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Abstract Let A be an ordered algebra with a unit e and a cone A+. The class of
order continuous elements An of A is introduced and studied. If A = L(E), where
E is a Dedekind complete Riesz space, this class coincides with the band Ln(E) of
all order continuous operators on E . Special subclasses of An are considered. Firstly,
the order ideal Ae generated by e. It is shown that Ae can be embedded into the algebra
of continuous functions and, in particular, is a commutative subalgebra of A. If A is
an ordered Banach algebra with normal cone A+ then Ae is an AM-space and is closed
in A. Secondly, the notion of an orthomorphism in the ordered algebra A is introduced.
Among others, the conditions under which orthomorphisms are order continuous, are
considered. In the second part, the main emphasis will be on the case of an orderedC∗-
algebra A and, in particular, on the case of the algebra B(H), where H is an ordered
Hilbert space with self-adjoint cone H+. If the cone A+ is normal then every element
of Ae is hermitian. In H the operations are introduced which coincide with the lattice
ones when H is a Riesz space. It is shown that every regular T ∈ B(H) is an order
continuous element and operators T ∈ (B(H))I have properties which are analogous
to the properties of orthomorphisms on Riesz spaces.
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1 Introduction

Let A be an (real or complex) algebra with an algebraic unit e and let A+ be a (convex)
cone in A. As usual, for elements a, b ∈ A, the symbol a ≥ b (or b ≤ a) means
a − b ∈ A+. Under this ordering, A is an ordered linear space. From the definition of
the cone, it follows that the inequalities a ≥ b and b ≥ a imply a = b for all a, b ∈ A
and λx +μy ≥ 0 for all elements x, y ∈ A+ and all scalars λ,μ ∈ R

+. The elements
of A+ are called positive. Throughout, we will tacitly assume A �= {0}. If e ≥ 0
and the inequalities a, b ≥ 0 imply ab ≥ 0 then A is called an ordered algebra. If,
in addition, an ordered algebra A is a (normed) Banach algebra with a closed cone
A+ then A is called an ordered (normed) Banach algebra. An important example
of an ordered algebra is the algebra of (linear) operators on an ordered linear space.
Namely, the algebra L(E) of all operators on some ordered linear space E with a cone
E+ and the natural ordering induced by E+ is an ordered algebra with unit I , where
I is an identity operator, if and only if the cone E+ is generating, i.e., the span of
E+ is equal to E . If E is an ordered (normed) Banach space with closed cone E+
then the algebra B(E) of all bounded operators on E is an ordered (normed) Banach
algebra if and only if the span of E+ is dense in E . In particular, if E is a Riesz space
(Banach lattice) then the algebra L(E) (B(E)) is an ordered (Banach) algebra.

The study of ordered Banach algebras was initiated in [8,9]. In these papers and in
a number of subsequent ones themain emphasis was on the study of spectral properties
of positive elements. Our paper extends this line of research. However, our emphasis
will be on the notion of order continuity both in general ordered algebras and in some
special subclasses of them.

The paper is organized as follows. In the second section elementary properties
of order continuous elements in ordered algebras are considered. The third section is
devoted to the investigation of special subclasses of order continuous elements, namely,
the center Ae of the algebra A and the class of orthomorphisms of A. In the last section
the results obtained in the preceding ones are employed to study ordered C∗-algebras
and a special subclass of them, namely, the algebra B(H), where H is an ordered
Hilbert space.

For any unexplained terminology, notations, and elementary properties of cones
and ordered linear spaces, we refer the reader to [5]. For information on the theory
of Riesz spaces, Banach lattices, and operators on these spaces, we suggest [1,4] (see
also [12,13]). More details on elementary properties of Banach algebras can be found
in [10] (see also [6]).

2 The order continuous elements

First of all, we mention that below we will use the following definition of order
convergence. The net {xα} in an ordered linear space E is said to be order convergent
to an element x ∈ E , in symbols, xα

o−→ x , whenever there exist two nets {yα} and
{zα} in E (with the same index set) satisfying yα ↑ 0, zα ↓ 0, and yα ≤ x − xα ≤ zα
for all α.
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Let A be an ordered algebra. An element p ∈ A is called an order idempotent
(see [2]) if 0 ≤ p ≤ e and p2 = p. Under the partial ordering induced by A, the set
of all order idempotents OI(A) of A is a Boolean algebra and its lattice operations
satisfy the identities p ∧ q = pq and p ∨ q = p + q − pq for all p, q ∈ OI(A)

(see [2]). For p ∈ OI(A), we put pd = e − p. Obviously, pd ∈ OI(A). If a ∈ A and
the modulus |a| of a exists then p|a| = |pa| and |a|p = |ap| for p ∈ OI(A).

Recall that an ordered linear space E is said to be Dedekind complete whenever
every nonempty subset that is bounded from above has a supremum. The next result
will be needed later.

Lemma 1 Let A be a Dedekind complete ordered algebra, let {pα} be a net inOI(A),
and let p ∈ A. Then pα ↓ p in A if and only if pα ↓ p in OI(A).

Proof Necessity. The inclusion p ∈ OI(A) should be checked. Evidently, 0 ≤ p ≤ e.
Fix an index α. For an arbitrary index β ≥ α, we have

0 ≤ p − pα p ≤ p − pβ p ≤ pβ − pβ p ≤ pβ(pβ − p) ≤ pβ − p ↓β≥α 0

in A, whence p = pα p. Consequently, 0 ≤ p − p2 = (pα − p)p ≤ pα − p. Thus,
p2 = p.

Sufficiency. Since A is Dedekind complete, we find an element a ∈ A satisfying
pα ↓ a in A. As shown above, pα ↓ a in OI(A) and so a = p. �

An element a ∈ A is said to be a regular element whenever it can be written
as a difference of two positive elements, i.e., if a = a1 − a2 with a1, a2 ∈ A+.
The collection of all regular elements of A will be denoted by Ar. Obviously, Ar
is a real ordered algebra with cone A+. An element a ∈ A is said to be left order

continuous (or l-order continuous) if pαa
o−→ 0 in A whenever pα ↓ 0 in OI(A);

the notion of r -order continuity can be analogously defined. The collection of all l-
and r -order continuous elements of A will be denoted by Anl and Anr , respectively.
Evidently, Anl and Anr are real linear spaces and, if A is real, are linear subspaces of A.
The inclusion Anl ∪Anr ⊆ Ar holds. Indeed, let a ∈ Anl ∪Anr .We consider a sequence
{pn} inOI(A) such that p1 = e and pn = 0 for all n ≥ 2. Clearly, pn ↓ 0 and, hence,
a ≤ b for some b ∈ A+. Finally, a = b−(b−a) ∈ Ar. Next, an element a ∈ Awhich
is both left and right order continuous is called order continuous. The collection of all
order continuous elements of A will be denoted by An. Obviously, An = Anl ∩ Anr .
The notion of order continuity for the case of positive elements in ordered Banach
algebras was introduced in [2].

Example 2 Let E be a (Archimedean; real or complex) Riesz space. Recall that
an operator T on E is said to be order continuous (see [4, p. 46]) whenever xα

o−→ 0
in E implies T xα

o−→ 0. In this case, we refer to the order continuity of an operator T
on E . The collection of all order continuous operators on E is denoted by Ln(E). Every
order continuous operator is order bounded (see [4, p. 46]) and, hence, is norm con-
tinuous when E is a Banach lattice (see [1, p. 22]), i.e., Ln(E) ⊆ B(E). On the other
hand, the algebra L(E) of all operators on a Riesz space E is an ordered algebra. Con-
sequently, in L(E) order continuous elements can be considered in the sense defined
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above. In this case, we refer to the order continuity of an element T in the algebra L(E).
These two cases may differ.

Next, if we consider the Riesz space E = C[0, 1] of all continuous functions on
the interval [0, 1] and the algebra A = L(E) then, as is well known, the identity
OI(A) = {0, e} holds and, hence, Anr = Anl = An = Ar. However, since the band
of all order continuous functionals E∼

n = {0}, we have Ln(E) � L r(E) = Ar.
On the other hand, an order continuous operator T ∈ Ln(E) need not be an order
continuous element of the algebra L(E), i.e., the inclusion Ln(E) ⊆ (L(E))n does
not hold in the general case. To see this, let us consider the subset

K = {−1

k
: k ∈ N} ∪ [0, 1]

of the set R and the Riesz space E = C(K ). Let A = L(E). Put Kn = {− 1
k : k ≥

n} ∪ [0, 1]. Define the operators Pn on E via the formula Pnx = χKn · x , where χKn

is the characteristic function of the set Kn . Obviously, Pn ∈ OI(A). We have Pn ↓ 0
inOI(A). Indeed, if Pn ≥ P ∈ OI(A) for all n then (P1I)(− 1

n ) = 0 for all n, where 1I
is the constant function one, and, hence, (P1I)(0) = 0. Therefore, using the relations
P1I + (I − P)1I = 1I and P1I ⊥ (I − P)1I and the connectedness of the segment
[0, 1], we conclude P1I = 0. Finally, P = 0. On the other hand, as is easy to see,
the relation Pn ↓ 0 does not hold in L(E). Consequently, the identity operator is not
an r - or an l-order continuous element.

In the case of a Dedekind complete Riesz space E , the correlation between
the notions of order continuity mentioned above can be made more precisely. Namely,
the following two statements hold:

(a) An operator T on E is an l-order continuous element in L(E) if and only if T is
a regular operator on E .

(b) For an operator T on E the following three statements are equivalent:
(i) T is an r-order continuous element inL(E);
(ii) T is an order continuous element in L(E);
(iii) T is an order continuous operator.

Thus, according to parts (a) and (b), we have the identities

(L(E))nl = L r(E) = (L(E))r and (L(E))nr = (L(E))n = Ln(E).

For the proof of the sufficiency in (a), we consider a net {Pα} of order projections
on E satisfying Pα ↓ 0 in OI(L(E)). In view of Lemma 1, Pα ↓ 0 in L(E) and,
hence, Pαx

o−→ 0 for all x ∈ E . Therefore, PαS ↓ 0 for every positive operator S
on E . It remains to observe the validity of the inequalities −Pα|T | ≤ PαT ≤ Pα|T |,
where |T | is the modulus of T existing by the F. Riesz–Kantorovich theorem (see [4,
p. 14]).

Now we will check (b). The implication (ii) �⇒ (i) is clear and the implication
(iii) �⇒ (ii) can be analogously proven to the assertion (a) as for an arbitrary operator
S ∈ L(E) the inclusions S ∈ Ln(E) and |S| ∈ Ln(E) are equivalent. We shall
show (i) �⇒ (iii). Assume that T ∈ (L(E))nr . For every order projection P , we
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have the identity |T |P = |T P|, whence the relation |T | ∈ (L(E))nr at once follows.
Therefore (see [2, Example 2.9(a)]), |T | ∈ Ln(E) and so T ∈ Ln(E).

Considering the algebra A = L(E) with the multiplication S � T = T S, we obtain
the ordered algebra satisfying Anr = Ar and Anl = An. ��

Below, we will establish elementary properties of order continuous elements in
ordered algebras. For the case of order continuous operators, the results which are
analogous to those obtained below can be found, e.g., in [4, §1.4]. As the preced-
ing example shows, the assumption about the Dedekind completeness which will be
repeatedly used in this and next sections, is quite natural if we want to preserve nice
properties of order continuous operators for the case of order continuous elements. For
this reason, we recall that for an arbitrary ordered algebra A (or even an order linear
space E) the following statements which will be tacitly used in the future hold: (a) A
is a Dedekind complete if and only if Ar is Dedekind complete; (b) If A is Dedekind
complete then Ar is a Riesz space; (c) If A is a Dedekind complete ordered Banach
algebra then the cone A+ is normal (see [5, p. 109, Exercise 10(b)]). We will restrict
ourselves to the consideration of l-order continuity. However, the results obtained
below can be extended without difficulty to the case of (r -)order continuity.

Recall that if E is an ordered linear space and an element x ∈ E+ then the ideal
Ex generated by x is the set

Ex = {y ∈ E : −λx ≤ y ≤ λx for some λ ∈ R
+}. (1)

Under the algebraic operations and the ordering induced by E , Ex is a real ordered
linear space and, if E is real, is a linear subspace of E . If A is an ordered algebra and
b ∈ A+

nl then the ideal Ab ⊆ Anl . Next, for arbitrary a ∈ A, we define the set

N l
a = {p ∈ OI(A) : pa = 0}.

Clearly, N l
a is a solid subset ofOI(A), i.e., if p ≤ q with p ∈ OI(A) and q ∈ N l

a then
p ∈ N l

a .
The following criterion of an l-order continuity holds.

Theorem 3 Let A be an ordered algebra such that Ar is a Riesz space and let b be
an element in A+. The following statements are equivalent:

(a) b ∈ Anl ;
(b) For every a ∈ Ab the set N l

a is order closed in OI(A), i.e., the relations pα ↑ p
in OI(A) and pα ∈ N l

a for all α imply p ∈ N l
a ;

(c) For every a ∈ Ab and for every net {pα} the relations pα ↑ e in OI(A) and
pαa = 0 for all α imply a = 0;

(d) If a ∈ A+ and there exists a net {pα} satisfying pα ↑ e in OI(A) and pαa = 0
for all α then the infimum a ∧ b = 0.

Proof (a) �⇒ (b) Let −λb ≤ a ≤ λb for some λ ≥ 0 and let pα ↑ p in OI(A) with
pα ∈ N l

a . We have pa = (p − pα)a ≤ λ(p − pα)b ↓ 0, whence pa ≤ 0. Similarly,
pa ≥ 0. Finally, pa = 0.



