûn

∣
∣
∣
∣ .
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Thus,

∥
∥
∥
∥
yn − y0

tmn
− vn

∥
∥
∥
∥ ≤ μ||vn − v̂n||,

∥
∥
∥
∥
xn − x0

tn
− un

∥
∥
∥
∥ ≤ μtm−1

n ||vn − v̂n||,
∥
∥
∥
∥
ẑn − z0
tmn

− ŵn

∥
∥
∥
∥ ≤ μ||vn − v̂n||. (6)

Let vn := yn − y0
tmn

, zn := ẑn − z0
tmn

and un := xn − x0
tn

. Take n → +∞ in (6), then

vn → v, zn → w, un → u and

y0 + tmn vn = yn ∈ F(xn) = F(x0 + tnun),

z0 + tmn zn = ẑn ∈ G(ŷn) = G(yn) = G(y0 + tmn vn).

Hence, z0 + tmn zn ∈ (G ◦ F)(x0 + tnun), i.e., w ∈ Dm(G ◦ F)(x0, z0)(u). ��
For the inverse inclusions of Propositions 3.1, 3.2, the readers are referred to Section

3 in [5].
The following simple example gives a case where our results can be employed,

while some earlier existing ones cannot.

Example 3.1 Let F : R2 → R
2 and G : R2 → R be defined by F(x, y) = (x, y)

and

G(x, y) :=
⎧
⎨

⎩
∅, i f x, y ∈

{
1

n2
|n ∈ N

}
,

x + y, otherwise.

Then, we have

(G ◦ F)(x, y) :=
⎧
⎨

⎩
∅, i f x, y ∈

{
1

n2
|n ∈ N

}
,

x + y, otherwise.

We can check that DF((0, 0), (0, 0))(u, v) = (u, v) and

DG((0, 0), 0)(u, v) = DwG((0, 0), 0)(u, v) = u + v, DlG((0, 0), 0)(0) = ∅,

i.e., G has the first order proto-Studniarski derivative at (0, 0), but does not have
the first order semi-Studniarski derivative at (0, 0). Thus, Proposition 3.2 in [5]
does not work (see Remark 3.1). However, the directionally metric subregularity of
order 1 in Proposition 3.2(ii) is satisfied for all directions (u, v, u, v, u, v, w), where
(u, v, u, v) ∈ grDF((0, 0), (0, 0)) and (u, v, w) ∈ grDG((0, 0), 0).

The assumption of Proposition 3.2(ii) is checked as follows: let (u, v, u, v) ∈
gr DF((0, 0), (0, 0)), (u, v, u + v) ∈ gr DG((0, 0), 0) and λ > 0, it is enough
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to show that there exists μ > 0 such that for all t ∈ (0, λ), (u1, v1, u2, v2) ∈
BR4((u, v, u, v), λ), (u′, v′, w′) ∈ BR3((u, v, u + v), λ) with

(0 + tu1, 0 + tv1, 0 + tu2, 0 + tv2, 0 + tu′, 0 + tv′, 0 + tw′) ∈ gr F × gr G,

then

d((tu1, tv1, tu2, tv2, tu
′, tv′, tw′), g−1

2 (0) ∩ (gr F × gr G))

≤ μd(0, g2((tu1, tv1, tu2, tv2, tu
′, tv′, tw′))),

where g2 : R2 × R
2 × R

2 × R → R+ is defined by g2(x1, y1, x2, y2, x3, y3, z) :=
||(x2, y2) − (x3, y3)||.

Since (tu1, tv1, tu2, tv2, tu′, tv′, tw′) ∈ gr F × gr G, we get u1 = u2, v1 = v2,
and w′ = u′ + v′. Thus, we need to find μ such that

inf
(x,y)∈R2,

(x ′,y′)∈F(x,y),
z′∈G(x ′,y′)

{||t (u1, v1) − (x, y)|| + ||t (u2, v2) − (x ′, y′)||

+||t (u′, v′) − (x ′, y′)|| + |tw′ − z′|}
≤ μt ||(u2, v2) − (u′, v′)||. (7)

It is obvious that

inf
(x,y)∈R2,

(x ′,y′)∈F(x,y),
z′∈G(x ′,y′)

{||t (u1, v1) − (x, y)|| + ∣
∣
∣
∣t (u2, v2) − (x ′, y′)

∣
∣
∣
∣

+||t (u′, v′) − (x ′, y′)|| + |tw′ − z′|}
= inf

(x,y)∈R2,

(x ′,y′)∈F(x,y),
z′∈G(x ′,y′)

{||t (u2, v2) − (x, y)|| + ∣
∣
∣
∣t (u2, v2) − (x ′, y′)

∣
∣
∣
∣

+||t (u′, v′) − (x ′, y′)|| + |tw′ − z′|}
= inf

(x,y)∈R2
{2||t (u2, v2) − (x, y)||

+ ∣
∣
∣
∣t (u′, v′) − (x, y)

∣
∣
∣
∣ + |t (u′ + v′) − (x + y)|} .

