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Abstract We show that for a locally o-finite measure v defined on a §-ring, the
associate space theory can be developed as in the o-finite case, and corresponding
properties are obtained. Given a saturated o-order continuous w-Banach function
space E, we prove that its dual space can be identified with the associate space E*
if, and only if, E* has the Fatou property. Applying the theory to the spaces L”(v)
and L% (v), where v is a vector measure defined on a d-ring R and 1 < p < oo, we
establish results corresponding to those of the case when the vector measure is defined
on a o -algebra.
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1 Introduction

Let 2 be a set and R a §-ring consisting of subsets of 2. Given a vector measure
v : R — X, where X is a (real or complex) Banach space, we obtain the Banach space
of weakly-integrable functions L) (v), which has the space of v-integrable functions
L'(v) as a closed subspace. With the order given by f > g if f > g outside a v-null
set, we have that LI]U (v) is a o-Fatou Banach lattice and L' (v) is an order continuous
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Banach lattice. (See Sect. 2 for definitions.) The integration theory with respect to
vector measures defined on §-rings was developed mainly by Lewis [18], Masani and
Niemi [21,22] and Delgado [8]. It extends the well known theory for vector measures
defined on o -algebras [25, Ch. 3].

If E is a real or complex order continuous Banach lattice, Curbera [5, p. 22], [10,
p. 246] showed that there is a set €2, a §-ring ‘R consisting of subsets of €2, and a vector
measure v : R — E, such that E and L!(v) are order and isometrically isomorphic .
It follows that the dual spaces L'(v)* and E*, both of which are Banach lattices, are
also order and isometrically isomorphic. Hence by studying a dual space of the form
L' (v)* we are implicitly analyzing the dual space of the most general order continuous
Banach lattice.

The study of L' (v)* can be done through the associate space theory, systematically
developed by Luxemburg and Zaanen [28, Ch. 15], [29, Ch. 16, Sect. 112]. This
theory begins with an arbitrary positive measure space (€2, X, 1) and applies to a p-
Banach function space (u-B.f.s. for short) E which is saturated. Then also its associate
space E* is a u-Banach function space and the operator R : E* — E*, defined by
R(g) := Ry, where Ry (f) = fQ fgdu, is alinear isometry. This operator, called the
canonical isometry, allows us to consider the associate space E* as a closed subspace
of the dual space E*. When the involved measure p is o -finite and the saturated B.f.s.
E is o-order continuous, then the canonical isometry R is onto. Moreover, R also
preserves the lattice structure and so we write E* = E™*. In the following we will
maintain this notation to indicate that R is onto.

To apply the above theory for studying L' (v)*, in the first place we have to find a
positive measure p which is also a local control measure for v, that is, such that © and
v have the same null sets. In this situation L!(v) is a u-B.f.s. Assume the §-ring R
on which the vector measure v is defined is a o-algebra. Then it is well known that v
has a finite local control measure ;& with respect to which L' (v) is a saturated -B.f.s.
[25, pp. 107-108]. It follows that in this case we have L'w)* = L1(v)*.

If the 6-ring R is not a o-algebra, we cannot proceed directly as above to obtain
for L'(v) similar results to those we have just mentioned, since in this situation v
may not have a o -finite local control measure. This is a problem, since a key fact for
the associate space theory to work is that when the measure pu is o-finite, then the
saturation of a u-B.f.s. E implies that of E*.

However, relying on a result of Brooks and Dinculeanu [3], it has recently been
pointed out by Jiménez et al. [16] the fact that any vector measure defined on a §-ring
‘R, always has a local control measure p that is also o -finite on any set B € R. We will
see that a measure of this kind, which we have called Brooks—Dinculeanu measure, is
appropriate for our objectives.

In this paper we first study the associate space E* of a saturated u-B.f.s., for a
locally o-finite positive measure p. Thereafter we consider a vector measure v and
apply the results to the -Banach function spaces of p integrable functions L” (v) and
of weakly integrable functions Lﬁ,(u), 1 < p < oo, where u is a Brooks—Dinculeanu
measure for v. The main question we discussed was that of the validity of the equality
L'(v)* = L'(v)*.

We divided our work in five sections, including this Introduction. In Sect. 2 we
present the notation, definitions and basic results that we have needed.
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The general theory for the associate space E* of a saturated u-B.f.s E is given
in Sect. 3. As in the well known o-finite case, it turns out that the associate space
E> always has the o-Fatou property. When u is a o-Fatou property, we show that
the o -Fatou property and the Fatou properties are equivalent for £. Based on general
properties of the dual space of an arbitrary Banach lattice [29, Ch. 14, Ch. 15], we
establish that if E* = E*, then FE is order continuous and E* has the Fatou property.

In Sect. 4 we restrict our considerations to a locally o-finite measure w. In this
setting we obtain results that are well known in the o -finite case. Particularly we show
that £ is also a saturated p-B.f.s., that E** = E when E has the Fatou property, and
that the factorization L' (1) = EE> holds. When the saturated p-B.f.s. is o-order
continuous, we prove that E* = E* if, and only if, E* has the Fatou property. In a
forthcoming work we plan to show that this last is not always the case.

In the last section we apply our development to the spaces L”(v) and L% (v),
1 < p < oo, obtained from a vector measure v. These are Banach function spaces
with respect to any Brooks—Dinculeanu measure for v. Thus we show that L? (v)** =
LI (v)yand L? (v)* = L (v)* for 1 < p < 0o. When the vector measure v is defined
on a o -algebra the first of these equalities was established by Curbera and Ricker [6,
Prop. 2.4], [7, Prop. 1].

We give several situations where L'(v)* = L'(v)* holds, one of them being the
case of a decomposable vector measure. This turns out to be important, since the vector
measure v that Calabuig et al. used to represent an order continuous Banach lattice as
L'(v),isa decomposable vector measure [4].

Finally, we establish that L” (v)* = LP(v)* if 1 < p < oo and that L' (v)* =
L'(v)* when L!(v) is reflexive. We also verify that a reflexivity criterion proven by
Fernandez et al. [12, Cor. 3.10] for a vector measure defined on a o -algebra is still
valid in the §-ring case.