544 E. A. Alekhno

The implication (b) �⇒ (c) is obvious.
(c) �⇒ (a) Let pα ↓ 0 in OI(A) and let pαb ↓≥ c. Since Ar is a Riesz space, we

have pαb ↓≥ c+. Clearly, c+ ∈ Ab, pdαc
+ = 0, and pdα ↑ e in OI(A). Thus, c+ = 0

and so c ≤ 0.
(a) �⇒ (d) Let c ∈ A and a, b ≥ c. Then 0 = pαa ≥ pαc, whence c ≤ pdαc ≤

pdαb ↓ 0 and so c ≤ 0.
(d) �⇒ (c) Consider an element a and a net {pα} satisfying a ∈ Ab, pα ↑ e in

OI(A), and pαa = 0. Then pα|a| = 0, whence |a| ∧ b = 0. Since |a| ≤ βb for some
β ≥ 0, we have |a| = 0 and so a = 0. ��
Theorem 4 Let A be an ordered algebra. Then the subspace Anl is order closed in Ar.
In particular, if Ar is a Riesz space then Anl is a band in Ar.

Proof Consider the net {cβ} in Anl satisfying in 0 ≤ cβ ↑ c in Ar. The order closedness
means the validity of the inclusion c ∈ Anl . To see this, let d ≤ pαc for all α, where
pα ↓ 0 in OI(A). We have

d ≤ pαc = pα(c − cβ) + pαcβ ≤ c − cβ + pαcβ,

whence d ≤ c − cβ and so d ≤ 0. Finally, pαc ↓ 0.
Now let Ar be a Riesz space and let pα ↓ 0 inOI(A). If |a| ≤ |b| and b ∈ Anl then

|pαa| = pα|a| ≤ pα|b| = |pαb| o−→ 0 and, hence, a ∈ Anl . Thus, Anl is an ideal.
From the order closedness of Anl , it follows that it is a band. ��

The conditions which guarantee the order continuity of every regular element are
discussed in the next theorem.

Theorem 5 Let A be an ordered algebra such that Ar is a Riesz space. The following
statements are equivalent:

(a) Ar = Anl ;
(b) For every a ∈ Ar the equalities pαa = 0 for all α, where pα ↑ p inOI(A), imply

pa = 0;
(c) For every non-zero element a ∈ Ar there exists a non-zero idempotent p ∈ OI(A)

satisfying qa �= 0 for q ∈ OI(A), 0 < q ≤ p.

Proof The implication (a) �⇒ (b) is obvious.
(b) �⇒ (c) Proceeding by contradiction, for every non-zero p ∈ OI(A), we find

an idempotent q ′ ∈ OI(A) satisfying the relations q ′a = 0 and 0 < q ′ ≤ p. Consider
the set D = {q ∈ OI(A) : qa = 0}. We have D ↑ e in OI(A). Indeed, if q ≤ q0 ∈
OI(A) for all q ∈ D and q0 < e then for some q ′

0 ∈ OI(A) the relations q ′
0a = 0 and

0 < q ′
0 ≤ e − q0 hold. Thus, q ′

0 ∈ D and, hence, q ′
0 ≤ q0. Therefore, q ′

0 = 0, which
is impossible. Hence, D ↑ e and so a = 0, a contradiction.

(c) �⇒ (a) Let a ∈ A+, let pα ↓ 0 in OI(A), and let pαa ≥ c for all α. Since Ar
is a Riesz space, we have pαa ≥ c+. Clearly, pdαc+ = 0. If c+ > 0 then there exists
a non-zero idempotent p ∈ OI(A) satisfying qc+ > 0 for all q ∈ OI(A), 0 < q ≤ p.
Pick an index α0 such that the inequalities 0 < pdα0 p ≤ p hold. We have pdα0 pc

+ > 0,
a contradiction. ��
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We mention at once the next result (see also, e.g., Corollary 23(b) and Proposi-
tion 32) which can be employed to ordered algebras that are isomorphic on the space
of continuous functions C(K ) (see Theorems 15, 22, 44).

Proposition 6 Let A be a Dedekind complete ordered algebra. If an element a ∈ A+
is dominated by an invertible element b such that b−1 ∈ A+ then a is order continuous.

Proof Let pα ↓ 0 in OI(A) and let pαa ↓≥ c with c ∈ A. Obviously, pαb ≥ c
and, hence, pα ≥ cb−1. By Lemma 1, cb−1 ≤ 0 and so c ≤ 0. Finally, a ∈ Anl .
Analogously, a ∈ Anr . ��

Let A be a Dedekind complete ordered algebra. Then the band Anl in Ar is a projec-
tion band. Therefore, the representation Ar = Anl ⊕ Asl holds, where Asl is the band
of all elements in Ar that are disjoint from Anl , i.e., Asl = Ad

nl and its members will
be referred to as l-singular elements. Similarly, the bands Asr and As can be defined.
In particular, each element a ∈ Ar has a unique decomposition a = an + as, where
an ∈ An, as ∈ As, and an ⊥ as.

Lemma 7 In a Dedekind complete ordered algebra A the set

As◦l = {a ∈ Ar : pαa = 0 for some pα ↑ e in OI(A)} (2)

is an ideal in Ar which is order dense in Asl .
In particular, if As◦l = {0} then Ar = Anl .

Proof Let a, b ∈ As◦l and let {p′
α} and {p′′

β} be two nets such that p′
α ↑ e and p′′

β ↑ e in
OI(A) and p′

αa = p′′
βb = 0. Then the net {p′

α p
′′
β}(α,β) satisfies the relations p′

α p
′′
β ↑ e

and p′
α p

′′
β(λa + μb) = 0 for all scalars λ,μ ∈ R. Thus, As◦l is a linear subspace

of Ar and, hence, is an ideal in Ar. Now we shall establish the inclusion As◦l ⊆ Asl .
Indeed, for a ∈ As◦l the equalities 0 = p′

α|a| = p′
α|anl | + p′

α|asl | hold. Therefore,
p′
αanl = 0, whence anl = 0 and so a ∈ Asl . Next, let 0 < c ∈ Asl . Taking into account

Theorem 3(c), we find an element d ∈ Ac and a net {pα} satisfying pα ↑ e in OI(A),
pαd = 0, and 0 < d ≤ ξc for some ξ ≥ 0. We have d

ξ
∈ A+

s◦l
and d

ξ
≤ c. In view of

the last two relations, the ideal As◦l is order dense in Asl . ��
Recall (see [4, p. 57, Exercise 11]) that if {xα} is an order bounded net in a Dedekind

complete real Riesz space E then the lower limit and the upper limit of {xα} are defined
by

lim inf
α

xα =
∨

α

∧

β≥α

xβ and lim sup
α

xα =
∧

α

∨

β≥α

xβ,

respectively. The relation xα
o−→ x is equivalent to the equalities x = lim infα xα =

lim supα xα .
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Theorem 8 Let A be a Dedekind complete ordered algebra and let a ∈ A+. Then
the next identities hold in Ar

anl = inf{lim inf
α

pαa} = inf{lim sup
α

pαa} = inf{sup
α

{pαa}}, (3)

where the infimums were taken by all nets {pα} such that pα ↑ e inOI(A). Moreover,
if at least one of infimums is attained then the other two are also attained and this is
equivalent to the existence of a net {qα} satisfying qα ↑ e in OI(A) and qαasl = 0.

Proof For an arbitrary element b ∈ A+, we put Tb = inf{supα{pαb}}. Obviously,
the mapping T : A+ → A+ is well defined, Tb = b for b ∈ A+

nl , and 0 ≤ T c ≤ c for
all c ∈ A+. We will show the additivity of T on A+. To this end, let b, c ∈ A+. Then

T (b + c) = inf{sup
α

{pαb + pαc}} = inf{sup
α

{pαb} + sup
α

{pαc}} ≥ Tb + T c.

On the other hand, if p′
α ↑ e and p′′

β ↑ e in OI(A) then the net {p′
α p

′′
β}(α,β) satisfying

the relation p′
α p

′′
β ↑ e in OI(A). Therefore,

T (b + c) ≤ sup
α,β

{p′
α p

′′
β(b + c)}

= sup
α,β

{p′
α p

′′
βb} + sup

α,β

{p′
α p

′′
βc} ≤ sup

α
{p′

αb} + sup
β

{p′′
βc}.

Since {p′
α} and {p′′

β} are arbitrary, T (b+ c) ≤ Tb+T c. So, T (b+ c) = Tb+T c. By
the Kantorovich theorem (see [4, p. 9]), T extends uniquely to an operator (denoted
by T again) from Ar into Ar. Evidently, 0 ≤ T ≤ I and Tb = b for all b ∈ Anl .

For every element b ∈ As◦l , we have Tb = 0. In view of the preceding lemma,
the ideal As◦l is order dense in Asl . Then, using the order continuity of the operator T ,
we infer Tb = 0 for all b ∈ Asl . Consequently, for arbitrary a ∈ A+, we obtain

anl = Tanl = Ta = inf{sup
α

{pαa}} ≥ inf{lim sup
α

pαa}
≥ inf{lim inf

α
pαa} ≥ inf{lim inf

α
pαanl} = anl ,

as required.
As follows at once from the last relations, if anl attains for at least one of infimums

in (3) then anl = lim infα pαa = lim infα pαanl with pα ↑ e in OI(A). Fix an index
α0 and consider a net {qα}α≥α0 defined by qα = pα for α ≥ α0. Then

anl = lim inf
α

pαa = lim inf
α

qαa = lim inf
α

(qαanl + qαasl)

≥ lim inf
α

(qαanl + qα0asl) = qα0asl + lim inf
α

qαanl = qα0asl + anl

and so pα0asl = 0. For the converse, if pαasl = 0 with pα ↑ e inOI(A) then we have
supα{pαa} = supα{pαanl} = anl , and the proof is completed. ��
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Corollary 9 Under the assumptions of Theorem 8, the following identities hold in Ar

asl = sup{inf
α

{pαa}} = sup{lim inf
α

pαa} = sup{lim sup
α

pαa},

where the supremums were taken by all nets {pα} such that pα ↓ 0 in OI(A).

Proof It suffices to check the fist equality. We have

asl = a − anl = a − inf
pα↑e{supα {pαa}} = a + sup

pα↑e
{inf

α
{−pαa}}

= sup
pα↑e

{inf
α

{a − pαa}} = sup
pα↑e

{inf
α

{pdαa}} = sup
pα↓0

{inf
α

{pαa}},

as desired. ��
The next proposition deals with properties of the set N l

asl
.

Proposition 10 Let A be a Dedekind complete ordered algebra and let a ∈ A. Then
N l
asl

is the largest solid subset ofOI(A) on which the element a is l-order continuous.

Proof Let J be a solid subset ofOI(A) on which the element a is l-order continuous,
i.e., if pα ↓ 0 in J then pαa

o−→ 0. It must be shown that N l
asl

satisfies this condition

and the inclusion J ⊆ N l
asl

holds. For the check of the former, let pα ↓ 0 in N l
asl
.

We have pα ↓ 0 in OI(A) and pαa = pαanl
o−→ 0. For the check of the second

assertion, let q ∈ J and qasl �= 0. Using Theorem 3(c), we find an element b such
that 0 < b ≤ |asl | ≤ |a|, qb > 0, and qαb = 0 with qα ↑ q in OI(A). Obviously, b is

l-order continuous on J and q − qα ↓ 0 in J , whence qb = (q − qα)b
o−→ 0 and so

qb = 0, a contradiction. ��
We shall close this section with the following two remarks. As in the case of

operators on Riesz spaces, the notion of σ -(respectively σl, σ r) order continuity can
be introduced for elements of an arbitrary ordered algebra A. For instance, an element
a ∈ A is said to be σl-order continuous if pna

o−→ 0 in A whenever the sequence
{pn} satisfies pn ↓ 0 inOI(A). As in the case of operators, for a wide class of ordered
algebras the notions of order and σ -order continuity coincide (e.g., if Ar is a Dedekind
complete Riesz spacewith the countable sup property (see [4, p. 56])). Keeping the last
remark in mind, many results obtained above can be extended to the case of σ -order
continuous elements.

Next, let A be a real ordered algebra and let AC be a complexification of A. Obvi-
ously, AC equipped with a cone A+ is also an ordered algebra. By analogy to the case
of operators on the complexification EC of the real Riesz space E , we can define
the notion of order continuity of an element a ∈ AC as follows. An element a is said
to be order continuous whenever it is (uniquely) represented as a = b + ic, where
b, c ∈ A and are order continuous (in A) in the sense defined above. Again, many
results above can be extended to this case.
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3 Special classes of order continuous elements

3.1 The center of an ordered algebra

Let A be an ordered algebra. If the unit e ∈ An then for the ideal Ae generated by e
(see (1)) the inclusion Ae ⊆ An holds. Moreover, under the algebraic operations and
the ordering induced by A, Ae is a real ordered algebra. It should be at once mentioned
that, in view of Lemma 1, we have the inclusion e ∈ An when A is Dedekind complete
while, in general, it does not hold (see Example 2). In the case of the ordered algebra
A = L(E), where E is a real Riesz space, the ideal Ae coincides with the centerZ(E)

of E (see [1, § 3.3]), i.e.,

Ae=(L(E))I =Z(E) = {T ∈ L(E) : |T x | ≤ λ|x | for all x ∈ E and some λ ∈ R
+}.

For this reason, the ideal Ae, where A is an arbitrary ordered algebra, will be referred
to as the center of A. The principal purpose of this subsection is to study of properties
of Ae.