Let x := tu2 + tu′

2
and y := tv2 + tv′

2
, then

2||t (u2, v2) − (x, y)|| = t ||(u2, v2) − (u′, v′)||,
||t (u′, v′) − (x, y)|| = (1/2)t ||(u2, v2) − (u′, v′)||,

and

|t (u′ + v′) − (x + y)| = (1/2)t |(u2 − u′) + (v2 − v′)|
≤ (1/2)t

√
((u2 − u′)2 + (v2 − v′)2)(12 + 12)

≤ (
√
2/2)t ||(u2, v2) − (u′, v′)||,
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which implies that

inf
(x,y)∈R2,

(x ′,y′)∈F(x,y),
z′∈G(x ′,y′)

{||t (u1, v1) − (x, y)|| + ||t (u2, v2) − (x ′, y′)||

+||t (u′, v′) − (x ′, y′)|| + |tw′ − z′|}

≤ (1 + 1/2 + √
2/2)t ||(u2, v2) − (u′, v′)||.

Thus, (7) is true for any μ ≥ 1 + 1/2 + √
2/2. Hence, by Proposition 3.2(ii), we get

DG((0, 0), 0)(DF((0, 0), (0, 0))(u, v)) ⊆ D(G ◦ F)((0, 0), 0)(u, v) = u + v.

4 Sensitivity analysis of (CSOP)

4.1 Studniarski derivatives of weak perturbation maps

In this subsection, we first establish relationships between Studniarski derivatives of
a set-valued map and its profile map. The following compactness notion is necessary
for our later results.

Definition 4.1 For u ∈ X , F :⇒ Y is said to be compact at (x0, y0) in the direction u
if for any tn ↓ 0, un → u, and yn ∈ F(x0+tnun) for all n, then {yn} has a subsequence
converging to y0.

Remark 4.1 If F is mth-order u-directionally contingent compact at (x0, y0) ∈ gr F
(see Definition 4.1 in [9]) then F is compact at (x0, y0) in the direction u. However, the
inverse statement is not true by Example 4.1 below. Thus, our concept of the relaxed
compactness is weaker than that in [9].

Example 4.1 Let F : R → R be defined by F(x) = √
x for all x ≥ 0. It is easy

to check that F is compact at (0, 0) in all directions u ≥ 0. Nevertheless, F is not
mth-order u-directionally contingent compact at (0, 0) for any m ∈ N, u ≥ 0. Indeed,
by choosing tn = 1/n2, (un, vn) = (1/n, n2m−(3/2)) for u = 0, and (un, vn) =
(u, n2m−1√u) for u > 0, we get that 0+ tmn vn ∈ F(0+ tnun), but {vn} does not have
a convergent subsequence.

Proposition 4.1 Let F : X ⇒ Y , (x0, y0) ∈ gr F, and u ∈ X.

(i) DmF(x0, y0)(u) + C ⊆ Dm(F + C)(x0, y0)(u).
(ii) Suppose that Y is finite dimensional, F is compact at (x0, y0) in the direction u,

and DmF(x0, y0)(0) ∩ (−C) = {0}. Then,

DmF(x0, y0)(u) + C = Dm(F + C)(x0, y0)(u).

If, additionally, intC �= ∅ and C̃ is a closed convex cone with C̃ ⊆ intC ∪ {0}, then

WMinC DmF(x0, y0)(u) = WMinC Dm(F + C̃)(x0, y0)(u).
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Proof (i) follows from Proposition 4.2 in [9].
(ii) It is enough to prove that Dm(F + C)(x0, y0)(u) ⊆ DmF(x0, y0)(u) + C . Let

v ∈ Dm(F + C)(x0, y0)(u). If (u, v) = (0, 0), then v ∈ DmF(x0, y0)(u) + C
(since 0 ∈ DmF(x0, y0)(0)). We suppose that (u, v) �= (0, 0), then there exist
tn ↓ 0, (un, vn) → (u, v) such that y0 + tmn vn ∈ (F + C)(x0 + tnun), which
implies the existence of cn ∈ C satisfying

y0 + tmn
(
vn − cn/t

m
n

) ∈ F(x0 + tnun). (8)