To complete this introduction, we want to note that Okada was the first to obtain a
description of L (v)* for a classical vector measure v [24]. Later Galaz-Fontes gave a
representation for L” (v)* when 1 < p < oo [14] and recently Mastylo and Sanchez
Pérez have established representations of these kind for a dual Banach space in a more
general context [23].

2 Notation and basic results
2.1 Banach lattices

Throughout this paper all vector spaces considered will be with respect to K, where
K = C, the field of complex numbers or K = R, the field of real numbers. Let X be a
normed space. By By we will indicate its unit closed ball and by X* its dual space. We
will represent by (-, -) the duality pairing, i.e. (x, x*) := x*(x),Vx € X and x* € X*.
If Y is other normed space, to express that X = Y as sets and with equal norms, we
will write X =Y.

Let X be a real vector lattice with order <. For A C X we will be denote by A™
the subset of X consisting of all f € A suchthatO < f. Given f € X, we indicate by
£+, £~ and | f| its positive part, negative part and modulus, respectively. Finally X is
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called Dedekind o -complete if every non-empty countable subset which is bounded
from above has a supremum.

Let J be a directed set. A net { f;};cy C X is an upwards directed system if for t;
and 1 in J, there exists 73 € J such that f;; < fi; and f;, < fr;. In this case we will
use the notation f; 1. If additionally there exists f = sup, fr € X we write f; 1 f.
Similarly, if the sequence { f,;} C X is such that f,, < f,+1,Vn € N, we will indicate
Jfn 71 and if additionally f = sup, f, then we will write f, 1 f. Analogously, we
define a downwards directed system { f-} and the notations f; | and f; | f.

A real normed vector lattice X is a real normed space that is a vector lattice and
whose norm || - || x has the lattice property, that is

if f, g € Y satisfy, |f| < [gl, then || fllx < llgllx- (2.1

If in addition the space is complete, we will say that X is real Banach lattice.

Let X be a real normed vector lattice. Then X has the weak Fatou property if
for each upwards directed system {f;} C X* with sup, || f;|[x < oo, there exists
f =sup, fr € X;ifadditionally || f||x = sup,, || fullx,then X has the Fatou property.
Similarly, X has the weak o -Fatou property, if given { f,} C X such that f, 1 and
sup,, || fullx < oo, then there exists f = sup,, f, € X, and if additionally || f||x =
sup, || fullx, then X is said to have the o-Fatou property. We say that X is order
continuous, if for any system { f;} C X satisfying fr | 0 it follows that || fz||x { O.
Analogously, X is o -order continuous if for any sequence { f,,} C X satisfying f, | 0
we have that || f,||x { O.

Take a real Banach lattice X. Then in Z := X + i X, the complexification of X,
the modulus is defined by |A| := sup{|(cos@)f + (sinf)g| : 0 <6 < 2xn}, Vh :=
f+ig e Z[29,Ch. 14; Thm. 91.2], the norm by ||h]|z = || |k| llx, Y h € Z, and the
orderis givenby f < gin Z,if f, g € X and f < g.Inthis case Z is called a complex
Banach lattice, X is its real part and we write X = Zp. Observe that ZT = XT. We
will say that a complex Banach lattice has one of the properties we introduced above if
its real part has it. Henceforth we will say only Banach lattice (normed vector lattice)
to refer to a complex or real Banach lattice (normed vector lattice).

Let X be a Banach lattice. An ideal Y of X is a vector subspace of X if f € X with
|f| < |g| for some g € Y implies f € Y.

Let T : X — Y be a linear operator between Banach lattices. Then T is said to
be positive if for each f € X+ we have that T(f) € Y. In this case T(XR) C Yr
and T is bounded [1, Lemma 3.22]. We will say that T is an order isometry if T is an
isometry, 7' is onto and both T and 7! are positive operators. This last condition is
equivalent to

Tf>0ifandonlyif f >0, Vf eX.

In this case we have that T(Xgr) = Ygr, T(sup{f, g}) = sup{Tf,Tg},Vf, g € Xr
and T|f| = |Tf], Vf € X.
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Let X be a real Banach lattice. Then its dual space X* is a Banach lattice with the
order given by

o<V, ifo(f) <¥(f), YfeXT, o, X" (2.2)

In this case the supremum and infimum are uniquely determined by

sup{e, ¥}(f) :==suplop(g) +¢¥(h) : f =g+ h,g=>0, h >0}, 2.3)
inf{o, ¥}(f) :=infle(g) +¥(h): f =g+ h,g >0, h >0}, ’

foreach ¢, € X*and f € X* [27][Chap 11, Props. 4.2, 5.5] .
Now assume that X is a complex Banach lattice. Given ¢ € X3, we will indicate by
¢ : X — Cits canonical extension, that is, ¢(x +iy) = <p(x)+l<p(y) fo: X > C
is a bounded linear functional, then ® has the form ® = @ + i, where & and ¥
are the canonical extensions of linear functionals ¢, ¥ € Xy Identifying X with
}?*R C X*, we have that X* = Xﬂg + iXﬂik is a Banach lattice. As can be seen in [27,
§11], in this case
BI(f) = sup |D(g)l, ¥ fext. 2.4)
lgl=f

2.2 n-Banach function spaces

Given a measurable space (€2, X) we will denote by LO(Z) the space formed by the
Y -measurable functions f : Q& — K. If additionally we have a positive measure ©
defined on ¥, we indicate by Ny () the family of j-null subsets, i. e., the sets A € X
such that £t (A) = 0. As usual a property holds p-almost everywhere (briefly p-a.e.) if
it holds except on a -null set. We indicate by L°(u) the space of equivalence classes
of functions in L°(X), where two functions are identified when they are equal j-a.e.

Note that, when K = C, the space L°(u) is the complexification of the real space
LR := {f € L%u) : f take its values in R p-a.e.}.

In LO(n)R we will always consider the p-a.e. pointwise order. Let f € LOw). So
Ref,Imf € L%(u)g and f = Ref + iIm f. Moreover,

sup |(cosO)Re f + (sinf)Im f| = \/(Ref)2 +mfH2=1fl.  (25)

0<6<2m

We will say that a normed space E C L°(1) is a normed function space related
to u (briefly u-n.f:s.) if E is a vector subspace of L%(u) such that f € L%(u) with
|f] < |g| for some g € E, implies f € E and the lattice property (2.1) holds (with
E instead of X). If additionally E is complete we will call it Banach function space
related to w (briefly u-B.f.s.). We must note that in the literature there appear other
definitions with the same name, such as in [19, Def. 1.b.17] and in [2, Def. 1.1.3].