On any ideal Ex in an ordered linear space E , we can define the Minkowski semi-
norm ‖·‖x (see [5, p. 103]). In particular, for the ideal Ae the seminorm ‖·‖e is equal to

‖a‖e = inf {λ ∈ R
+ : −λe ≤ a ≤ λe},

where a ∈ Ae. If Ae is Archimedean then ‖ · ‖e is a norm on Ae, the cone A+
e is

closed, and the closed unit ball BAe of Ae coincides with the order interval [−e, e]
(see [5, p. 104]). Under the norm ‖ · ‖e, the center Ae is an ordered normed algebra.
Below, unless otherwise stated, we shall consider Ae with the norm ‖ · ‖e, and, hence
Ae will be assumed to be Archimedean. Moreover, if A is an ordered normed algebra
equipped with some norm ‖ · ‖A then this norm and the norm ‖ · ‖e may be differ.

Lemma 11 Let A be anordered algebra (not necessarily commutative)and let f ∈ A′
e

be a non-zero functional. The following statements are equivalent:

(a) f is an extreme point of the positive part of the unit ball of A′
e, i.e., f ∈ ext B+

A′
e
;

(b) f is an extremal vector of the cone (A′
e)

+ and ‖ f ‖A′
e
= 1;

(c) f is multiplicative on Ae.

Proof (a) �⇒ (b) Let g also belong to the dual space A′
e of the space Ae equipped

with the norm ‖ · ‖e and let 0 ≤ g ≤ f . We must show that f and g are linearly
dependent. In view of the identity ‖h‖A′

e
= h(e) for every h ∈ (A′

e)
+, we can suppose

0 < g(e) < f (e) = 1. We have the equality f = (1 − g(e)) f −g
1−g(e) + g(e) g

g(e) with
f −g

1−g(e) ,
g

g(e) ∈ B+
A′
e
and, hence, f = g

g(e) , as required.

(b) �⇒ (a) If f = f1+ f2
2 , where fi ∈ B+

A′
e
for i = 1, 2, then fi ≤ 2 f . Thus,

fi = fi (e) f . Therefore, 1 = f (e) = f1(e)+ f2(e)
2 ≤ 1+1

2 = 1. Therefore, fi (e) = 1
and so f1 = f2.

(b) �⇒ (c) For an arbitrary element a ∈ A+
e satisfying the inequality f (a) > 0,

we define the functional fa on Ae via the formula fa(b) = f (ab)
f (a)

. As is easy to see,
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fa(e) = 1 and 0 ≤ fa ≤ ‖a‖e
f (a)

f . Therefore, fa = f and so f (ab) = f (a) f (b).

Obviously, the last identity holds if f (a) = 0 and, hence, for every a ∈ A+
e . Next, for

arbitrary elements a, b ∈ Ae, using the inequality a + ‖a‖ee ≥ 0, we have

f ((a + ‖a‖ee)b) = f (a + ‖a‖ee) f (b).

Finally, f (ab) = f (a) f (b), i.e., f is multiplicative.
The proof of (c) �⇒ (a) will be given below (see the remarks after Theorem 15).

��
The collection of all non-zero, continuous, positive, multiplicative (linear) functio-

nals from Ae onto R will be denoted byMAe .

Lemma 12 The setMAe isσ(A′
e, Ae)-compact and separates points of Ae.Moreover,

if a ∈ Ae then a ∈ A+
e if and only if f (a) ≥ 0 for all f ∈ MAe .

Proof Evidently, we have the inclusionMAe ⊆ B+
A′
e
(and even the inclusionMAe ⊆

S+
A′
e
, where SA′

e
is the unit sphere of A′

e) and MAe is a σ(A′
e, Ae)-closed subset

of BA′
e
. Consequently, by the Alaoglu theorem (see [4, p. 148]), MAe is σ(A′

e, Ae)-
compact. Since the unit e is an interior point of the cone A+

e , the cone A
+
e is generating.

Moreover, in view of the monotonicity of the norm ‖ · ‖e, A+
e is normal. Therefore, by

the M. G. Krein theorem (see [5, p. 89]), the dual wedge (A+
e )′ is a generating cone;

in particular, we have the identity

(A+
e )′ − (A+

e )′ = A′
e. (4)

On the other hand, by the Krein–Milman theorem (see [4, p. 144]), the relation
ext B+

A′
e
�= ∅ holds and, moreover,

co(ext B+
A′
e
) = B+

A′
e
, (5)

where the closure of the convex hull was taken in the σ(A′
e, Ae)-topology. Taking into

account the last equality and the identity (4), we obtain that the set ext B+
A′
e
separates

points of Ae. Therefore, in view of the validity of the implication (a) �⇒ (c) of
the preceding lemma, MAe also separates the points of Ae. If f (a) ≥ 0 for every
f ∈ MAe then, according to (5), f (a) ≥ 0 for all f ∈ B+

A′
e
. As is well known,

the latter implies a ∈ A+
e . ��

Corollary 13 The center Ae is a commutative algebra.

Proof For every a, b ∈ Ae and f ∈ MAe , the identities f (ab) = f (a) f (b) = f (ba)

hold. In view of Lemma 12, ab = ba. ��
The preceding corollary is not valid without the assumption that the algebra Ae

is Archimedean. Indeed, let B be an arbitrary noncommutative algebra. Consider
the unitization A = B ⊗ R of B, which is an algebra obtained from B by adjoining
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a unit. Obviously, A is noncommutative and e = (0, 1). On the other hand, under
the ordering defined by the cone A+ = {(b, λ) : λ > 0, b ∈ B} ∪ {0}, the algebra A
is an ordered algebra and Ae = A.

Corollary 14 If A is an ordered algebra then for a ∈ Ae the following statements
hold:

(a) For a polynomial ϕ (with real coefficients) the inequality ϕ(a) ≥ 0 is valid if and
only if ϕ(λ) ≥ 0 for all λ ∈ { f (a) : f ∈ MAe}. In particular, ak ≥ 0 for every
even k ∈ N;

(b) If a is an idempotent then a ∈ OI(A) if and only if a ∈ Ae.

Now, using the Gelfand’s idea about an embedding of a commutative Banach alge-
bra into an algebra of continuous functions, for an arbitrary element a ∈ Ae, we define
the function â on MAe via the formula â f = f (a), where f ∈ MAe . Evidently, â
is a continuous function on the (Hausdorff) compact spaceMAe with the σ(A′

e, Ae)-
topology (see Lemma 12), i.e., â ∈ C(MAe), and the mapping 
A : a → â from Ae
into C(MAe) is a positive, algebraic homomorphism. Moreover, 
A is an isometry.
Indeed, ‖̂a‖C(MAe )

= sup f ∈MAe
| f (a)| ≤ ‖a‖e. On the other hand, the inequalities

−‖̂a‖C(MAe )
1I ≤ â ≤ ‖̂a‖C(MAe )

1I

are equivalent to the inequalities

−‖̂a‖C(MAe )
f (e) ≤ f (a) ≤ ‖̂a‖C(MAe )

f (e)

for all f ∈ MAe . Whence, using Lemma 12 once more, we infer

−‖̂a‖C(MAe )
e ≤ a ≤ ‖̂a‖C(MAe )

e

and so ‖a‖e ≤ ‖̂a‖C(MAe )
. So, ‖a‖e = ‖̂a‖C(MAe )

. Next, the range R(
A) of
the mapping 
A is a subalgebra of the algebra C(MAe). Therefore, the Stone-
Weierstrass theorem (see [10, p. 124]) guarantees that R(
A) is dense in C(MAe).
The relation R(
A) �= C(MAe) is possible. To see this, we consider the algebra
A = C1[0, 1] of all continuously differentiable functions on [0, 1] equipped with
the cone A+ of all nonnegative functions. Clearly, Ae = A and ‖a‖e = ‖a‖C[0,1].
As is well known, every non-zero multiplicative functional f on the algebra C(K )

of all continuous functions on some compact K can be represented in the form of
f (x) = x(t) for some t ∈ K . Therefore, in our case, MAe can be identified with
[0, 1].

Thus, we have established the following result.

Theorem 15 The center Ae of an ordered algebra A is isometrically, algebraically,
and order-embeddable into a dense subalgebra of the real algebra C(M), where M
is some compact space. Moreover, if Ae is Dedekind complete then this isomorphism
is a bijection from Ae onto C(M).
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Now we shall mention some important consequences of the preceding result. First
of all, we shall prove the implication (c) �⇒ (a) of Lemma 11. To this end, con-
sider a non-zero multiplicative functional f ∈ A′

e. We claim first that f ∈ B+
A′
e
, in

particular, f is positive. Indeed, consider the embedding 
A : Ae → C(M) and
define the functional g on R(
A) via the formula g(
A(a)) = f (a). Obviously,
‖g‖(R(
A))′ = ‖ f ‖A′

e
and g is multiplicative on R(
A). Therefore, g extends uniquely

to all of C(M). These extensions will be denoted by g again. Clearly, g is multiplica-
tive on C(M). Thus, g ≥ 0, whence f ≥ 0 and so f ∈ B+

A′
e
. Let f = f1+ f2

2 with

fi ∈ B+
A′
e
. For i = 1, 2, we put gi (
A(a)) = fi (a). Functionals gi extend uniquely

to all of C(M). Clearly, g = g1+g2
2 . As is well known, every multiplicative functional

on C(M) is an extreme point of B+
(C(M))′ . Consequently, g1 = g2 and so f1 = f2.

Next, we mention the validity of the next assertion: for a multiplicative func-
tional f on Ae the continuity is equivalent to the positivity. Indeed, the necessity
was established below in the proof of the implication (c) �⇒ (a) of Lemma 11 and
the sufficiency follows at once from the boundedness of the set f (BAe) = f ([−e, e])
(without the assumption about the multiplicativity of f ). It should be noticed that
the multiplicativity of some functional on Ae does not imply the positivity. To see
this, we consider the algebra A of all polynomials on the segment [0, 1] under the nat-
ural algebraic operations and the order. Fix an arbitrary number t /∈ [0, 1]. Every
polynomial ϕ on [0, 1] extends uniquely to a polynomial ϕ̃ from R to R. Obviously,
the mapping ϕ → ϕ̃ is an algebraic homomorphism. We define the functional g on A
by g(ϕ) = ϕ̃(t). Then the functional g is multiplicative while, as is easy to see, it is
not positive.

Corollary 16 Let A be an ordered algebra, let a ∈ Ae, and let ϕ be a polynomial.
Then ϕ(a) = 0 if and only if ϕ(λ) = 0 for all λ ∈ { f (a) : f ∈ MAe}. In particular,
ak �= 0 if a �= 0 and k ∈ N.

We now turn our attention to the case of the center of an ordered normed algebra.
Before, we need some preliminary discussion. First of all, recall that (see [5, pp.

104, 105]) the sequence {zn} in an (Archimedean) ordered linear space E is said to
be x-uniformly convergent to an element z, where x, z ∈ E and x > 0, if for each
ε > 0 there exists an index n0 such that −εx ≤ z − zn ≤ εx for all n ≥ n0 and is
said to be x-uniformly Cauchy if for each ε > 0 there exists an index n0 such that
−εx ≤ zm − zn ≤ εx for all m, n ≥ n0. A space E is said to be x-uniformly complete
if every x-uniformly Cauchy sequence of E is x-uniformly convergent. The space
Ex equipped with the norm ‖ · ‖x is a Banach space if and only if E is x-uniformly
complete. Moreover, by the Andô theorem (see [5, p. 106]), the (closed) cone E+ in
an ordered Banach space E is normal if and only if E is x-uniformly complete for
every x > 0.

On the other hand, as is well known (see [5, p. 87]), the cone E+ in an ordered
Banach space E is normal if and only if the order intervals of E are norm bounded.
Now let E be an ordered normed space with a (closed) cone E+. We shall say that
the cone E+ is x-normal, where x ∈ E and x > 0, whenever order intervals of Ex

are bounded with respect of the norm induced by E . Obviously, every normal cone is
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x-normal for all x > 0 and if E is an ordered Banach space then the converse holds.
The proof of the following assertion is elementary and will be omitted.

Lemma 17 For an ordered normed space E and a non-zero element x ∈ E+ the fol-
lowing statements are equivalent:

(a) The cone E+ is x-normal;
(b) The order interval [0, x] is norm bounded in E ;
(c) The relations 0 ≤ xn ≤ λnx for all n and λn → 0 as n → ∞ imply xn → 0 in E ;
(d) The embedding (Ex , ‖ · ‖x ) → (E, ‖ · ‖E ) is continuous.

Corollary 18 Let E be an ordered Banach space and let x ∈ E+ be a non-zero
element. Then E is x-uniformly complete if and only if E+ is x-normal.

Proof If E is x-uniformly complete then the embedding of part (d) of the preceding
lemma is automatically continuous and, hence, E+ is x-normal. For the converse, let
the sequence {zn} in E be x-uniformly Cauchy. Fix ε > 0. There exists an index n0
such that

− εx ≤ zm − zn ≤ εx (6)

for all m, n ≥ n0. We have ‖zm − zn‖ ≤ εC , where the constant C =
supy∈[−x,x] ‖y‖E < ∞ as E+ is x-normal. Therefore, {zn} is a normCauchy sequence
and, hence, zn → z in E . Letting in (6) m → ∞, we get −εx ≤ z − zn ≤ εx , as
required. ��

The example of the space C1[0, 1] with the sup norm shows that in the case of
an ordered norm space E the x-normality of E+ does not imply the x-uniform com-
pleteness of E . Now we want to discuss the validity of the converse implication. To
this end, we recall first the following Kaplansky theorem (see [10, p. 176]) which will
be employed later on (see, in particular, Theorems 22, 24).

Theorem 19 Any norm under which C(K ) is a normed algebra majorizes the sup
norm.

The preceding theorem leads at once to the next problem which was formulated in
1948 and is sometimes called the Kaplansky conjecture.

Hypothesis 20 Every norm ‖ ·‖ under which C(K ) is a normed algebra is equivalent
to the sup norm.