By setting wn := vn − (cn/tmn ), if {wn} has a convergent subsequence, then
{cn/tmn } (or its subsequence if necessary) has a limit point c ∈ C (since C is a
closed convex cone). Thus, v − c ∈ DmF(x0, y0)(u) and we are done. Suppose
to the contrary, i.e., ||wn|| → +∞. It follows from the compactness of F that
yn := y0+ tmn wn has a subsequence converging to y0. Without loss of generality,
we assume yn → y0. Let sn := ||yn − y0||1/m , then

cn
tmn ||wn|| = vn

||wn|| − wn

||wn|| .

Since Y is finite dimensional, {wn/||wn||} (or its subsequence if necessary) con-
verges to some k ∈ Y with ||k|| = 1, which implies that {cn/(tmn ||wn||)} → −k.
It follows from cn/(tmn ||wn||) ∈ C and the closeness of the cone C that k ∈ −C .
Furthemore, with kn := wn/||wn|| = (yn − y0)/smn , one gets

y0 + smn kn = yn ∈ F

(
x0 + sn

(
tn
sn
un

))
.

On the other hand, one has

tn
sn
un = tn

sn
||wn||1/m un

||wn||1/m =

=
(
tn
sn

)( ||yn − y0||1/m
tn

)
un

||wn||1/m = un
||wn||1/m → 0 (since ||wn||→+∞).

Hence, k ∈ DmF(x0, y0)(0), which contradicts the fact that DmF(x0, y0)(0) ∩
(−C) = {0}.

The rest of the proof follows from Proposition 4.3(i)(d) in [9]. ��
The following example illustrates the advantage of Proposition 4.1 over Proposition

4.2 in [9] and Proposition 2.3 in [5].

Example 4.2 Let C = R+ and F : R ⇒ R be defined by

F(x) :=
{ {−1}, if x < 0,

{√x, x2}, if x ≥ 0.
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By calculating, we get

D2F(0, 0)(u) =
{∅, if u < 0,

{u2}, if u ≥ 0,
D2

S F(0, 0)(u) =
⎧
⎨

⎩

∅, if u < 0,
−R+, if u = 0,
{u2}, if u > 0.

We can see that F is compact at (0, 0) in the direction u for all u > 0 and
D2F(0, 0)(0) ∩ (−C) = {0}. Then, it follows from Proposition 4.1(ii) that for all
u > 0,

D2F(0, 0)(u) + C = D2(F + C)(0, 0)(u) = {v ∈ R|v ≥ u2}. (9)

On the other hand, it is easy to check that F is not locally pseudo-Hölder calm of
order 2 at (0, 0) (see Definition 1.1(iii) in [5]) and D2

S F(0, 0)(0) ∩ (−C) = −R+.
Moreover, F is not second-order u-directionally contingent compact at (0, 0) for any
u ∈ R (see Example 4.1). Thus, Proposition 4.2 in [9] and Proposition 2.3 in [5] cannot
be employed to get (9).

Let U be a normed space of perturbation parameters, Y be an objective (normed)
space ordered partially by a closed convex cone C with intC �= ∅, and F : U ⇒ Y
be the feasible-objective map (the term “feasible-objective” was proposed by Diem et
al. in [9]). We define a set-valued map W from U to Y by W (u) := WMinC F(u) for
u ∈ U . The map W is called the weak perturbation map.

In the rest of this subsection, we apply the above-mentioned results to investigate
relationships between Studniarski derivatives of F and that of W .

Let C̃ be a closed convex cone with C̃ ⊆ intC ∪ {0}. Recall that F is said to
be C̃-dominated by W near u0 (see [15]) iff there exists a neighborhood V of u0
such that F(u) ⊆ W (u) + C̃ for all u ∈ V . If F is C̃-dominated by W near u0, then
Dm(W +C̃)(u0, y0)(u) = Dm(F+C̃)(u0, y0)(u) for any (u0, y0) ∈ grW and u ∈ U
(see Remark 5.1 in [9]).