Let E be a u-B.f.s. Then E is Dedekind o -complete. So, E is o-order continuous if
and only if E is order continuous [29, 103.9]. Now if E is a u-n.f.s. with the o -Fatou
property, then E is complete [28, Ch. 15, §65, Thm. 1]. Thus, E is a u-B.f.s. with the
o -Fatou property.
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Let E be a complex u-B.fs. Note that Eg = E N L%u)g, with the u-
a.e. pointwise order, is a real Banach lattice and £ = ER + iER. It follows
from (2.5) that £ is a complex Banach lattice. Moreover, f € E if and only if
Re )T, Ref)™, Amf)*, Amf)~ € E™.

2.3 Integration with respect to measures defined on §-rings

Let 2 be aset. A family R of subsets of Q2 is a §-ring if R is aring which is closed under
countable intersections. From now on in this paper R will be a §-ring. We denote by
R the o-algebraofall sets A C Qsuchthat ANB € R,V B € R.Given A € Rloc
we indicate by R4 the é-ring {B C A : B € R} and by 74 the collection of finite
families of pairwise disjoint sets in R 4. Note that if Q2 € R, then R is a o-algebra,
and in this case we have that R/ = R. Moreover, for each B € R it turns out that
R p is a o -algebra.

A scalar measure (positive measure) is a function A : R — K (A : R — [0, o0])
satisfying that if {B,} C R, is a family of pairwise disjoint sets such that | J7- | B, €
R, then 377 A(B,) = A (Une Bx). The variation of X is the countably additive
measure |A] : R/?¢ — [0, co] defined by

|A|(A) := sup ZI)»(A]‘)I {Aj} ema
j=1

A function f € LO(R!) is A-integrable if f € L'(|A]). We denote by L'()) the
subspace of L%(1) formed by the A-integrable functions. Then L' (1) with norm given
by | fli.x = fQ | f|d|A] is a o-order continuous |A|-B.f.s. with the o -Fatou property.
The following result is basic in the theory; when A is a scalar measure it was established
by Masani and Niemi [21, Lemma 2.30, Thm. 2.32], for the case of a positive measure
we can proceed similarly.

Proposition 2.1 If f € LO(R!%¢), then

/Alfldl)\|= sup /Ifldlf\l, VA e R, 2.6)
B

BeR 4

Therefore, f € L'(|A|) if and only if supgenr fB | fld|A] < oo.

Let X be a Banach space. A function v : R — X is a vector measure if
> v(By) = v (Us, By), for any collection {B,} C R of pairwise disjoint sets
such that | Jo2; B, € R. The variation of v is the positive measure |v| defined in Rloc
by

VI(A) :=sup 1 D" [v(A))llx : {A;} € 7a
J



Associate space with respect 521

The semivariation of v is the function ||v| : R/ — [0, oo] given by
[IVII(A) = sup{|{v, x*)[(A) : x* € Bx=},
where |(v, x*)] is the variation of the scalar measure (v, x*) : R — K, where
(v, x*Y(B) := (v(B),x*), YBeR.

The semivariation of v is finite in R and forany A € RIo¢ satisfies |V (A) < |v|(A).
A set A € R is said to be v-null if |v[(A) = 0. We will denote by No(v) the
collection of v-null sets. It turns out that AVy(v) = Ny(|v]). Moreover A € Ny(v) if
and only if v(B) = 0,V B € R4. We say that a positive measure A : R — [0, o]
is a local control measure for v, if No(|A]) = Np(v) [8, p. 437]. Then, |v| is a
local control measure for v. We define L°(v) as the space of equivalence classes of
functions in LO(R!°¢), where two functions are identified when they are equal v-a.e.
So, Lo(v) = LO(|A]), where A is any local control measure for v.

A function f € LO(R!%¢) is weakly v-integrable, if f € L'((v, x*)), for each
x* € X*. We will denote by L}U(v) the subspace of LO(v) of all weakly v-integrable
functions. With the norm || f||, := sup{fQ [ fld]{v, x*)| : x* € Bx+}, L}U(v) isa|Al-
B.f.s. with the o -Fatou property, where A is a local control measure for v.

A function f € L,‘U(v) is v-integrable, if for each A € R!°¢ there exists a vector
x4 € X,suchthat (x4, x*) = fA fd{v, x*), ¥ x* € X* Thesubset of all v-integrable
functions is a closed subspace of Lllu (v) and it will be denoted by L'(v). We indicate
by S(R) the collection of simple functions in L?(R'°¢) which have support in R. It
turns out that L' (v), with norm || - ||,, is a o-order continuous u-B.f.s. where S(R) is
a dense subspace.

We also notice that L (v) = Lllu (v) if X does not contain acopy of ¢g [18, Thm. 5.1].

3 Associate space

Let (2, X, u) be a positive measure space and let us consider a u-B.f.s. E. We will
show that several of the basic results about the associate space of E when u is a o -finite
measure, can also be established in the case that p is not o-finite. We will begin by
just enunciating some of these results; they can be proven as in the o-finite case [28,
Ch. 15], [2, Ch. 1].

The vector space defined by E* := {g € LO(w) : gf € L' (w), ¥ f € E}is called
the associate space of E and the function

lgllex = SHP[/ |gf|d,uif€BE}, VgeE™, 3.1
Q
is a seminorm. For each f € E and g € E* the Holder inequality is satisfied:

/ngfldu < lgllexlflle.
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We also have that for the function || - || gx to be a norm, it is necessary and sufficient
that E be saturated, that is, for each A € X with positive measure there exists B € X4
such that u(B) > O and xp € E. Next we give an equivalent condition for saturation.
For this, letus first recall that a j-B.f.s. Y is order dense in L° () if for any f € LO(u)*
there exists an upwards directed system { fz} C Y such that f; 1 f.

Lemma 3.1 Let E a u-B.f.s. The following statements are equivalent:

(1) The space E is saturated.
(ii) The space E is order dense in L°(1).
(iii) The seminorm || - || gx is a norm.