As is easy to see, this hypothesis is valid if and only if every multiplicative homo-
morphism from C(K ) into an arbitrary Banach algebra is automatically continuous.
The validity of Hypothesis 20 was a long standing problem. First Dales and Esterle
proved in 1976 that it is false if the continuum hypothesis is assumed. Shortly after-
wards, Solovay and Woodin proved that Hypothesis 20 is true in some model of ZFC
(the Zermelo–Fraenkel set theory with the axiom of choice). Thus, the validity of it
turned out to be independent of ZFC (see [6, Chapter 5] for the detailed discussion).1

Next, as is easy to see, the answer to this hypothesis is affirmative if the cone (C(K ))+
is 1I-normal in the space C(K ) equipped with the norm ‖ · ‖ (see Lemma 17(d)).

1 The author wishes to thank Professor A. R. Schep for bringing these results to his attention.
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Proposition 21 Hypothesis 20 is valid if and only if for an arbitrary ordered normed
algebra A the e-uniform completeness of A implies the e-normality of A+.

Proof Necessity. Let A be an e-uniformly complete ordered normed algebra. In view
of the remarks above, under the norm ‖ · ‖e, the center Ae is a Banach space. Putting
M = MAe , we have the identity R(
A) = C(M) as 
A is an isometry from Ae into
C(M) and R(
A) is dense in C(M) (see Theorem 15 and the remarks before it). For
arbitrary x ∈ C(M), we put ‖x‖0 = ‖
−1

A (x)‖A. Obviously, ‖ · ‖0 is a norm and,
under this norm, C(M) is a normed algebra. In view of our hypothesis, the norm ‖ · ‖0
is equivalent to the sup norm ‖ · ‖C(M), whence ‖x‖0 ≤ R‖x‖C(M) for all x ∈ C(M)

and some constant R > 0. Consequently, ‖a‖A ≤ R‖a‖e for all a ∈ Ae. Now it
remains to remember part (d) of Lemma 17.

Sufficiency. Let the spaceC(K ) be a normed algebra under some norm ‖·‖. In view
of Theorem 19, C(K ) is an ordered normed algebra under the natural ordering and,
obviously, is 1I-uniformly complete. Therefore, the embedding ((C(K ))1I, ‖·‖C(K )) →
(C(K ), ‖ · ‖) is continuous and, hence, ‖x‖ ≤ r‖x‖C(K ) for all real-valued functions
x ∈ C(K ) and some constant r > 0. Now in the case of the complex space C(K ), we
have ‖x‖ ≤ 2r‖x‖C(K ) for all x ∈ C(K ). ��
Theorem 22 Let A bean e-uniformly complete orderednormedalgebra. Then the cen-
ter Ae is an AM-space with unit e and for every element a ∈ Ae the relations

‖|a|‖e = ‖a‖e ≤ ‖a‖A (7)

hold. Moreover, Ae is isometrically, algebraically, and order-embeddable onto the
algebra C(M) for some compact space M. If, in addition, the norm of A is monotone
on Ae and ‖e‖A = 1 then

‖a‖e = ‖|a|‖A ≤ ‖a‖A ≤ 2‖a‖e (8)

for all a ∈ Ae.

Proof We have the identity R(
A) = C(M) for some compact spaceM (see the proof
of Proposition 21). Therefore, Ae is isometrically, algebraically, and order-embeddable
onto the AM-space C(M). Consequently, under the norm ‖ · ‖e and the order induced
by A, Ae is an AM-space with unit e. In particular, Ae is a Riesz space, i.e., for every
a, b ∈ Ae there exist the supremum a ∨ b and the infimum a ∧ b in Ae and, moreover,
‖a‖e = ‖|a|‖e, where |a| is a modulus of a in Ae (we don’t assert that themodulus of a
exists in A). Again, for an arbitrary function x ∈ C(M), we put ‖x‖0 = ‖
−1

A (x)‖A.
By Theorem 19, the inequality ‖x‖C(M) ≤ ‖x‖0 holds for all x ∈ C(M) and so
‖a‖e ≤ ‖a‖A for all a ∈ Ae.

Now let the norm of A be monotone on Ae and let ‖e‖A = 1. Then, for an arbitrary
element a ∈ Ae, using the inequality |a| ≤ ‖a‖ee, we have ‖a‖e = ‖|a|‖e ≤ ‖|a|‖A ≤
‖a‖e, whence ‖a‖e = ‖|a|‖A. ��

Both inequalities in (8) can be strict. Indeed, let us consider the real space C[0, 1]
equipped with the norm ‖x‖ = ‖x+‖C[0,1] + ‖x−‖C[0,1]. As is easy to see, under
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this norm, the space C[0, 1] is an ordered Banach algebra satisfying all assumptions
of the preceding theorem. Nevertheless, for the function x(t) = − 3

2 t + 1, we have
‖x‖C[0,1] = 1 and ‖x‖ = 3

2 .

Corollary 23 Let A be an e-uniformly complete ordered normed algebra such that
the cone A+ is normal. The following statements hold:

(a) The center Ae is order closed in A. In particular, if Ar is a Riesz space then Ae
coincides with the band generated by e in Ar and if, in addition, A is Dedekind
complete then the representation Ar = Ae ⊕ Ad

e holds;
(b) If A is Dedekind complete, a ∈ Ae, and a is invertible in Ar then a−1 ∈ Ae.

Proof (a) Let {aα} be a net in Ae such that aα
o−→ a in A.Wemust check the inclusion

a ∈ Ae. There exist two nets {bα} and {cα} satisfying bα ≤ a − aα ≤ cα and bα ↑ 0,
cα ↓ 0 in A. Fix an index α0. Then bα0 ≤ a − aα ≤ cα0 for all α ≥ α0. In view
of the normality of A+, the net {aα}α≥α0 is norm bounded in A and, hence, in view
of (7), is ‖ · ‖e-bounded. Therefore, for α ≥ α0, we have −Ce ≤ aα ≤ Ce, where
C = supα≥α0

‖aα‖e, and so bα − Ce ≤ a ≤ cα + Ce. Finally, −Ce ≤ a ≤ Ce, i.e.,
a ∈ Ae. Now the rest of the conclusion is obvious.

(b) According to part (a), we write a−1 = b1 + b2 with b1 ∈ Ae and b2 ∈ Ad
e .

Obviously, e = ab1+ab2 and, hence, ab2 = e−ab1 ∈ Ae. On the other hand, in view
of the relation |ab2| ≤ ‖a‖e|b2|, we have ab2 ∈ Ad

e . Hence, ab2 = 0, i.e., b2 = 0 and
so a−1 ∈ Ae. ��

Let E be aBanach lattice and let an operator T belong to the centerZ(E) of E . Then,
under the order induced by B(E),Z(E) is a Riesz space and so T has a modulus |T | ∈
Z(E) (in fact, as is well known (see [4, p. 114]), for every T ∈ Z(E) itsmodulus exists
in L(E)). Obviously, ±T ≤ |T | in B(E) and, hence, ‖T ‖B(E) ≤ ‖|T |‖B(E). Taking
into account this observation, as a consequence of Theorem 22 and Corollary 23, we
see that the center Z(E) of E equipped with the operator norm is an AM-space with
unit I and if, in addition, E is Dedekind complete then L r(E) = Z(E) ⊕ I d. These
are famous Wickstead’s results (see [1, p. 113]).

For the case of an e-normal cone A+, we have the following result.

Theorem 24 Let A be an ordered normed algebra with an e-normal cone A+. Then
for every element a ∈ Ae the next inequality holds

‖a‖e ≤ ‖a‖A (9)

Proof In view of Theorem 15 and the remarks before it, for some compact space M
the range R(
A) of themapping
A from the center Ae into the spaceC(M) is a dense
subalgebra of C(M). For an arbitrary function x ∈ C(M) there exists a sequence {yn}
in R(
A) satisfying yn → x inC(M) and yn = 
A(an) for some an ∈ Ae. Obviously,
‖am − an‖e = ‖ym − yn‖C(M) → 0 as m, n → ∞. Since the cone A+ is e-normal,
we have ‖am − an‖A → 0 and, hence, the sequence {‖an‖A} is converging. Put
‖x‖ = limn→∞ ‖an‖A. If {zn} is another sequence in R(
A) satisfying zn → x in
C(M) and zn = 
A(bn) for some bn ∈ Ae then ‖an − bn‖e = ‖yn − zn‖C(M) → 0
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and so ‖an − bn‖A → 0. Consequently, limn→∞ ‖an‖A = limn→∞ ‖bn‖A. Thus,
the function ‖ · ‖ is well defined.

If ‖w‖ = 0 for some w ∈ C(M) then there exists a sequence {wn} in R(
A)

satisfying wn → w in C(M), wn = 
A(cn), and cn → 0 in A as n → ∞. Fix
ε > 0 and find an index n0 such that −εe ≤ cm − cn ≤ εe for all m, n ≥ n0.
Letting m → ∞, we have −εe ≤ cn ≤ εe and so ε ≥ ‖cn‖e = ‖wn‖C(M) for all
n ≥ n0. Therefore, wn → 0 and, hence, w = 0. Now, as is easy to see, ‖ · ‖ is
a norm and C(K ) equipped with this norm is a normed algebra. Using Theorem 19,
we have the inequality ‖x‖C(K ) ≤ ‖x‖ for all x ∈ C(K ) and, in particular, ‖a‖e =
‖
A(a)‖C(K ) ≤ ‖
A(a)‖ = ‖a‖A for all a ∈ Ae, as required. ��

In the case of an ordered C∗-algebra the relations (7), (8), and (9) can be made
more precisely (see (14)).

The rest of this subsection is devoted to the conditions which guarantee that the cen-
ter Ae is closed in an ordered normed algebra A. We start our discussion with the next
auxiliary result.

Lemma 25 Let Z be a normed space equipped with the norm ‖ · ‖Z and let Z0 be
a linear subspace of Z equipped with the norm ‖·‖Z0 . If the embedding (Z0, ‖·‖Z ) →
(Z0, ‖ · ‖Z0) is continuous and the unit ball BZ0 of (Z0, ‖ · ‖Z0) is norm closed in Z
then Z0 is a norm closed in Z.

Proof Let {zn} be a sequence in Z0 satisfying zn → z in Z , where z ∈ Z . Clearly, zn
is norm bounded in Z and, hence, is ‖ · ‖Z0 -bounded in Z0. Therefore, for some scalar
r > 0, we have the inclusion zn ∈ r BZ0 for all n. Finally, z ∈ r BZ0 and so z ∈ Z0.

��
Theorem 26 Let A be an ordered normed algebra. Each of the following conditions
ensures that the center Ae is norm closed in A:

(a) The algebra A is e-uniformly complete;
(b) The cone A+ is e-normal.

Proof In view of the relations (7) and (9), the embedding

(Ae, ‖ · ‖A) → (Ae, ‖ · ‖e) (10)

is continuous. On the other hand, the unit ball BAe of (Ae, ‖ · ‖e) is equal to the order
interval [−e, e] which is norm closed in A. It remains to remember the preceding
lemma. ��

The author does not know an example of an ordered normed algebra A such that
the center Ae of A is not norm closed in A. The proof above is valid for every ordered
normed algebra A such that the embedding (10) is continuous (in particular, the lat-
ter holds when the center Ae satisfies the inequality (9)). As follows at once from
the Baire category theorem and the equality Ae = ⋃∞

n=1 n[−e, e], in the case of
an ordered Banach algebra A the closedness of Ae in A is equivalent to the continu-
ity of the embedding (10). The preceding theorem reduces to the well-known result
asserting that the center Z(E) of a Banach lattice E is closed in the algebra B(E).
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Corollary 27 Let A be a normed algebra which is an ordered normed algebra both
with the cone A+

1 and with the cone A+
2 . If the algebra A with the cone A+

1 satisfies
one of the conditions (a) or (b) of Theorem 26 and with the cone A+

2 satisfies both
these conditions then the inclusion Ae,1 ∩ A+

e,2 ⊆ A+
e,1 holds, where Ae,i is the center

of A under the order induced by A+
i .

Proof Consider a non-zero element a ∈ Ae,1 ∩ A+
e,2. There exists (see the proof

of Proposition 21) an isometric order isomorphism 
 from Ae,2 onto C(M), where
M is some compact space depending upon A+

2 . If {ϕn} is a sequence polynomi-
als which converges uniformly on the segment [0, ‖a‖Ae,2 ] to the function

√
λ then

ϕn(
(a)) → √

(a) in C(M) as n → ∞ and so ϕ2

n(
(a)) → 
(a). Therefore,
ϕ2
n(a) = 
−1(ϕ2

n(
(a))) → a in (Ae,2, ‖ · ‖Ae,2). Whence, using the e-normality of
A+
2 , we have ϕ2

n(a) → a in A. On the other hand, a glance at Corollary 14(a) yields
ϕ2
n(a) ∈ A+

e,1. Consequently, in view of Theorem 26, a ∈ A+
e,1. ��

If, under the assumptions of the preceding corollary, Ae,1 = A (as can be shown,
the last identity is impossible if A is complex) and A+

e,2 = A+
2 then we have the inclu-

sion A+
2 ⊆ A+

1 . In particular, if K is a cone in the space C(S) with the natural order
which is 1I-normal, 1I is an interior point of K , and C(S) equipped with the cone K is
an ordered normed algebra then the inclusion K ⊆ C(S)+ holds and, in particular, K
is normal. Nevertheless, the author does not know an example of a space C(S) with
a cone K such that under the ordering induced by K this space is an ordered Banach
algebra while K is not normal.

Finally, some remarks about spectral properties of elements of an ordered normed
algebra Ae are in order (wemention oncemore that Ae is real). The following assertion
holds: for an arbitrary element a ∈ Ae the spectral radius r(a) = ‖a‖e. Indeed,
the spectral radius r(a) of a defined by r(a) = limn→∞ ‖an‖

1
n
e (see [10, pp. 10, 30]).