Proposition 4.2 F : X ⇒ Y , (u0, y0) ∈ grW, and u ∈ X. Suppose that the assump-
tions in Proposition 4.1(ii) are satisfied wrt (u0, y0) and F is C̃-dominated by W near
u0. Then,

WMinC DmF(u0, y0)(u) ⊆ DmW (u0, y0)(u). (10)

If, additionally, F has the mth-order proto-Studniarski derivative at (u0, y0) in the
direction u and the map g : (X × Y )2 → R+ defined as in Proposition 3.1 is direc-
tionally metric subregular of order m in Y × Y at ((u0, y0, u0, y0), 0) in the direction
(u, v, u, v̂) wrt grW × gr F, for all v ∈ DmW (u0, y0)(u) and v̂ ∈ DmF(u0, y0)(u),
then (10) becomes an equality for this u.

Proof We can check that all assumption in Proposition 4.1(ii) are also fulfilled for W
wrt (u0, y0). Then, one has

WMinC DmF(u0, y0)(u) = WMinC Dm(F + C̃)(u0, y0)(u) (by Proposition 4.1(ii))
= WMinC Dm(W + C̃)(u0, y0)(u)

⊆ Dm(W + C̃)(u0, y0)(u).
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For the inverse inclusion, let v ∈ DmW (u0, y0)(u), then there are tn ↓ 0,
(un, vn) → (u, v) such that y0 + tmn vn ∈ W (u0 + tnun). Suppose that v /∈
WMinC DmF(u0, y0)(u), i.e., there exists ṽ ∈ DmF(u0, y0)(u)with ṽ −v ∈ −intC .
Since F has the mth-order proto-Studniarski derivative at (u0, y0) in the direction u,
with tn above, there is (̃un, ṽn) → (u, ṽ) satisfying y0 + tmn ṽn ∈ F(u0 + tnũn).

It follows from the directionally metric subregularity assumption and the proof
similar to that of Proposition 3.1 that there exist ûn → u and (v1n, v

2
n) → (v, ṽ) such

that

y0 + tmn v1n ∈ W (u0 + tnûn) = WMinC F(u0 + tnûn), y0 + tmn v2n ∈ F(u0 + tnûn).

Thus, for n large enough, one has (y0+ tmn v2n)−(y0+ tmn v1n) = tmn (v2n −v1n) ∈ −intC,

which contradicts the fact that y0 + tmn v1n ∈ WMinC F(u0 + tnûn). ��
The inverse inclusion of (10) was discussed in Proposition 5.2 in [9] under the

mth-order semi-Studniarski derivative property of F . However, Example 3.1 provides
a case where it does not work, while Proposition 4.2 can be used. Let U = R

2 and
Y = R. Consider the map G as in Example 3.1. By Example 3.1, G has the first order
proto-Studniarski derivative at (0, 0), but does not have the first order semi-Studniarski
derivative at (0, 0). Thus, Proposition 5.2 in [9] cannot be employed. However, by the
same method in Example 3.1, we can check that the directionally metric subregularity
of order 1 ofG in Proposition 4.2 is satisfied at (u0, y0) = (0, 0). Thus, by Proposition
4.2, we get DW (u0, y0)(u, v) ⊆ WMinC DG(u0, y0)(u, v) for all (u, v) ∈ U , where
DW (u0, y0)(u, v) = u + v.

4.2 Sensitivity analysis of (CSOP)

LetU,W,Y be normed spaces, C is a closed convex ordering cone in Y , X : U ⇒ W
and F : U ×W ⇒ Y . We consider the following constrained set-valued optimization
problem

WMinC F(u, x), subject to x ∈ X (u). (11)

Define a set-valued map H from U to Y by

H(u) := F(u, X (u)) = {y ∈ Y |y ∈ F(u, x), x ∈ X (u)}.

H(u) is the parameterized feasible set in the objective space, called the feasible-
objective map in [9]. The solution set in Y to problem (11) is denoted by S(u) :=
WMinK H(u).

We assume that there is (u0, y0) ∈ U ×Y such that y0 ∈ H(u0). Then, there exists
x0 ∈ X (u0) satisfying y0 ∈ F(x0, u0).

Relationships of Studniarki derivatives of F and X to the corresponding that of H
are given as follows.

Proposition 4.3 Let u ∈ U. Suppose that W is finite dimensional, X is compact at
(u0, x0) in the direction u, and DX (u0, x0)(0) = {0}. Then,
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DmH(u0, y0)(u) ⊆
⋃

x∈DX(u0,x0)(u)

DmF ((u0, x0) , y0) (u, x) (12)

If, additionally, X has the first-order proto-Studniarski derivative at (u0, x0) in the
direction u and the map g : (U × W )2 × Y → R+ defined by g(α, β, γ, δ, ζ ) :=
(||α − γ || + ||β − δ||)m is directionally metric subregular of order m in Y at
((u0, x0, u0, y0, 0), 0) in the direction (u, x, u, x, y) wrt gr X × gr F, for all x ∈
DX (u0, x0)(u) and y ∈ DmF((u0, x0), y0)(u, x), then (12) becomes an equality for
such u.