Proof The equivalence (i) <> (iii) is proved as in the o-finite case [28, Ch. 15, §69,
Thm. 4]. Let us prove (i) < (ii).

Since E is a Banach lattice we have that E is archimedean. Then, it is enough to
prove that E is saturated if and only if for each 0 # f e L°(u) there exists g € E
such that 0 < |g| < | f] [20, Thm. 22.3(vi)]. Assume that E is saturated. Consider
0 # f e L%u) and define

An:=[xeﬂ:%§|f(x)|], VneN.

Let us fix N € N such that £(Ay) > 0. Since FE is saturated there exists B C Ay
with £(B) > 0 and xp € E. Then, g := %XB e Eand 0 < |g| < |f].

To establish the other implication, take A € ¥ such that ©(A) > 0. Hence 0 #
xa € LO(u). Thus there exists g € E satisfying 0 < |g] < xa.As0 # g € L)
we can take ¢ € S(X) with 0 < ¢ < |g|. Therefore ¢ € E and so, there exists B € ¥
such that B C suppg, u(B) > 0and xp € E. O

Henceforth we will assume that E is a saturated p-B.f.s. Then as in the o-finite
case we have:

Proposition 3.2 The space E* is a u-B.f.s. with the o -Fatou property.

For our next result, let us recall that a Banach lattice E is super Dedekind complete
if every non-empty subset D of E which is bounded from above has a supremum and
it contains an at most countable subset possessing the same supremum as D.

Proposition 3.3 If there exists a o-order continuous ju-B.f.s. F with the o-Fatou
property, such that E* C F, then E* has the Fatou property.

Proof Consider {g;} C E* such that 0 < g, 4 and sup, |gr|lgx < oo. Then
{g:} C F7 is an upwards directed system such that sup, ||g;||r < oo. Since F is
o-order continuous and has the o-Fatou property, then F has the Fatou property and
is super Dedekind complete [29, Thm. 113.4]. Hence g := sup, g € F and there
exists a sequence {gr,} C {g:} such that g;, 1 g [20, Thm. 23.2.(iii)]. From the
o-Fatou property in E* we obtain that ¢ € E*. And since || - || ; is a lattice norm,

sup, lIgzllex < llgllex-
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Now take f € Bpg. Using the monotone convergence theorem and the Holder
inequality we have

/ lgfldp = SUP/ |8z, fldi < supllgz, [l ex Il fllE < supligellgx.
Q n Q n n

Thus, ||gllgx < sup; |lg<|lgx < oo. Hence, E* has the Fatou property. O

Since L' (1) is o-order continuous and has the o-Fatou property, we obtain:
Corollary 3.4 If xq € E, then E* has the Fatou property.

Next we will show that when p is o -finite, it turns out that the associate space always
has the Fatou property. For this it is necessary to make before a brief discussion.

Let A be in . We denote by w4 the restriction of the measure i to the o-algebra
¥ 4 formed by the measurable subsets of A. Thus (A, X4, (t4) iS a measure space.

For each f € LO(X,) define the function /¢ : @ — K by f9(x) = f(x), if
x € Aand f%(x) = 0 otherwise. Then f% is a X-measurable function which is
called canonical extension of f.Now, the set E 4 defined by

Ep = {f e L0(up): fO e E] (3.2)

is a vector space. If & € E, then (hp)¥ = hxa € E, where h4 is the restriction of &
to A. Thus, b4 € E4. In E4 we define the norm | - || by

Iflla = 1f%E, Y feEa. (3.3)

Since E is a saturated u-B.f.s., it follows that also E 4 is a saturated ju4-B.f.s. On the
other hand if A = U:O=1 A,, where A, € ¥ and u(A,) < oo, ¥ n € N, we obtain
that w4 is o-finite. In this case it is well known that E: = (E4)* is saturated [28,
Ch. 15, §71, Thm. 4]. Furthermore E; = (E*)4 and

gl ;= sup [/A gf1dpa: f e BEA} =g, VeeES. (4

Theorem 3.5 [f the measure u is o-finite, then E* has the Fatou property.

Proof We will assume that £(2) > 0. Let us take an upwards directed system
{gc}rer C EX such that g; > 0,V t € I and sup, ||g;||[gx < oo. Now since
is o-finite and E is a saturated pu-B-f.s., there exist {2,} C £ and N € Ny(w) such
that Q, C 2,41,0 # xq, € E,VYn € Nand Q = (J;2, 2, UN [28, Ch. 15, §67,
Thm. 4].

Fix n € N. Let us denote by %, the o-algebra X, and by u, the restriction of w
to 2. Thus (£2,, X,, u,) is a finite measure space. Then the space E, := Eq, with
the norm || - ||, := || - I, is a saturated p,-B.f.s. such that xqo, € E,. By the above
corollary we have that E,* has the Fatou property.
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Let g;, be the restriction of g; to the set 2,. Thus {g;n}rer C E, is an
upwards directed system with sup. [|gz,.|l gr = sup; llgzllEx < oo. Therefore

8n) ‘= SUp; 8r.n € E,;( and ”g(n)”EnX = sup; ”gr,n”E’f-
Now let g, := (g(,,))Q be the canonical extension of g(,y. Then {g,} C E* is an

increasing sequence. By (3.4),

sup [lgnllgx = sup llgmllgx < sup llgzllex. (3.5
n n T

From the o-Fatou property in E* and (3.5), it follows that

g:=supg, € E* and |Igllgx < supllgcllpx. (3.6)
n T

Let us prove that g = sup, g,. Fix t € I. Since g; xq, < g, < gforeachn e N,
we have that g, < g. Suppose that g’ € E* satisfies g; < g/, V t € I. Now fix
n € N. Then g, xq, < & x,,V 7,0 gn < g'. Therefore, g < g’ and we obtain that
g = sup, gr. Finally | - ||§ is a lattice norm and so the conclusion follows from (3.6).

O

Since we are assuming that E is a saturated u-B.f.s., then E* is a u-B.f.s. and we
can consider its associate space, which is called second associate space of E and it is
denoted by E**. Thus

EXX = (EX)% = {h eL0u) :hgeL'(w) Vge EX}

and the seminorm || - || gxx : EX* — [0, 00) is given by

Al gxx := sup [/Q lhgldw : g € BEx] .