Now it remains only to observe the validity of the identities ‖a‖e = ‖
A(a)‖C(MAe )

and ‖
A(an)‖C(MAe )
= ‖
A(a)‖nC(MAe )

. The next version of the classical Gelfand’s
result holds: for a ∈ Ae the spectrum σ(a) = {1} if and only if a = e. Indeed,

σ(a) = {λ ∈ C : λ − a is not invertible in (Ae)C},

where (Ae)C is the complexification of Ae. The conclusion now follows immediately
from the relation { f (a) : f ∈ MAe} ⊆ σ(a).Next, since the algebra Ae is a subalgebra
of C(MAe), Ae is semi-simple, i.e., the radical rad Ae = {0} (see [10, p. 57]).

3.2 Orthomorphisms

An operator T on a Riesz space E is said to be band preserving (see [4, p. 112])
whenever T leaves all bands of E invariant. If E is Dedekind complete then the latter
is equivalent to the identity

(I − P)T P = 0 (11)

for all order projections P on E . An operator T on an arbitrary Riesz space E is
said to be orthomorphism (see [4, p. 115]) whenever T is a band preserving operator
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that is also order bounded. If E is Dedekind complete then the operator T on E is
an orthomorphism if and only if the identity (11) holds and T ∈ L r(E). Moreover,
if E is an arbitrary Banach lattice then, by the Wickstead theorem (see [4, p. 258]),
the operator T on E is an orthomorphism if and only if T belongs to the center Z(E)

of E and, by the Abramovich–Veksler–Koldunov theorem (see [4, p. 256]), every band
preserving operator on E is an orthomorphism.

Now let A be an ordered algebra. Using (11), we say that an element a ∈ A is order
idempotent preserving whenever pdap = 0 for all p ∈ OI(A). An element a ∈ A is
said to be an orthomorphism whenever a is an order idempotent preserving element
that is also regular. The collection of all orthomorphisms of an ordered algebra A
will be denoted by Orth(A). The purpose of this section is to make a number of
observations about order idempotent preserving elements and about orthomorphisms
in ordered algebras and, thus, to break some ground for further research. For the case
of orthomorphisms on Riesz spaces, the results which are analogous to obtained below
can be found, e.g., in [4, § 2.3] and [13, Chapter 20].

First of all, we mention the next. Let A be an ordered algebra with the trivial set of
order idempotents, i.e.,OI(A) = {0, e}. Then every element a in A is order idempotent
preserving and, in particular, Orth(A) = Ar. Thus, in this case, one cannot expect
any distinctive properties of ortomorphisms. Moreover, this circumstance complicates
researching the properties of orthomorphisms in arbitrary ordered algebras. That is
how thematter stands if, for instance, A is the unitization of an arbitrary ordered algebra
A0, i.e., A = A0 ⊗R or A = A0 ⊗C, under the order (a, λ) ≥ 0 whenever a ≥ 0 and
λ ≥ 0. Obviously, the analogous situation, namely, the identity Orth(A) = Ar, also
holds when A is commutative.

Proposition 28 For an element a in an ordered algebra A the following two state-
ments are equivalent:

(a) a is order idempotent preserving;
(b) a commutes with every order idempotent.

If, in additional, a has a modulus then (a) and (b) are equivalent:
(c) The relation p1 ⊥ p2 in OI(A) implies p1a ⊥ ap2 in A.

Proof (a) �⇒ (b) Obviously, pdap = 0 and so ap = pap, where p ∈ OI(A).
On the other hand, qdaq = 0 with q = pd and so pa = pap. Finally, ap = pa.

(b) �⇒ (a) If ap = pa for all p ∈ OI(A) then pap = ap2 = ap and, hence,
pdap = 0.

(a) �⇒ (c) If p1|a| ≥ b and |a|p2 ≥ b with b ∈ A then, taking into account
the identity p1 p2 = 0, we get 0 ≥ pd1b and 0 ≥ p1b. Therefore, 0 ≥ (pd1 + p1)b = b.

(c) �⇒ (a) In view of the relation pd ⊥ p with p ∈ OI(A), we have pda ⊥ ap,
whence |pdap| ≤ (pd|a|) ∧ (|a|p) = 0 and so pdap = 0. ��

From part (b) of the preceding proposition, the next result follows: if an element
a is order idempotent preserving and invertible then a−1 is also order idempotent
preserving. Indeed, put pda−1 p = b, where p ∈ OI(A). Then ab = apda−1 p =
pdaa−1 p = 0 and, hence, b = 0.

As is easy to see, for an arbitrary ordered algebra A the inclusion Ae ⊆ Orth(A)

holds. On the other hand, if A = L(E), where E is a Dedekind complete Riesz space,



558 E. A. Alekhno

then Orth(A) coincides with the band BI generated by the identity operator I in Ar
(see [4, p. 118]). In view of the remarks done above, the equality Be = Orth(A) does
not, in general, hold in the case of an arbitrary ordered algebra A. We can only assert
the following.

Proposition 29 Let A be an ordered algebra such that Ar is a Riesz space. Then for
the band Be generated by e in Ar the inclusion Be ⊆ Orth(A) holds.

Proof Consider an element a ∈ B+
e . There exists a net {aα} in Ae satisfying the rela-

tions 0 ≤ aα ↑ a in Ar. For an arbitrary idempotent p ∈ OI(A), we have

0 ≤ pdap = pd(a − aα)p + pdaα p = pd(a − aα)p ≤ a − aα ↓ 0

and so pdap = 0. ��
In the theory of operators on a Riesz space E the important property of orthomorp-

hisms is what every orthomorphism T : E → E is an order continuous operator (see
[4, p. 117] or the remarks after the next theorem). Therefore, if E is Dedekind complete
and A = L(E) thenOrth(A) ⊆ An. In the case of an arbitrary ordered algebra A the last
inclusion does not, in general, hold. Indeed, there exists (see Example 2) a Riesz space
E such that the identity operator I is not an order continuous element in the algebra
A = L(E), i.e., I /∈ An, while I ∈ Orth(A) (see also Example 31). Obviously, for
a ∈ Orth(A), where A is an arbitrary ordered algebra, the inclusions a ∈ Anl and
a ∈ Anr are equivalent.

Theorem 30 Let A be aDedekind complete ordered algebra such that As◦l ∩As◦r = {0}
(see (2)). Then the inclusion Orth(A) ⊆ An holds.

Proof Consider an element a ∈ Orth(A). Evidently, we can assume a ≥ 0. Let pα ↓ 0
in OI(A) and let apα ↓ b ≥ 0 in A. Clearly, pdα ↑ e in OI(A) and pdαb = bpdα = 0.
According to our condition, we infer b = 0 and so a ∈ An. ��

If A = L(E), where E is a Dedekind complete Riesz space, then, as is easy to see,
we have As◦l = {0} and, hence, in this case the preceding theorem can be applied. As
the next example shows, the inclusion Orth(A) ⊆ An does not even hold in the case
of a Dedekind complete ordered algebra.

Example 31 Let B be a real Dedekind complete ordered Banach algebra with a unit
e0 �= 0 which admits a non-zero, positive, multiplicative functional f and a net {pα}
satisfying pα ↑ e0 in OI(B) and f (pα) = 0 for all α. First of all, we mention that
such an algebra exists. Indeed, consider a Dedekind complete ordered Banach algebra
�∞ with the natural order, norm, and multiplication. Put pn = (1, . . . , 1︸ ︷︷ ︸n

, 0, 0, . . .).

Obviously, pn ↑ (1, 1, . . .). On the other hand, as is well known, �∞ admits a non-
zero, positive, multiplicative functional f satisfying f (c0) = {0} (if fn(x) = xn for
x = (x1, x2, . . .) ∈ �∞ then f can be taken as a cluster point of { fn} in the σ(�′∞, �∞)-
topology). Next, consider the linear space A = B ⊕ R. Under the multiplication

(b1, λ1) � (b2, λ2) = (b1b2, λ1 f (b2) + λ2 f (b1) + λ1λ2),

the norm
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‖(b, λ)‖A = ‖b‖B + |λ|,

and the order induced by the cone

A+ = {(b, λ) : b ∈ B+ and λ ∈ R
+},

the algebra A is a Dedekind complete ordered Banach algebra with unit e = (e0, 0).
Evidently, OI(A) = {(p, 0) : p ∈ OI(B)} and, hence, Orth(A) = {(b, λ) : b ∈
Orth(B)}. In particular, (0, 1) ∈ Orth(A). However, we claim that (0, 1) /∈ An. Indeed,
on the one hand (e0 − pα, 0) ↓ 0 in OI(A) and, on the other hand,

(e0 − pα, 0) � (0, 1) = (0, 1) � (e0 − pα, 0) = (0, 1),

and we are done. ��
In the case of a Riesz space E , every positive orthomorphism T on E is a lattice

homomorphism. On the other hand, if S is an order continuous lattice homomorphism
on a Dedekind complete Riesz space E then the operator U → SU from L r(E) into
L r(E) is also a lattice homomorphism and if the order dual E∼ �= {0} then S is a lattice
homomorphism (see [4, p. 96]). These results justify the following definition (see also
Sect. 4.3). Let A be an ordered algebra such that Ar is a Riesz space. An element
a ∈ A is said to be a lattice homomorphism (of the algebra A) whenever the operator
La : Ar → Ar defined by Lab = ab is a lattice homomorphism on Ar. Obviously, if
a is a lattice homomorphism of A then a ≥ 0.

Proposition 32 Let A be an ordered algebra such that Ar is a Riesz space and let
b ∈ A be invertible. Then the elements b and b−1 are lattice homomorphisms of A if
and only if b, b−1 ∈ A+.
Proof The necessity is obvious. We shall prove the sufficiency. Fix a ∈ Ar. Clearly,
|Lba| = |ba| ≤ b|a|, whence |a| ≥ b−1|ba| ≥ |a|. Therefore, |a| = b−1|ba| and so
b|a| = |ba|, i.e., Lb is a lattice homomorphism on Ar. ��

For the case of operators on ordered Hilbert spaces the notions which are close to
ones considered in this subsection, will be discussed in Sect. 4.3.

4 Ordered C∗-algebras

4.1 A general case

An ordered Banach algebra A is called an ordered C∗-algebra if it is equipped with
an involution a → a∗ that maps the cone A+ into itself and under which A is a C∗-
algebra, i.e.,‖a∗a‖A = ‖a‖2A for alla ∈ A. Themost important example ofC∗-algebra
is the algebra B(H) of all bounded operators on some Hilbert space H . If a Hilbert
space H is an ordered Banach space with a cone H+ then (see [3]) the algebra B(H)

is an ordered C∗-algebra with the cone

(B(H))+ = {T ∈ B(H) : T (H+) ⊆ H+} (12)
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if and only if H+ is a self-adjoint cone, i.e., H+ = (H+)′, where (H+)′ is a dual cone
of H+. A Hilbert space H with a self-adjoint cone H+ is called an ordered Hilbert
space. The study of ordered C∗-algebras and, in particular, of ordered Hilbert spaces
was initiated in [3]. This section is a continuation of that research. Of course, we shall
keep in mind the results obtained above. The main emphasis will be on the case of
an ordered C∗-algebra B(H) (see Sect. 4.3). Before, in Sect. 4.2, we shall consider
some properties of ordered Hilbert spaces.

In view of Corollary 13, the center Ae of an ordered C∗-algebra A is a real commu-
tative �-algebra. On the other hand (see [3]), if an element a belongs to Ae and a ∧ a∗
exists then a is hermitian, i.e., a = a∗. As will be shown in the next theorem, there
is a wide class of ordered C∗-algebras such that the center of these algebras consists
only of hermitian elements.

Theorem 33 Let A be an ordered C∗-algebra and let one of the assumptions (a) or
(b) of Theorem 26 be satisfied. Then every element a ∈ Ae is hermitian.

Proof In view of Corollary 18, the e-uniform completeness of A and the e-normality
of A+ are equivalent. Nevertheless, below we shall give the proof which does not use
the norm completeness of A.

If A is e-uniformly complete then, by Theorem 22, the center Ae is an AM-space
and, in particular, for every a ∈ Ae an element a ∧ a∗ exists in Ae. Then, as was
mentioned above, a = a∗.

Now we shall assume the e-normality of A+. Putting M = MAe , we consider
an isomorphism 
A : Ae → C(M) (see Theorem 15 and the remarks before it) and
define the operator T : R(
A) → R(
A) by T (
A(a)) = 
A(a∗). As is easy to see,
T is an algebraic homomorphism. Moreover, in view of the identity ‖a‖e = ‖a∗‖e for
all a ∈ Ae, the operator T is continuous. Therefore, since R(
A) is dense in C(M),
T extends to all of C(M) as a (algebraic and lattice) homomorphism (denoted by T
again). There exists (see [1, p. 145]) a continuous mapping ξ : M → M satisfying
(T x)(s) = x(ξ(s)) for all x ∈ C(M) and s ∈ M .

We shall check the identity ξ(s) = s for all s ∈ M . To this end, proceeding by
contradiction, we find a point s ∈ M and two neighborhoods Us and Vξ(s) of the points
s and ξ(s), respectively, such that

Us ∩ Vξ(s) = ∅ and ξ(Us) ⊆ Vξ(s). (13)

Taking into account Urysohn’s lemma, we pick a non-zero function x ∈ C(M)

satisfying the relation x(M\Us) = {0}. Therefore, taking into account (13), we
have x(t)x(ξ(t)) = 0 for all t ∈ M and so x · T x = 0. On the other hand,
there exists a sequence {an} in Ae such that 
A(an) → x as n → ∞. Then

A(an)
A(a∗

n) → x · T x = 0 and, hence, 
A(ana∗
n) → 0. The latter implies

the relation ana∗
n → 0 in Ae. Using the e-normality of A+, we obtain ana∗

n → 0 in A.
Since A is a C∗-algebra, an → 0 in A and so x = 0, a contradiction. Finally, T x = x
for all x . Consequently, 
A(a) = 
A(a∗) or a = a∗ for all a ∈ Ae. ��

It is not known if the preceding theorem is valid for an arbitrary ordered C∗-
algebra. Moreover, the author does not know an example of an ordered C∗-algebra
with an unnormal cone A+ (see also the remarks after Corollary 27).
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Our next aim is to make more precisely the relations (7), (8), and (9).