Proof Let v ∈ DmH(u0, y0)(u), then there exist tn ↓ 0 and (un, vn) → (u, v) such
that y0 + tmn vn ∈ H(u0 + tnun). By the definition of H , there is xn ∈ X (u0 + tnun)

satisfying y0 + tmn vn ∈ F(u0 + tnun, xn). Setting wn := xn − x0
tn

, then one has

x0 + tnwn ∈ X (u0 + tnun), y0 + tmn vn ∈ F(u0 + tnun, x0 + tnwn). (13)

Suppose ||wn|| → +∞, it follows from (13) that

x0 + tn||wn||
(

wn

||wn||
)

∈ X

(
u0 + tn||wn||

(
un

||wn||
))

.

Since W is finite dimensional, {wn/||wn||} has a subsequence converging to w with
||w|| = 1. Moreover, tn||wn|| = ||xn − x0|| tends to 0 (by the compactness of X ), then
we get w ∈ DX (u0, x0)(0), which contradicts the assumption. Thus, without loss of
generality, we assume that wn converges to some w ∈ W . From (13), one obtains
w ∈ DX (u0, x0)(u) and v ∈ DmF((u0, x0), y0)(u, w).

For the inverse inclusion of (12), let v belongs to the right-hand side of (12), i.e.,
there exists x ∈ DX (u0, x0)(u) such that v ∈ DmF((u0, x0), y0)(u, x). Then, there
are tn ↓ 0 and (ûn, x̂n, v̂n) → (u, x, v) satisfying y0+tmn v̂n ∈ F(u0+tnûn, x0+tn x̂n).
Since X has the first order proto-Studniarski derivative at (u0, x0), with tn above, we
get (un, xn) → (u, x) with x0 + tnxn ∈ X (u0 + tnun).

By the directionally metric subregularity assumption, there exist μ > 0 and
λ > 0 such that for every t ∈ (0, λ) and (u1, x1, u2, x2, v2) ∈ BU×W ((u, x), λ) ×
BU×W×Y ((u, x, v), λ) with (u0 + tu1, x0 + t x1, u0 + tu2, x0 + t x2, y0 + tmv2) ∈
gr X × gr F ,

d
(
(u0 + tu1, x0 + t x1, u0 + tu2, x0 + t x2, y0 + tmv2), g

−1(0) ∩ (gr X × gr F) ≤
μd

(
0, g

(
u0 + tu1, x0 + t x1, u0 + tu2, x0 + t x2, y0 + tmv2

))
(14)

Forn large enough,wehave (un, xn, ûn, x̂n, v̂n) ∈ BU×W ((u, x), λ)×BU×W×Y ((u, x,
v), λ). Thus, from (14), there exist (u′

n, x
′
n, û

′′
n, x̂

′′
n , v̂′

n) ∈ gr X × gr F with u′
n = û′′

n
and x ′

n = x̂ ′′
n for all n such that

∥
∥(
u0 + tnun, x0 + tnxn, u0 + tnûn, x0 + tn x̂n, y0 + tmn v̂n

) − (
u′
n, x

′
n, û

′′
n, x̂

′′
n , v̂′

n

)∥∥

≤ μtmn (||un − ûn|| + ||xn − x̂n||)m,
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which implies

∥
∥u0 + tnun − u′

n

∥
∥ ≤ μtmn

(||un − ûn|| + ||xn − x̂n||
)m

,
∥
∥x0 + tnxn − x ′

n

∥
∥ ≤ μtmn

(||un − ûn|| + ||xn − x̂n||
)m

,

∥
∥y0 + tmn x̂n − v̂′

n

∥
∥ ≤ μtmn

(||un − ûn|| + ||xn − x̂n||
)m

.

Thus,

∥
∥
∥
∥
u′
n − u0
tn

− un

∥
∥
∥
∥ ≤ μtm−1

n

(||un − ûn|| + ||xn − x̂n||
)m

,

∥
∥
∥
∥
x ′
n − x0
tn

− xn

∥
∥
∥
∥

≤ μtm−1
n

(||un − ûn|| + ||xn − x̂n||
)m

,
∥
∥
∥
∥
v̂′
n − y0
tmn

− v̂n

∥
∥
∥
∥ ≤ μ

(||un − ûn|| + ||xn − x̂n||
)m

.