Unlike the o-finite case, we will see in Example 4.5 that it can happen that E* is
not saturated. Nevertheless, we have that E C E** and

Ifllex< < Ifle YV feE. (3.7

Corollary 3.6 Let E be a saturated ju-B.f.s. If i is o -finite, then

(1) E** is a u-B.f.s. with the Fatou property.
(i1) E has the o-Fatou property if and only if E has the Fatou property.

Proof Since u is o-finite we have that E* is a saturated u-B.f.s. [28, Ch. 15, §71,
Thm. 4]. Thus, from Theorem 3.5 we obtain (i).

Now from the o-Fatou property in E it follows that E = E** [28, Ch. 15, §71,
Thm. 1]. Therefore from (i) we have (ii). O
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Let us fix g € E*. Then the function ¢, : E — K defined by

vg(f) 12/ gfdu, (3.8)
Q
is a linear and bounded functional such that ||@, || = [|g||gx. Thus we consider the
operator
R : E* — E* defined by R(g) := ¢g. (3.9)

Clearly R is a linear isometry, called canonical isometry. Accordingly, the associate
space E* can be identified with a certain closed subspace of E*. The canonical
isometry also preserves the order in the sense that

g = 0if, and only if, ¢, > 0.

In the case K = C we also have that g is real if, and only if, ¢, is real. Therefore if R
is onto, then R is an order isometry. Hence in what follows we will write E* = E*
to mean that the canonical isometry R is onto.

Next we distinguish two necessary conditions for E* = E* to hold. We will need
the following result, which is obtained from [29, Thm. 102.3, p. 415].

Lemma 3.7 If E is a Banach lattice, then E* has the Fatou property.

We also need to recall that a functional ¢ € E* is o-order continuous whenever
fn 4 0 implies ¢(f;,) — 0.

Proposition 3.8 Let E be a saturated ju-B.f.s. If E* = E*, then E is order continuous
and E* has the Fatou property.

Proof Since E is a Dedekind o-complete Banach lattice, we only have to show that
E is o-order continuous. And so, by [29, Lemma 84.1, Thm. 102.7] it is enough to
establish that ¢ is o-order continuous for any ¢ € (E*)™. So, take ¢ € E* such that
¢ > 0 and consider { f,} C E satisfying that f,, | 0. Since ¢ is positive, there exists
g € (E*)™ such that

¢<f>=/9gfdu, VfeE.

Then {gf,} € L'(1) is a decreasing sequence such that 0 < gf,. Since the space
L'(u) is Dedekind o-complete, there exists 0 < & = inf,, gf,. Let A := suppg. It is
clear that & xg\ 4 = 0. Taking 8 := 0, we have that

h
%anXAans VneN.

It follows that hif—A € E and from f, | 0 we have that h% < 0.Hence hxs = 0 and

then gf;,, | 0. Therefore ¢( f;;) = fQ gfndp | 0. So ¢ is o-order continuous.
The other affirmation follows from the above lemma. O
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4 Locally o -finite measure defined on a §-ring

Let us assume now that the o-algebra ¥ that we have been considering is given as
¥ = R'¢ where R is a §-ring and u = |A|, where A : R — [0, oo] is a measure on
R. Noting that for any A € R!¢ with |A|(A) > 0 we can find B € R4 with A(B) > 0,
next we give a simple sufficient condition for E to be saturated.

Lemma 4.1 Let E be a |A|-B.f.s. If S(R) C E, then E is saturated.

Remark 4.2 When S(R) C E, the space E is a B.f.s. with respect to (2, R, A) in the
sense introduced by Delgado in [9, Def. 3.1]. Thus these class of spaces are always
saturated.

Letv : R — X be a vector measure having A : R — [0, oo] as a local control
measure. For | < p < oo, the spaces LY (v) and LP (v) are defined by

LD (v) = [f e L) : |fIP e L}D(u)} and LP(v) := {f e L) : |f|P e Ll(v)} .

Each function in L% (v) is called weakly p-integrable with respect to v and each
function in L? (v) is called p-integrable with respect to v. Note that L (v) C L} (v).
Moreover, LY, (v) and LP (v) are |A|-B.f.s. with norm

1 :
I fllpw = IFIPIY = sup (/Qlflpdl(v,x*)l) . Y felLl).

x*eByx

Also S(R) is a dense subspace of L”(v), the space L” (v) is o-order continuous and
L% (v) has the o-Fatou property [17, p. 37].
From the above lemma and Theorem 3.5 we obtain:

Proposition 4.3 Let 1 < p < oo. Then L (v) is saturated. Thus, LP (v)*, with norm
I - llvx == Il - lLpwyx, is a |A|-B.f.s. with the o-Fatou property. If in addition the
measure ) is o -finite, then LP (v)* has the Fatou property.

Remark 4.4 Since L' (v) is always saturated with respect to any local control measure
for v, by Lemma 3.1 we have that L'(v)isorderdense in LO(|A|). Using other methods,
this result was established by Calabuig et al. [4, 4.2].

Example 4.5 Given a vector measure v, let us consider its variation |v| as alocal control
measure. Then L' (v)* is a [v|-B.f.s. with the o-Fatou property. It may happen that
the range of |v]| is {0, oo}. For instance, if ¥ is the Lebesgue o -algebra on [0, 1], then
the function v : ¥ — L2([0, 1]) defined by v(A) := x4 is a vector measure whose
range is {0, oo} [3, p. 57]. In this case L' (|v|) = {0} and so L' (v)* = {g € LO(|v|) :
gf =0,V f e L'(v)} = {0}. Thus clearly the space L!(v)* is not saturated. Then
in this situation the study of the associate space will not give interesting information.

As we have just seen, when the measure involved is not o -finite the associate space
is not necessarily saturated. This motivates to look for a class of measures for which
this problem does not occur. In this direction, let us recall the following definition,
introduced by Brooks and Dinculeanu [3, p. 162].
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Definition 4.6 A measure 1 : R — [0, oo] is locally o-finite, if for each B € R,
there exists {B,},en C R such that B = Uflil B, and A(B,) < 00,Vn € N.

Clearly any positive o-finite measure on a o -algebra is locally o -finite.