Theorem 34 Let A be an orderedC∗-algebra and let one of the following assumptions
be satisfied:

(a) A is e-uniformly complete and the norm of A is monotone on Ae;
(b) A+ is e-normal.

Then for every element a ∈ Ae the next identity holds

‖a‖e = ‖a‖A. (14)

Proof Again, we shall give the proof which does not use the norm completeness of A.
Let the algebra A be e-uniformly complete and let the norm of A be monotone on

Ae. In view of the preceding theorem, a is hermitian. Then, using Corollary 14(a) and
the relations (8), we have

‖a‖2A = ‖a2‖A = ‖|a2|‖A = ‖a2‖e = ‖a‖2e
and, hence, ‖a‖e = ‖a‖A.

Let the cone A+ be e-normal. Assume first that 0 ≤ a ≤ e. Obviously, 0 ≤ an ≤ e
for all n ∈ N. Taking into account the e-normality of A+, we find a constant C > 0

satisfying ‖a‖2nA = ‖a2n‖A ≤ C for all n and, hence, ‖a‖A ≤ C
1
2n . Letting n → ∞,

we infer ‖a‖A ≤ 1. Then, using the inequalities 0 ≤ a ≤ ‖a‖ee, we have ‖a‖A ≤
‖a‖e. On the other hand, a glance at (9) yields ‖a‖e ≤ ‖a‖A. Now the identity (14) is
obvious. ��

4.2 An ordered Hilbert space

First of all, we mention some properties of an ordered Hilbert space H which will be
needed later on (see [3]). Every ordered Hilbert space H is real and, hence, the space
B(H) is also real (the approach to the complex case is discussed in [3]). The cone H+
is generating. Moreover, the norm on H is strictly monotone, i.e., the inequalities
0 ≤ x < y imply ‖x‖H < ‖y‖H and, in particular, the cone H+ is normal. An ordered
Hilbert space H is a Riesz space (under the order induced by H+) if and only if H+
has the Riesz decomposition property; in this case, the Riesz space H is Dedekind
complete. However, there exists an ordered Hilbert space H which is not a Riesz space
(see Example 38(b)). Nevertheless, aswill be shown below (see (19) andCorollary 40),
every ordered Hilbert space H admits operations which are “close” to the lattice ones.
Below, unless otherwise stated, H will denote an orderedHilbert spacewith a cone H+
and the norm ‖ · ‖. We assume H �= {0}.

We start our discussion with the following auxiliary result. Recall that if N is
nonempty, closed, convex subset of an arbitrary Hilbert space H then for each point
x of H , there is a unique nearest point of N to x . This point is called the projection
of x onto N and is denoted by PN x . Obviously, if x ∈ N then PN x = x . As is
well known, a point z ∈ N is the projection of x onto N if and only if the inequality
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〈x − z, n − z〉 ≤ 0 holds for all n ∈ N . Moreover, the mapping PN : H → N is
continuous.

Lemma 35 Let H be an ordered Hilbert space, x ∈ H. The following statements
hold:

(a) A point z ∈ H+ is the projection of x onto H+ if and only if z ≥ x and 〈x−z, z〉 =
0. In particular, if x ≤ 0 then PH+x = 0;

(b) The decomposition x = PH+x + P−H+x holds, moreover, 〈PH+x, P−H+x〉 = 0
and P−H+x = −PH+(−x).

Proof (a) Let z be the projection of x onto H+. As was mentioned above, the latter is
equivalent the validity of the inequality

〈x − z, k − z〉 ≤ 0 (15)

for all k ∈ H+. Fix k ∈ H+. For an arbitrary scalar λ ≥ 0, we have 〈x−z, λk−z〉 ≤ 0
and so λ〈x − z, k〉 ≤ 〈x − z, z〉. The last relation implies at once 〈x − z, k〉 ≤ 0 for all
k ∈ H+. Whence, we infer z ≥ x as H+ is self-adjoint. On the other hand, using (15)
oncemore, we obtain 〈x−z, λz−z〉 ≤ 0 for allλ ≥ 0. Therefore, (λ−1)〈x−z, z〉 ≤ 0.
Hence, 〈x − z, z〉 = 0.

For the converse, for arbitrary k ∈ H+, we have 〈x − z, k − z〉 = 〈x − z, k〉 ≤ 0.
Thus, (15) holds and so z = PH+x .

(b) Obviously, for all k ∈ H+ the inequality 〈z, k〉 ≥ 0 is valid with z = PH+x .
Then, in view of part (a), 〈z, k+x−z〉 ≥ 0 and, hence, 〈x−(x−z),−k−(x−z)〉 ≤ 0.
The latter is equivalent to the relation x − z = P−H+x . Now the equality PH+(−x) =
−P−H+x follows at once from part (a). ��
Corollary 36 Assume that an ordered Hilbert space H is a Riesz space. Then for
an arbitrary element x ∈ H the identities x+ = PH+x and x− = PH+(−x) hold.

In particular, 〈x+, x−〉 = 0.

Proof Since every element x ∈ H has a unique decomposition into the differ-
ence of two nonnegative, disjoint elements, it suffices to check the relation PH+x ∧
PH+(−x) = 0. Indeed, if the inequalities z ≤ PH+x and z ≤ PH+(−x) hold for some
z ∈ H+ then, in view of the relations 0 ≤ 〈z, z〉 ≤ 〈PH+x, PH+(−x)〉 = 0, we have
z = 0. ��
Corollary 37 Let x, y ∈ H+. Then 〈x, y〉 = 0 if and only if PH+(x − y) = x.

In viewofCorollary 36, the studyof the projectionoperator PH+ is of special interest
when H+ is not a lattice cone. Before proceeding further, we consider an important
example of such a cone.

Example 38 Let H be an arbitrary Hilbert space with dim H ≥ 2. Let z ∈ H with
‖z‖ = 1 and let ε > 0. Then (see [5, § 2.6]), the ice cream cone is the cone

Kz,ε = {x ∈ H : 〈x, z〉 ≥ ε‖x‖}.

The proof of the following two statements can be found in [3]:
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(a) In a real space H the ice cream cone Kz,ε is self-adjoint if and only if ε = 1√
2
.

(b) If dim H ≥ 3 and H equippedwith the cone Kz,ε , where ε ∈ (0, 1), then the center
(B(H))I of the ordered Banach algebra B(H) is trivial, i.e.,

(B(H))I = {λI : λ ∈ R}.

As follows at once from part (b), if H is real and dim H ≥ 3 then the ordered
Hilbert space H with the cone Kz, 1√

2
is not a Riesz space.

(c) In a real space H with the ice cream cone K = Kz, 1√
2
for an element x /∈ ±K

the identity

PK x = 1

2

(
1 + 〈x, z〉

l(x, z)

)
(x + (l(x, z) − 〈x, z〉)z) (16)

holds, where l(x, z) = (‖x‖2 − 〈x, z〉2) 1
2 .

To see this, we mention first that if l(x, z) = 0 then ‖x‖ = |〈x, z〉|, whence x
and z are linearly dependent. The latter contradicts the condition x /∈ ±K . Thus,
the element w in the right part of (16) is well defined. Moreover, the last relation
is equivalent to the inequality |〈x, z〉| < 1√

2
‖x‖ and so |〈x, z〉| < l(x, z). Using

elementary calculations, it is easy to check the equality ‖w‖ = 1√
2
(l(x, z) + 〈x, z〉).

Whence,we obtain the identity 〈w, z〉 = 1√
2
‖w‖which impliesw ∈ K and the identity

〈x − w,w〉 = 0. (17)

Next, we claim that the relation

‖w − x‖2 = 1

2
(l(x, z) − 〈x, z〉)2 (18)

holds. Indeed,

‖w − x‖2 = ‖w‖2 − 2〈w, x〉 + ‖x‖2

= ‖w‖2 −
(
1 + 〈x, z〉

l(x, z)

)(
‖x‖2 − 〈x, z〉2 + l(x, z)〈x, z〉

)
+ ‖x‖2

= ‖w‖2 −
(
1 + 〈x, z〉

l(x, z)

)2

l(x, z)2 + ‖x‖2 = ‖x‖2 − ‖w‖2

= ‖x‖2 − 1

2

(
1 + 2

〈x, z〉
l(x, z)

+ 〈x, z〉2
l(x, z)2

)
l(x, z)2 = ‖x‖2

2
− 〈x, z〉l(x, z)

= 1

2
(l(x, z)2 − 2〈x, z〉l(x, z) + 〈x, z〉2) = 1

2
(l(x, z) − 〈x, z〉)2.

Whence, using the relations 〈w − x, z〉 = 1
2 (l(x, z) − 〈x, z〉) > 0, we obtain

〈w − x, z〉 = 1√
2
‖w − x‖
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and so w − x ∈ K . Finally, according to Lemma 35(a) and the equality (17), we have
w = PK x .

The next formula for the distance function dK (x) = ‖x − PK x‖, which associates
with each point x of H its distance from K , follows from (18).

(d) If x /∈ −K then dK (x) = 1√
2
(l(x, z)−〈x, z〉)+ and if x ∈ −K then dK (x) = ‖x‖.

��
Corollary 36 suggests as, for the case of an arbitrary ordered Hilbert space, opera-

tions which are “close” to lattice ones can be defined. Namely, for an arbitrary element
x ∈ H , we put |x |H+ = PH+x+ PH+(−x). Now for x, y ∈ H , we can define the next
operations

x ∨
H+ y = 1

2
(x + y + |x − y|H+) and x ∧

H+ y = 1

2
(x + y − |x − y|H+). (19)

In view of Lemma 35(a), |x |H+ ≥ ±x , whence x ∨H+ y ≥ x, y and x ∧H+ y ≤ x, y.
Moreover, |x |H+ = | − x |H+ and the identities

x + y = x ∨
H+ y + x ∧

H+ y and |x − y|H+ = x ∨
H+ y − x ∧

H+ y

hold. The operations defined above are continuous in the norm topology. It follows
at once from Corollary 36, if H is a Riesz space then the operations ∨H+ and ∧H+
coincide with the usual supremum and infimum. In fact, this coincidence holds in a
more general case (see Corollary 40).

Lemma 39 If for x, y ∈ H the infimum x ∧ y exists in H (under the order induced
by H+) and x ∧ y = 0 then 〈x, y〉 = 0.

Proof A glance at Lemma 35(a) yields PH+(x − y) ≥ 0 and PH+(x − y) ≥ x − y.
Whence, x ≥ x − PH+(x − y) and y ≥ x − PH+(x − y). Therefore, using our
condition, we conclude PH+(x − y) ≥ x . The last relation and Lemma 35(a) once
more imply

0 = 〈PH+(x − y), PH+(x − y) − x + y〉 ≥ 〈PH+(x − y), y〉 ≥ 〈x, y〉 ≥ 0.

Finally, 〈x, y〉 = 0. ��
Corollary 40 Let x, y ∈ H. If x has a modulus |x | then |x | = |x |H+ . Analogously,
if either x ∨ y or x ∧ y exists, then either x ∨ y = x ∨H+ y or x ∧ y = x ∧H+ y,
respectively.

Proof First of all, we recall that in an ordered linear space E the modulus |v| of
an element v ∈ E exists if and only if its positive part v+ (its negative part v−) exists.
Moreover, if u, w ∈ E then the modulus |u − w| exists if and only if u ∨ w (u ∧ w)
exists; in this case, e.g., u ∨ w = 1

2 (u + w + |u − w|).
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Now assume that |x | exists. Then x+ ∧ x− = 0. A glance at the preceding lemma
yields 〈x+, x−〉 = 0. Whence, using Corollary 37, we obtain

|x |H+ = PH+(x+ − x−) + PH+(x− − x+) = x+ + x− = |x |.

Therefore, taking into account the remarks above, we easily obtain the required equal-
ities for x ∨ y and x ∧ y. ��

As follows at once from the preceding corollary, the operations ∨H+ and ∧H+
defined above coincide with the usual lattice operations ∨ and ∧, when the latter
ones are well defined. Later on, we shall simply write x ∨ y instead of x ∨H+ y;
analogously, for the cases of x ∧H+ y and |x |H+ . Thus, now the expression x ∨ y
means some element in H which can be defined for every pair {x, y} and coincides
with the usual least upper bound sup {x, y} if the latter exists. Moreover, now we have
a right to put x+ = PH+x and x− = PH+(−x).

The next proposition contains a list of several elementary properties of operations
introduced above.

Proposition 41 For any elements x , y, and z in H the following statements hold:

(a) |αx | = |α||x | for all α ∈ R and (αx)± = αx± for all α ∈ R
+;

(b) x+ = x ∨ 0 and x− = (−x) ∨ 0;
(c) α(x∨ y) = (αx)∨(αy) for all α ∈ R

+, x∨ y = −((−x)∧(−y)) = (x− y)++ y,
and z + (x ∨ y) = (z + x) ∨ (z + y);

(d) |x | = x+ ∨ x− and x+ ∧ x− = 0;
(e) The inequality x ≥ y holds if and only if x ∨ y = x ;
(f) If x, y ≥ 0 then x ∧ y = 0 if and only if 〈x, y〉 = 0;
(g) 〈x, y〉 = 〈x ∨ y, x + y〉 − ‖x ∨ y‖2 = 〈x ∧ y, x + y〉 − ‖x ∧ y‖2;
(h) The norm on H is lattice, i.e., the inequality |x | ≤ |y| implies ‖x‖ ≤ ‖y‖.
Proof (a) Taking into account Lemma 35(a), it suffices to observe the validity of
the equality PH+(αx) = αPH+x for all x ∈ H and α ∈ R

+.
(b) We have

2(x ∨ 0) = x + |x | = PH+x − PH+(−x) + PH+x + PH+(−x) = 2PH+x = 2x+.