By setting ũn := u′
n − u0
tn

, x̃n := x ′
n − x0
tn

, and ṽn := v̂′
n − y0
tmn

, then ũn → u,

x̃n → x , ṽn → v and one gets

x0 + tn x̃n = x ′
n ∈ X (u′

n) = X (u0 + tnũn),

y0 + tmn ṽn = v̂′
n ∈ F(û′′

n, x̂
′′
n ) = F(u′

n, x
′
n) = F(u0 + tnũn, x0 + tn x̃n).

Hence, v ∈ DmH(u0, y0)(u) and the proof is completed. ��
Theorem 4.1 Let (u0, y0) ∈ gr S and u ∈ X. Assume that the assumptions in Pro-
postion 4.3 are satisfied. If all conditions in Proposition 4.2 are fulfilled wrt the maps
H and S. Then,

DmS(u0, y0)(u) = WMinC

⎛

⎝
⋃

x∈DX(u0,x0)(u)

DmF ((u0, x0) , y0) (x, u)

⎞

⎠ .

Proof It follows from Propositions 4.2 and 4.3. ��
By virtue of Theorem 4.1, sensitivity analysis of the multiobjective optimization

problem mentioned in [9] is obtained in forms of Studniarski derivatives.
To illustrate Theorem 4.1, we provide the the following example.
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Example 4.3 Let U = R
2, W = Y = R, K = R

2+ ⊆ U , and C = R+Consider
two set-valued maps X : U ⇒ W and F : U × W ⇒ Y defined by X (u) := {x ∈
W | − (u1 + u2) ≤ x ≤ u1 + u2} for all u = (u1, u2) ∈ K and

F(u, x) :=
⎧
⎨

⎩
∅, if u1, u2 ∈

{
1

n2
|n ∈ N

}

(u1 + u2)2 + x2, otherwise.

Then,

H(u) := {y ∈ Y |y ∈ F(u, x), x ∈ X (u)} =

=
⎧
⎨

⎩
∅, if u1, u2 ∈

{
1

n2
|n ∈ N

}

{y ∈ Y |(u1 + u2)2 ≤ y ≤ 2(u1 + u2)2}, otherwise
and

S(u) := WMinC H(u) =
⎧
⎨

⎩
∅, if u1, u2 ∈

{
1

n2
|n ∈ N

}

(u1 + u2)2, otherwise.

Let (u0, x0, y0) = (0R2 , 0, 0). We can check that all conditions in Theorem 4.1 are
satisfied. By calculating, we have for all (u, x) ∈ K × W ,

DX (u0, x0)(u) = {x ∈ W | − (u1 + u2) ≤ x ≤ (u1 + u2)},
D2F((u0, x0), y0)(u, x) = (u1 + u2)

2 + x2,

D2H(u0, y0)(u) = {y ∈ Y |(u1 + u2)
2 ≤ y ≤ 2(u1 + u2)

2},
D2S(u0, y0)(u) = (u1 + u2)

2.

Thus, ones get for all u ∈ K ,

D2S(u0, y0)(u) = WMinC D2H(u0, y0)(u)

= WMinC

(
⋃

x∈DX(u0,x0)(u)

DmF ((u0, x0) , y0) (x, u)

)

.

On the other hand, H does not have the second-order semi-Studniarski derivative
at (u0, y0). So, Proposition 5.3 in [9] cannot be used for this case.

5 Perspectives

For further works, we think that Sect. 4 can be considered for other kinds of solutions
of (CSOP), for example, quasi efficient solutions or quasi-relative efficent solutions
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in case of the ordering cone C being nonsolid (such as the positive cones in the spaces
l p and L p(�)). On the other hand, one can apply these results to other models, e.g.,
parametric vector variational inequalities and parametric vector equilibria (see [14]).
Besides, discussions on relationships between our results and those developed and
summarized in the recent book [16], which are closely related to the topics investigated
in the paper, may be interesting problems.

Along with the derivative approach to multiobjective optimization and sensitivity
analysis, there is well-developed coderivative approach. The reader is referred to [22]
for its applications to set-valued optimization in the paper. Thus, for another possi-
ble development, we can discuss some relationships between the primal derivative
approach used in this paper and the dual coderivative in set-valued optimization.
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