Example 4.7 Let us consider an uncountable set I'. Let R := {B C I' : B is finite}
and A : R — [0, oo] be the counting measure. Then R is a §-ring and A is a locally
o -finite measure which is not o -finite.

Remark 4.8 Consider a locally o -finite measure A : R — [0, co] and a |1|-B.f.s. E.
Let us take A € R'¢ and assume that

00
A:=|J ByUN with {B,} CR, A(By) <00, VneNandN € No(A]). (4.1)
n=1

Hence (A, (R4)"¢, |r4]) is a o-finite measure space, where (Rp)!oc is the o-
algebra related to R4 and A4 is the restriction of A to R 4. It follows that the space
E 4 defined in (3.2), with norm || - || 4, is a saturated |A 4 |-B.f.s. As in this case |1 4] is
o -finite, we have that Ejf, with norm || - ||E:, is a saturated |A 4|-B.f.s.

Note that if B € R, then B has the form (4.1) and in this case Rg = (Rp)"".
Hence (B, Rp, Ap) is a o-finite measure space.

We now show that the problem of having nonsaturated associate spaces does not
appear when we work with a locally o-finite measure.

Theorem 4.9 Let E be a saturated |\|-B.f.s. If the measure X is locally o -finite, then
E* is a saturated |\|-B.f.s.

Proof Let A € R!° be such that |A|(A) > 0 and consider B € R, satisfying
MA(B) > 0. Since Ep, defined in (3.2), is a saturated Ag-B.f.s. and Ag(B) > 0 there
exists C € Rp with 0 < Ag(C) = A(C) and x¢ € Ej. Now take f € E. Then
fB € Epand [ |flxcd|A| = [y fBlxcd|rp| < 0o. Hence xc € E*. o

Hereafter, to the condition that E be a saturated |A|-B.f.s. we will add that of
A : R — [0, o0] being always a locally o-finite measure and sometimes we will
omit it explicitly. In the o -finite case it is well known that E = E>** when E has the
o-Fatou property. By using this fact we will establish the corresponding result in the
more general context we are discussing.

Theorem 4.10 If E has the Fatou property, then E = E**.

Proof As we have that E C E** and || fllgxx < |fllg, VY f € E, it only rests to
prove the another contention and the other norm inequality. For this, it is enough to
establish the conclusion only for non-negative functions.

Let0 < f € E**.Fix B € R. Since E has the Fatou property we have that Ep is
also a A p-B.f.s. with the Fatou property. Moreover, as established in Remark 4.8, A p
is a o-finite measure. Then we obtain Eg = E ;™ [28, Ch. 15, §71, Thm. 1]. Denote
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by fp the restriction of f to B. Hence fp € Ep and || fzllp = ||fB||E;x.N0ting that

(f8)* = fxp.wehave fxp € Eand || fxglle = Il fxallgx.
On the other hand, as R is a directed set with the order given by B < C if, B C

C, VB,C € R, we can consider the net {f xp}per C E. Then {fxp}per is an
upwards directed system and || f xgllg = | f xBllgxx < || fllgxx,V B € R. Since E
has the Fatou property, there exists h € E C E** with h = supg.r fxp and

Ihlle = sup I fxslle = sup [ fxsllexx < [ fllgxx. (4.2)

BeR BeR

Assume that there exists A € R such that hxa < fxa and |A|(A) > 0. Then
for some B € R4 with positive measure we have that hxp < fxp, which is a
contradiction and it follows that f € E. Moreover, as fxp < f,V B € R we have
that h < f, A-a.e. Therefore h = f, |A|-a.e. The remaining inequality between the
norms follows from (4.2). O

It is well known that if u is a o-finite measure and E is a u-B.f.s., then we can
write L'(1) = {fg : f € E, g € E*}. Next we will show that this result remains
valid when we consider a locally o -finite measure.

Proposition 4.11 Let A be a locally o -finite measure and E be a saturated |\|-B.f.s.
Ifh e L'(0):

(i) then for each ¢ > O there exist f € E and g € E* such that
h=fg and | flleliglex < (1+s)/§2|h|d|kl.

(ii) if in addition E has the o-Fatou property, then there exist f € E and g € E*
such that

h=fg and IIfIIEIIgIIEx=/Q|h|dI?»I-

Proof 1f h = 0, the conclusion is clear. Assume that 2 # 0. Since i € L'()), we have
that A := supph = UZOZI B, UN, where {B,} C Rand N € Ny(L). As A is alocally
o -finite measure we can assume that A(B,) < oo,V n € N. Then A4 is o-finite and
haeL'0p).

(i) Given ¢ > 0, [15, Thm. 1, (ii)] there exist f € E4 and § € E} such that

ha=F& and | Flle, 2l ex s<1+e>/A|hA|d|xA|.

(ii) Since E has the o-Fatou property it follows that £, also has it. From [15,
Thm. 1i)] we get f € E4 and g € E such that

ha=fg and | flleIgles =/A|hA|d|xA|.
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As h = haxa, by taking f := f® € E and g := §¥ € E*, the conclusion
follows. O

In the o-finite case we know that E* = E* if, and only if, E is o-order continuous
[28, Ch. 15, §72, Thm. 5]. We proved in Proposition 3.8 that if E* = E*, then E
is o-order continuous and E* has the Fatou property. Now we will show that the
converse also is valid in our context. For this let us recall that an ideal Y of a Banach
lattice X is a band whenever, for every subset D of Y possessing a supremum in X,
this supremum is already in Y.

Theorem 4.12 [f E is o -order continuous, then the following properties are equiva-
lent:
(i) EX = E*.
(i) E* is a band of E*.
(iii) E* has the Fatou property.
(iv) E* has the weak Fatou property.

Proof The implications (i) = (ii) and (iii) = (iv) are clear. (ii) = (iii) Let {g;} C E*
be an upwards directed system such that sup_ ||g;||gx < 0o.Letus take ¢; := R(g¢).
Then {¢.} C E* is an upwards directed system such that sup, [l¢-|| < oco. From
Lemma 3.7 we have that E* has the Fatou property. Thus there exists ¢ € E* such
that ¢ 1 ¢ and ||¢]| = sup, [l¢:]|. Now since {¢:} C R(E™) and R(E™) is a band
of E* we have that ¢ € R(E*). Let g € E* be such that ¢ = R(g). Since R is an
order isometry g 1 ¢ and |[gllgx = sup, [lgellgx.