The proof of the second identity is similar.
(c) We have

2α(x ∨ y) = α(x + y + |x − y|) = αx + αy + |α(x − y)| = 2((αx) ∨ (αy)),

−2((−x) ∧ (−y)) = −(−x − y − |x − y|) = 2(x ∨ y),

2(z + (x ∨ y)) = z + x + z + y + |(z + x) − (z + y)| = 2((z + x) ∨ (z + y)),

and

(x − y)+ + y = (x − y) ∨ 0 + y = x ∨ y.
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(d) According to Lemma 35(b) and Corollary 37, we have

2(x+ ∨ x−) = PH+x + PH+(−x) + PH+(PH+x − PH+(−x))

+PH+(PH+(−x) − PH+x)

= PH+x + PH+(−x) + PH+x + PH+(−x) = 2|x |.
(e) The sufficiency is clear. We shall check the necessity. Indeed, x = 1

2 (x + y +
|x − y|), whence x − y = |x − y| ≥ 0.

(f) The relation x ∧ y = 0 is equivalent to the equalities

x + y = |x − y| = PH+(x − y) + PH+(y − x).

The latter, in view of the identity x − y = PH+(x − y) − PH+(y − x), is equivalent
to the relation x = PH+(x − y). It remains to remember Corollary 37.

(g) According to (c), we have (x ∨ y − x) ∧ (x ∨ y − y) = 0. Whence, in view
of (f), we obtain 〈x ∨ y − x, x ∨ y − y〉 = 0, as required.

(h)UsingLemma35(b), it suffices to observe the validity of the identity‖|x |‖ = ‖x‖
and to use the monotonicity of the norm on H . ��

Below, for any positive elements x and y in an ordered Hilbert space H , we shall
write x ⊥ y whenever x and y are either orthogonal in H , i.e., 〈x, y〉 = 0, or disjoint
in H , i.e., x∧ y = 0. In view of part (f) of the preceding proposition, these two notions
are equivalent and, hence, this notation cannot lead to an ambiguity.

Unfortunately, a number of other properties of lattice operations which hold in
the case of Riesz spaces, are not valid in the case of operations ∨ and ∧ introduced
above. For instance, the inequalities x, y ≥ 0 do not imply x ∧ y ≥ 0. Otherwise, for
elements x, y, z ∈ H , from the relations x−z, y−z ∈ H+, it follows (x−z)∧(y−z) ≥
0 and so x ∧ y ≥ z. Consequently, there exists the infimum of the set {x, y} in H .
Therefore, since x and y are arbitrary, H is a Riesz space. The latter does not hold for
an arbitrary ordered Hilbert space. Thus, the inequality x + y ≥ |x − y| is not valid for
all x, y ≥ 0. Consequently, the modulus does not satisfy the triangle inequality and
so, that is equivalent, the operations x → x± do not satisfy it. Moreover, in a general
case, the inequality

(x + y)+ ≤ x+ + y (20)

with x ∈ H and y ∈ H+ does not also hold. This, in turn, means that the operation∨ is
not associative. Otherwise, for arbitrary x, y ∈ H , we have (x ∨ (−y))∨0 = x ∨ y−.
Whence, assuming y ≥ 0, we obtain

(x + y)+ − y ≤ (x ∨ (−y))+ = x ∨ 0 = x+

and so (20) holds, a contradiction.
Example 38′ We shall use the notations and the results of Example 38. Let us

consider the self-adjoint ice cream cone K = Kz, 1√
2
. As is easy to see, for arbitrary

x /∈ ±K , we have the identity

|x | = l(x, z)−1((‖x‖2 − 2〈x, z〉2)z + 〈x, z〉x);
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in particular, 〈x, z〉 = 0 if and only if |x | = ‖x‖z.
Now let dim H ≥ 3 and let u and v be two elements in H such that the system

{u, v, z} is orthonormal. Clearly, y = z + v ≥ 0. On the other hand, as is easy to
check, 〈u−, (u − y)+〉 > 0 and, hence, u− ∧ (u − y)+ �= 0 (the last relation does not
hold in the case of a Riesz space). ��

The next lemma is useful for the construction of self-adjoint cones with special
properties.

Lemma 42 Let K0 be a (not necessarily closed) cone in an arbitrary real Hilbert
space H such that K0 ⊆ K ′

0. Then there exists a self-adjoint cone K satisfying
K0 ⊆ K.

Proof Consider the collectionK of all cones C satisfying the relations K0 ⊆ C ⊆ C ′,
ordered by inclusion. Under this ordering, K is a partially ordered set. Let {Cα} be
a chain in K. Put C0 = ⋃

α Cα . Evidently, C0 is a cone and, moreover, C0 ⊆ C ′
0. By

Zorn’s lemma, K has a maximal element, say K . The cone K is self-adjoint. To see
this, proceeding by contradiction, we find x ∈ K ′\K and put K1 = K +{λx : λ ≥ 0}.
As is easy to see, K1 is a cone, K � K1, and if y, z ∈ K1 then 〈y, z〉 ≥ 0. Thus,
K1 ⊆ K ′

1 and so K1 ∈ K, which is impossible in view of the maximality of K . Finally,
K = K ′. ��
Example 43 (a) As follows from Proposition 41(f), if x, y ∈ H and the greatest
lower bound inf {x, y} = 0 then x ⊥ y, i.e., 〈x, y〉 = 0. Nevertheless, the converse
is not valid. To see this, we consider the Euclidean space H = R

3 and the five
elements x± = (1,±1, 0), y = (1, 0,−λ), and z± = (1,±1, λ−1), where λ > 0,
and a wedge K0 generated by these elements. Then K0 ⊆ K ′

0. Moreover, the wedge
K0 is closed (see [5, p. 126]) and is a cone. According to the preceding lemma, there
exists a self-adjoint cone K satisfying K0 ⊆ K (in fact, as can be shown, the cone K0
is self-adjoint and so K0 = K ). Clearly, x+ ⊥ x−. On the other hand, we consider
the elementw = (0, 0, α)withα ∈ (0, λ−1]. Thenw /∈ K while x± ≥ −w and, hence,
the infimum of the subset {x+, x−} of the space H with the cone K does not exist.

(b) Let H = R
3 and let us consider the elements e1 = (1, 0, 0), e2 = (0, 1, 0),

z = (1, 1, 1
2 ), andw = (1, 1,− 1

2 ).According to the preceding lemmaoncemore, there
exists a self-adjoint cone K which contains these four elements and also the elements
z − e1 and z − e2. Then, under the order induced by the cone K in H , the following
relations e1 ⊥ e2, 0 ≤ e1 ≤ z, and 0 ≤ e2 ≤ z hold. Nevertheless, the inequality
e1 + e2 ≤ z does not hold (in particular, H is not a Riesz space). ��

In conclusion of this subsection,wemention the paper [7],where the related concept
of ordered Banach spaces which admit a quasi-lattice structure, was considered, but
from another viewpoint. In particular, as was shown in this paper, every strictly convex
reflexive ordered Banach space E with a generating cone E+ admits such a structure.

4.3 The ordered C∗-algebra B(H)

Let H be an ordered Hilbert space. We mention at once that below, unless otherwise
stated, to avoid ambiguity, an operator T ∈ B(H)will be called positive if it maps H+
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into itself, i.e., if T is positive in the sense of the theory of ordered linear spaces. In
this case, we write T ≥ 0. Nevertheless, as will be shown later on (see Theorem 50),
for operators belonging to (B(H))I both possible notions of positivity coincide. Since
the cone H+ has the strong Levi property (see [3]), for every net {Tα} in B(H)

satisfying Tα ↑≤ S in B(H) and every x ∈ H , the net {Tαx} in H is normconvergent in
H and Tα ↑ T in B(H), where T x = limα Tαx . Next, as was noticed in the preceding
subsection, the cone H+ is generating and normal. Therefore, the cone (B(H))+
(see (12)) is also normal.

Now, using Theorems 22, 26, 33, 34, Corollary 23, and the remarks above, we are
in a position to state the next important result.

Theorem 44 Let H beanorderedHilbert space. Then the center (B(H))I is a commu-
tative, norm closed, and order closed subalgebra of B(H), every element of (B(H))I
is a hermitian operator, and, under the order induced by B(H), (B(H))I is aDedekind
complete AM-space with unit I such that ‖T ‖I = ‖T ‖B(H) for every T ∈ (B(H))I .

Moreover, (B(H))I is isometrically, algebraically, and order-embeddable onto
the algebra C(M) for some extremally disconnected compact space M.

By analogy with the case of a Riesz space, the projection P on H satisfying
the inequalities 0 ≤ P ≤ I is called an order projection.

Corollary 45 Every order projection P on H is an orthogonal projection.

Our next goal is to study the class (B(H))n of order continuous elements in
the ordered C∗-algebra B(H).

Lemma 46 Let {Pα} be a decreasing net of order projections on H. The following
statements are equivalent:

(a) Pα ↓ 0 in B(H);
(b) Pα ↓ 0 in OI(B(H));
(c) Pαx ↓ 0 in H for all x ∈ H+;
(d) ‖Pαx‖ → 0 for all x ∈ H.

Proof The implications (d) �⇒ (c) �⇒ (a) �⇒ (b) are obvious.
(b) �⇒ (d) Evidently, Pα ↓ in B(H), whence, for some P ∈ B(H), we have

Pα ↓ P in B(H) and Pαx → Px for all x ∈ H . Moreover, for arbitrary y ∈ H
the relations

PαPy − Py = Pα(P − Pα)y + Pα y − Py → 0

hold and so P2 = P . Thus, P is an order projector on H and Pα ≥ P for all α.
Therefore, P = 0. Finally, Pαx is norm convergent to zero, as required. ��
Theorem 47 Every regular operator T on H is an order continuous element of B(H),
i.e., (B(H))n = (B(H))r.

Proof Let Pα ↓ 0 in OI(B(H)). If 0 ≤ S ∈ B(H) then, as follows at once from
the preceding lemma, SPα ↓ 0 and PαS ↓ 0. The operator T can be written as
a difference of two positive operators T1 and T2. Evidently, −T2Pα ≤ T Pα ≤ T1Pα

and, hence, T Pα
o−→ 0. Analogously, PαT

o−→ 0. Finally, T ∈ (B(H))n. ��
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Let A be an arbitrary ordered algebra. An algebra A is said to have a (strongly)
disjunctive product if for any a, b ∈ A+

n (a, b ∈ A+) with ab = 0 there exists an order
idempotent p satisfying ap = pdb = 0. Now let E be a Dedekind complete Riesz
space. Then the following statements hold (see [2, Example 3.3]): (a) The algebra
L(E) has a disjunctive product; (b) If E is a Banach lattice then the algebra B(E)

has a strongly disjunctive product if and only if E has order continuous norm. On
the other hand, if F is a Banach lattice then the identity Ln(F) = L r(F) holds if and
only if F has order continuous norm. In view of the preceding theorem, the analogous
identity (B(H))n = (B(H))r is valid in the case of an ordered Hilbert space H .
Nevertheless, as the following example shows, the orderedC∗-algebra B(H) does not
have a disjunctive product in general. Before, we mention that if H is a Riesz space
then, as follows at once from Proposition 41(h), H is a reflexive Banach lattice, in
particular, it has order continuous norm and, hence, B(H) has a strongly disjunctive
product.

Example 38′′ We shall use the notations and the results of Example 38. Let us
consider the self-adjoint ice cream cone K = Kz, 1√

2
and let dim H ≥ 3. Fix an element

v ∈ H satisfying the relations ‖v‖ = 1 and 〈v, z〉 = 0. Obviously, z ± v ∈ K . Define
the operator T on H via the formula T y = (z − v) ⊗ (z + v)y = 〈y, z − v〉(z + v).
As is easy to see, T 2 = 0. On the other hand, OI(B(H)) = {0, I } and, hence, B(H)

does not have a disjunctive product. ��
As follows at once from Theorem 47, for an arbitrary ordered Hilbert space H , we

have the inclusion Orth(B(H)) ⊆ (B(H))n, i.e., every orthomorphism of the algebra
B(H) is an order continuous element. Moreover, when the center of B(H) is trivial
(see Example 38(b)), this inclusion becomes an equality.

Corollary 36 and Proposition 41 suggest the following definition of a lattice homo-
morphism on an arbitrary ordered Hilbert space (this definition and the definition
of a lattice homomorphism for the case of an element of an arbitrary ordered algebra
given in Sect. 3.2 may differ). Namely, an operator T on H is said to be a lattice homo-
morphism whenever the identity T (x ∨ y) = (T x) ∨ (T y) holds for all x, y ∈ H .
Obviously, every lattice homomorphism T is necessarily a positive operator. The proof
of the next proposition is analogous to the proof of Theorem 2.14 in [4] and will be
omitted.

Proposition 48 For an operator T on H the following statements are equivalent:

(a) T is a lattice homomorphism;
(b) T (x+) = (T x)+ for all x ∈ H ;
(c) T (x ∧ y) = (T x) ∧ (T y) for all x, y ∈ H ;
(d) If x ⊥ y in H then T x ⊥ T y in H ;
(e) T |x | = |T x | for all x ∈ H.