(iv) = (i) Now let us assume that E* has the weak Fatou property. First note that
since E* is a Banach lattice and R is a linear operator it is enough to represent only
the positive functionals. Take 0 < ¢ € E*. Consider the §-ring R(E) := {B € R :
xp € E}and definem : R(E) — [0, 00) by m(B) := ¢(xB), VB € R(E). Since E
is o-order continuous and ¢ is a positive linear functional we have that m is a positive
measure.

Fix B € R(E). Then Rp = R(E)p. Let us denote by mp the restriction of m
to Rp.Then mp is bounded. On the other hand as A is a locally o-finite measure, its
restriction Ap to R p is a positive o -finite measure.

Now let A € Rp with Ag(A) = |[A|(A) =0, then x4 = 0, A-a.e. Hence mp(A) =
0. By the Radon-Nikodym Theorem [26, p. 121] there exists a unique i3 € L°(Rp)
such that

00w =mu) = [ hudrs = [ huxadin, VA€ R,
A B
Using a standard procedure it follows now that
o) = [ hufdin. Ve En (43)
B

Let us denote by Hp the canonical extension of /g, then Hp € E*, pp(f) =
o(fxp) = fQ fHpd|A|, Y f € E and, by the uniqueness of hp it turns out that
Hpxc = Hpnc, Y C € R. Noting that op < ¢ we have that
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IHpllex = llgsll < llgll < oc.

This shows that supgcr gy | Hpllgx < 0o. It turns out that {Hp}per(r) C E™ is
an upwards directed system. Now since E* has the weak Fatou property, there exists
h = supgerp) Hp € E™.

Let f € E*. To prove that ¢(f) = [, fhd|A| first we will show that Hp =
hxp, Y B € R(E). Fix B € R(E). It is clear that Hp < hyxp. Let us assume
that Hgp < hxp, so we can take C € Rp with positive measure such that Hp(t) <
hxg(f), Yt € C.Define k = hxo\c + Hpxc. Now let D € R(E), then

Hp = Hpxa\c + Hpnc < hxa\c + Hexc =k,

that is, k is an upper bound of { Hp} per (£) Which contradicts that / is the supremum.
We conclude that Hg = hxp.

Since fh e L'(|A]), it follows that A := suppfh = Ufjozl B, U N where {B,}
is a disjoint family of subsets of R and N is a |[A|-null set. Observe that since Ap is
o-finite and Ep is saturated, V B € R, by [28, Ch. 15, §67, Thm. 4] we can take
B, € R(E). Since E is order continuous, it follows that f x4 = Z;’;l fxB, in E.
Assume that o (f xo\4) > 0. Then f xo\4 > 0, so we can choose B € R(E)q\ 4 such
that |A|(B) > 0 and fxp > 0. Take its corresponding Hg € E*. S0,0 < ¢o(fxB) =
Jo FHBdIX| = [q fhxpd|A|, but B C Q\supp fh,thus [, fhyxpd|r| = 0, which is
a contradiction. Therefore ¢ (f xo\a) = 0 and so

o) =S 0 m) =3 [ FHadl
n=1 n=1

= hypd|\| = hd|\| = hd|A|.
nZ:;/QfXBH /QnZZ;fXB |A] /Qf |2l

This show that ¢ = ¢, € R(L'(v)*) and hence the conclusion follows. O

Although the above theorem characterizes when E* = E*, up to now we do not
know if E* always has the Fatou property. Next we present a situation where this
holds. The proof follows from Theorem 4.12 and Proposition 3.3.

Corollary 4.13 Let 1 : R — [0, oo] a locally o -finite measure and E be a saturated
A-B.f.s. If E and E* are o-order continuous, then E* = E*.

Using Theorem 4.12 we can give a characterization of reflexivity as follows.

Theorem 4.14 Let A be a locally o -finite measure and E a saturated L-B.f.s. If E is
order continuous then the space E is reflexive if, and only if, E = E** and E* is
o -order continuous.

Proof Let us denote by R} : EX — E*and Ry : E** — E x* the corresponding
canonical isometries. Then for the adjoint operator of Ry we have R} : E** — EX ",
First assume that E* is o-order continuous and E = E**. Then by Corollary 4.13
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R is onto and by hypothesis E** = E. So E** is o-order continuous and has the
o-Fatou property. It follows that E** has the Fatou property and so we can apply
Theorem 4.12 to obtain that R; is onto. Let us see that R} j = Ry where j : E — E™*
is the canonical injection. Take f € E and g € E*, then

(8. RTJ(N)) = (Ri(8), j(f) = (f. Ri(g)) = /Q JedIrl = (g, R2(/)).

Therefore j is onto, that is, E is reflexive.

Now assume that E is reflexive. To establish that E = E** it only rests to prove
that EX* C E. Take h € E**. Since R; is an injective linear operator with closed
range, it follows that R} is onto [11, Thm. VL.6.2]. Hence there exists ¢ € E** such
that R (@) = Ra(h). Let f € E satisty j(f) = ¢. Thus for g € E* we have

(8. RT (@) = (Ri(8). ¢) = (R1(8), j () = (f. Ri(g)) = /Q fed|Al.

Hence, [, fgd|r| = (g, R2(h)) = [ hgd|r|. Thenh = f,|Al-c.tp.and h € E.

We will now prove that R; is onto, then by Proposition 3.8 we will obtain that
E* is order continuous. Consider ¢ € L'(v)**, then ¢ o Rl_1 P RI(EX) —» Kis
linear and bounded. By the Hahn—Banach Theorem there exists ¢ € E** such that
(W, 8) = (V9o R{'), Yo € RI(EX). Let f € E = E** be satisfy j(f) = .
Then for each g € E* we have

(e Ro) = [ fednl = (£ R} = (Rr(e). (1))
= (Ri(©).9) = (Ri@. 00 R = (2. 9)

It follows that ¢ = R>(f) and we conclude that R, is onto. O

Proposition 4.15 Let A be a locally o -finite measure and E a saturated |A|-B.f.s. If
E* has the weak Fatou property, then E* is a band of E*.