As follows at once frompart (d) of the preceding proposition, every positive operator
T belonging to the center (B(H))I of B(H) is a lattice homomorphism. On the other
hand, if H is a Riesz space and T ∈ B(H) then T ∈ (B(H))I if and only if the operator
T is an orthomorphism on H (see Sect. 3.2). As the next theorem shows, in the case
of an arbitrary ordered Hilbert space H , an operator T ∈ (B(H))I also possesses
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many nice properties of orthomorphisms on Riesz spaces (see [4, § 2.3] and [13,
Chapter 20]). Analogous to the case of a Riesz space, a linear subspace J of H is
called an ideal whenever |x | ≤ |y| and y ∈ J imply x ∈ J .

Theorem 49 For operators S, T ∈ (B(H))I the following statements hold:

(a) |T x | = |T ||x | = |T |x || for all x ∈ H and T±y = (T y)± for all y ∈ H+;
(b) (S ∨ T )x = Sx ∨ T x and (S ∧ T )x = Sx ∧ T x for all x ∈ H+;
(c) The null space N (T ) is an ideal, N (T ) = N (|T |) = N (T+) ∩ N (T−), and if

S, T ≥ 0 then N (S ∨ T ) = N (S + T ) = N (S) ∩ N (T );
(d) The inclusion N (S) ⊆ N (T ) holds if and only if T belongs to the band BS

generated by S in (B(H))I ;
(e) The relation 〈Sx, T y〉 = 0 holds for all x, y ∈ H if and only if S ⊥ T in (B(H))I ;
(f) The range R(T ) and its closure R(T ) are ideals and R(T ) = R(|T |).
Proof (a) Taking into account Theorem 44, we have the decomposition T = T+−T−
with T± ∈ (B(H))+I and T+T− = 0. Then for an arbitrary element y ∈ H+,
the relation T+y ⊥ T−y is valid. Indeed,

〈T+y, T−y〉 = 〈y, (T+)∗T−y, 〉 = 〈y, T+T−y〉 = 0.

Using Corollary 37, we get (T y)+ = (T+y − T−y)+ = T+y and, analogously,
(T y)− = T−y. Therefore, for every x ∈ H , we have

|T ||x | = T+|x | + T−|x | = (T |x |)+ + (T |x |)− = |T |x ||.

On the other hand, T+x+ ⊥ T+x− and T−x+ ⊥ T−x− as T± are lattice homomorp-
hisms. Consequently,

|T ||x | = |T+x | + |T−x | = |T+x+ − T+x−| + |T−x+ − T−x−|
= T+x+ + T+x− + T−x+ + T−x−

= |(T+x+ + T−x−) − (T+x− + T−x+)|
= |T+x − T−x | = |T x |.

The statement (b) follows easily from (a) and the statement (c) from (a) and (b).
(d) We can assume S, T ≥ 0. For the proof of the necessity, proceeding by contra-

diction and taking into account the identity BS = {S}dd in the Riesz space (B(H))I ,
we find W ∈ (B(H))I satisfying

0 < W ≤ T and W ⊥ S. (21)

The second relation in (21) implies SW = 0, whence R(W ) ⊆ N (S) ⊆ N (T ). Then,
using the first one in (21), for arbitrary z ∈ H+, we have ‖Wz‖2 ≤ 〈Wz, T z〉 ≤
〈TWz, z〉 = 0 and so W = 0, a contradiction.

For the converse, taking into account the relation T ∧ (nS) ↑ T in (B(H))I and
the order closedness (B(H))I in B(H), we have T ∧ (nS) ↑ T in B(H) and so
(T ∧ (nS))x → T x for all x ∈ H . It remains to remember parts (b) and (c).
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(e) For the check of the necessity, we mention first that our condition is equivalent
to the equality ST = 0 and, hence, to the equality |S||T | = 0. Thus, S ⊥ T . For
the converse, |〈Sx, T y〉| ≤ 〈|S||x |, |T ||y|〉 = 0.

(f) Let us verify that R(T ) is an ideal. First of all, we consider the case of T ≥ 0. Let
x ≤ T y for some x, y ∈ H+. According to Theorem 44, for every n ∈ N the operator
1
n I+T is invertible and ( 1n I+T )−1 ≥ 0.Define the sequence {yn} in H via the formula
yn = ( 1n I + T )−1x . As is easy to see, the relations yn ↑ ≤ (I + T )−1(x + y) and
0 ≤ x−T yn ≤ 1

n y hold. The former implies that the sequence {yn} is norm convergent
to some y0 ≥ 0. Then, using the second one, we obtain T y0 = x .

In general case, let 0 ≤ x ≤ |T y|. In view of part (a), x ≤ |T ||y|. Therefore,
as shown above, x = |T |z with z ≥ 0. Since T z ∈ R(|T |), there exists an element
w ∈ H satisfying T z = |T |w and so T+(z − w) = T−(z + w). Using the relation
T+ ⊥ T− and part (e), we have T+(z − w) = T−(z + w) = 0. Whence,

x = |T |z = T+z + T−z = T+w − T−w = Tw.

Thus, x ∈ R(T ). Finally, R(T ) is an ideal. Now the identity R(T ) = R(|T |) can be
checked without difficulty.

Let us show that R(T ) is an ideal. According to Theorem 44 oncemore, the operator
T is hermitian. Therefore, as is well know, the next orthogonal decomposition H =
N (T ) ⊕ R(T ) holds. Fix x ′ ∈ N (T ) and x ′′ ∈ R(T ). Then |x ′| ⊥ |x ′′|. Indeed, there
exists a sequence {zn} in H satisfying T zn → x ′′, whence, using part (a), we get
〈|x ′|, |x ′′|〉 = limn→∞〈|x ′|, |T ||zn|〉 = 0. Next, the orthogonal projections on N (T )

and on R(T ) are positive operators. To see this, let x ≥ 0 and let x = x1 + x2 with
x1 ∈ N (T ) and x2 ∈ R(T ). Since |x1| ⊥ |x2|, we have 0 ≤ 〈x, x−

1 〉 = −‖x−
1 ‖2.

Thus, x−
1 = 0 and so x1 ≥ 0. Analogously, x2 ≥ 0.

Consider an element y ∈ R(T ) and pick a sequence {wn} in H satisfying Twn → y.
Whence, |T ||wn| → |y| and so |y| ∈ R(T ). Now let 0 ≤ x ≤ y ∈ R(T ). It suffices
to check the inclusion x ∈ R(T ). As shown above, x = x1 + x2 with x1 ∈ N (T )+
and x2 ∈ (R(T ))+. Then 0 ≤ x1 ≤ y − x2 ∈ R(T ) and so x1 = 0. Finally, x ∈ R(T ).
Thus, R(T ) is an ideal. ��

The rest of this section is devoted to the connection of the theory of operators on
an ordered Hilbert spaces with the general theory of operators on arbitrary Hilbert
spaces. In particular, some remarks about the spectral resolution of operators from
(B(H))I will be given.

Theorem 50 For an operator T ∈ (B(H))I the following statements are equivalent:

(a) The operator T is positive in the sense of the theory of ordered linear space, i.e.,
T x ∈ H+ for all x ∈ H+;

(b) The operator T is positive in the sense of the theory of Hilbert space, i.e.,
〈T x, x〉 ≥ 0 for all x ∈ H ;

(c) 〈T x, x〉 ≥ 0 for all x ∈ H+.

Proof (a) �⇒ (b) For every x ∈ H , using the relation x+ ⊥ x−, we have

〈T x, x〉 = 〈T (x+ − x−), x+ − x−〉 = 〈T (x+ + x−), x+ + x−〉 = 〈T |x |, |x |〉 ≥ 0.



572 E. A. Alekhno

The implication (b) �⇒ (c) is obvious.
(c) �⇒ (a) The inequalities

〈T+x, x〉 ≥ 〈T−x, x〉 ≥ 0 (22)

hold for all x ∈ H+. According to Theorem 44, there exists an operator S ∈ (B(H))+I
satisfying S2 = T− and S ⊥ T+. Then, taking into account (22), for every z ∈ H+,
we get 0 ≤ 〈T−Sz, Sz〉 ≤ 〈T+Sz, Sz〉 = 0, whence 0 = 〈T−Sz, Sz〉 = 〈S3z, Sz〉 =
‖S2z‖2 and so T−z = 0. Finally, T− = 0 or T ≥ 0. ��

As follows from the preceding theorem, the order on (B(H))I induced by
the ordered C∗-algebra B(H) coincides with the order considering in the general
theory of Hilbert spaces. In particular, the operators |T | and T± in the Riesz space
(B(H))I coincide with analogous operators defined in the case of an arbitrary Hilbert
space (see [11, Section 108]).

Let A be an ordered algebra. For an element a ∈ Ae, we define the lower bound and
an upper bound of a byma = max {λ ∈ R : λe ≤ a} andMa = min {λ ∈ R : a ≤ λe},
respectively. If the mapping 
A : Ae → C(MAe) is a bijection (see Theorem 15 and
the proof of Proposition 21) then for every function ϕ ∈ C[ma, Ma], we can put
ϕ(a) = 
−1

A (ϕ(
A(a))). Obviously, the mapping ϕ → ϕ(a) from C[ma, Ma] into
Ae is a positive algebraic homomorphism. Next, as follows from Theorem 50, for
the case of an operator T ∈ (B(H))I the values mT and MT coincide with “usual”
lower and upper bounds of a hermitian operator. Namely, we have the following.

Corollary 51 For an operator T ∈ (B(H))I the next identities

mT = inf‖x‖=1 〈T x, x〉 and MT = sup‖x‖=1 〈T x, x〉

hold.

The next result will be needed later.

Lemma 52 Let A be an ordered algebra. For an element p ∈ A the following state-
ments are equivalent:

(a) p ∈ OI(A);
(b) p ∧ (e − p) = 0 in OI(A);
(c) p ∧ (e − p) = 0 in Ae;
(d) p ∧ (e − p) = 0 in A;
(e) p is an extreme point of the order interval [0, e].
Proof The implications (b) �⇒ (a) and (d) �⇒ (c) are obvious.

(c) �⇒ (b) Clearly, 0 ≤ p ≤ e. Therefore, we have the equalities

0 = p2 ∧ ((e − p)2) = p2 ∧ (e − 2p + p2) = p ∧ (e − p) + p2 − p = p2 − p

in Ae and so p2 = p. Thus, p ∈ OI(A) and the validity of (b) follows.
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(a) �⇒ (d) If a ≤ p and a ≤ e− p for some a ∈ A then (e− p)a ≤ 0 and pa ≤ 0.
Whence, a ≤ 0.

(d) �⇒ (e) Let p = (1 − λ)x + λy with x, y ∈ [0, e] and λ ∈ (0, 1). Then

0 ≤ (1 − λ)(x ∧ (e − p)) ≤ ((1 − λ)x + λy) ∧ (e − p) = p ∧ (e − p) = 0

and so x ∧ (e − p) = 0. Consequently,

x = x ∧ e = (x − p) ∧ (e − p) + p ≤ x ∧ (e − p) + p = p

and, hence, x ≤ p. Analogously, y ≤ p. Finally, x = y = p.
(e) �⇒ (a) Put z = p(e − p). Evidently, p ± z ∈ [0, e] and p = (p+z)+(p−z)

2 .
Therefore, z = 0 and so p2 = p. ��

Before we discuss the spectral resolution of an operator T ∈ (B(H))I , we shall
make some remarks for the general case of an ordered algebra. To this end, let A
be an ordered algebra and let its center Ae be Dedekind complete. Then (see [12,
Section IV.10]) for arbitrary a ∈ Ae there exists a spectral family {eaλ : λ ∈ R} (or
the resolution of the identity corresponding to a) with the following properties:

(a) eaλ ≤ eaμ for λ ≤ μ;
(b) eaλ = 0 for λ ≤ ma and eaλ = e for λ > Ma ;
(c) The family {eaλ} is left continuous, i.e., sup

μ<λ

eaμ = eaλ for all λ;

(d) If λ1 ≤ λ2 ≤ μ1 ≤ μ2 then eaλ2 − eaλ1 ⊥ eaμ2
− eaμ1

in Ae.

Moreover, eaλ are components of the unit e, i.e., eaλ ⊥ e − eaλ in Ae for all λ. Whence,
taking into account the preceding lemma, we obtain the next property of {eaλ}:
(e) The elements eaλ are order idempotents, i.e., eaλ ∈ OI(A) for all λ.

By the Freudenthal’s Spectral Theorem, the integral representation

a =
∫ Ma+0

ma

λdeaλ

holds, where the integral means the e-uniformly limit in Ae of integral sums∑n−1
i=0 li (e

a
λi+1

− eaλi ) with n ∈ N, ma = λ0 < λ1 < · · · < λn−1 ≤ Ma < λn ,
and λi ≤ li ≤ λi+1 for i = 0, 1, . . . , n − 1 as sup0≤i≤n−1(λi+1 − λi ) → 0. Thus, if
a ∈ Ae, we obtain the integral representation with help of a family of order idempo-
tents.

Now we consider the case of an operator T ∈ (B(H))I . In view of Theorem 44,
T is hermitian. In the general case of an arbitrary Hilbert space, there exist several
ways of definitions of a spectral family of projections {PT

λ } under which T admits
the integral representation. For example, one can simply use the integral representation
of elements of an ordered algebra suggested above. We shall use the construction from
[11, Sections 107, 108].Namely, for everyλ ∈ R, let us consider the operator (T−λI )+
and let PT

λ be the orthogonal projection onto the null space N ((T − λI )+). Then
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{PT
λ } is a spectral family and the properties of it is connected closely with the spectral

properties of the operator T . Moreover, in this case, since (T − λI )+ ∈ (B(H))I ,
the family {PT

λ } consists of (see the proof of part (f) of Theorem 49) order projections.
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