Proof To prove that R(E™) is an ideal of E* we can proceed as in implication (iv) =
(i) of Theorem 4.12 only observing thatif 0 < ¢ < ¢, € R(E™), then the set function
my : R(E) — [0, 00), defined by my,(B) = ¢(xB) is a positive measure. Now let
A C E* be anon empty set such that there exists ¢ := SUPgep ¢g € E *. We have to
prove that ¢ € R(E™).

Let us note that F := {F C A : F isfinite} is a directed set with the order
given by Fy < F>if Fi C F,. For each F' € F define ¢f := maxger ¢g. Let us fix
Fo € F and take Fo := {F € F : Fy C F}. It turns out that supp.r, ¢ = ¢. Then
0<o¢r—9r <¢—9r,VF € Fy Thus {pr — ¢g}F, is an upwards directed
system such that suppcr, ll9or — @Rl < 00. Since {pF — ¢r)}x C R(E*) and R
is an order isometry we obtain an upwards directed system {gr}r, C E ** with
supper, lgFllgx < oo. By the weak Fatou property in E*, there exists g € E* such



532 C. Avalos-Ramos, F. Galaz-Fontes

that gr 1 g. Using again that R is an order isometry we have that o — ¢g, 1 @,.
Since suppe 7, ¢F = ¢ we have that ¢ — ¢, = @g. Therefore ¢ € R(E™). O

The following result was established in [29, p. 418]. We obtain it as consequence
of the above proposition and Theorem 3.5.

Corollary 4.16 Let E be a saturated |\|-B.f.s. If |A| is o -finite, then E* is a band of
E*.

5 Brooks-Dinculeanu measure

Let v : R — X be a vector measure defined on a §-ring. Since we are interested
in providing a representation of the dual space of L!(v) as its associate space, it is
important to know if v has a local control measure which is locally o -finite. Then, by
Theorem 4.9, the associate space of L! (v), with respect to this local control measure,
will be saturated. Let us distinguish this kind of measures.

Definition 5.1 A measure A : R — [0, oo] is a Brooks—Dinculeanu measure for v,
if X is a local control measure for v which is locally o -finite.

Example 5.2 1. Let v : ¥ — X be a vector measure defined on a o-algebra. If
uw X — [0,00) is a Rybakov control measure for v, then p is a Brooks—
Dinculeanu measure for v.

2. Letv : R — X be a o-finite vector measure. Then v has a bounded local control
measure A : R — [0, 0o) [8, Thm. 3.3]. Hence, A is a Brooks—Dinculeanu for v.

Fortunately, it turns out that each vector measure defined in a §-ring has a Brooks—
Dinculeanu measure. This result was established by Jiménez Fernandez et al. in [16,
p- 3]. Given its importance, we will state it below.

Theorem 5.3 Ifv : R — X is a vector measure, then v has a Brooks—Dinculeanu
measure.

Let us define
R:={BeR:AB) < ool

It is clear that R is a 8-ring satisfying that R C R. Moreover, it turns out that
RI¢ = RI°¢. Now let us show that

(v, x*) =1, x")], Vx*eX*, (5.1

where ¥ is the restriction of v to R. By definition we obtain that |(V, x*)| < [(v, x*)|.
To establish the other inequality let us fix x* € X* and consider A € R/, Take
B € Ra4. Since X is locally o-finite, there exists an increasing sequence, {B,} C R
such that B = | J;,2; By. So,

(v, x*)|(B) = sup [(v, x*)|(By) = sup |(V, x™)|(B)

< sup [(V,x)[(C) = [(V, x7)[(A).

CGﬁA
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It follows that |(v, x*)|(A) < |(V, x*)|(A). Hence we have established (5.1).
From (5.1) we have that

Iy = lIflls, ¥ f e LO%RY). (5.2)

Thus L), (v) Ll ). Since (5 2) is valid, from the density of S(R) in L' (v) and of
S(R) 1nL (v) toprovethatL vy =L! (v) itis sufficient to check that S(R) c L' (D)
and that § (R) C L'(v). Noting that R C R the second contention is clear. Now
consider B € R and take {B,} C R satisfying that B, C B, and B = |J,2, By.
Then xp, — xp, moreover

/XB" =D(B,NA)=v(B,NA) = /XBndv—>/Xde, V A e Rl
A A

From [8, Prop. 2.3] we have that xp € L](TF). It follows that S(R) C L'(D) and
I,(s) = K(s), Vs € S(R). By the continuity of the integration operators we have
I, = F. Therefore, we have proven the following result and so, whenever we find it
convenient we can work on the §-ring R instead of R.

Lemma 5.4 If) : R — [0, oo] is a Brooks—Dinculeanu measure for a given vector
measure v, then

(i) for each x* € X* we have that| (v, x*)| = |(V, x*
(i) LL) =LL®), L'(v) = L'®) and [, fdv = fQ fdv,¥ f e L'(v).

Curbera and Ricker established that L? (v)** = L% (v) when a vector measure
defined on a o -algebra and a Rybakov control measure are considered [7, Prop. 2]. We
will show that this equality remains true if we consider instead a vector measure defined
on a §-ring and a Brooks—Dinculeanu measure. Before it is necessary to establish a
useful characterization for the functions in L}U (v).

Lemma 5.5 Let f € LO(RIC). Then f € L}U(U) if and only if for each B € R,
fxB € L,(v) and supgcp || f xallv < 00. In this case || f1l, = supger ||/ x5l

Proof Firstletus assume that f € L}U(v). Since Lllu(v) is a Banach lattice we have that
fxp € Ly and | fxgllv < | fllv.V B € R.Then,supper Il £ x5l < Il flly < oo.

Now assume that fxp € L}U(u), VB eRand M :=supgr Il fxpllv < oo. Let
x* € Byx, then

Sup/lfldl vl =M.

BeR

From Proposition 2.1 we obtain that f € L'(|(x*, v)|),V x* € Bx+. Thus f € L} (v)
and || flly = M. O

Although most of the time we will not state it explicitly, in what follows A : R —
[0, oo] will be a Brooks—Dinculeanu measure for a given vector measure v and we
will consider L%, (v) and L?(v) as Banach function spaces with respect to |A|.
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Theorem 5.6 Let 1 < p < oo. Then LP (v)** = LI (v).

Proof First we prove that L], (v) C LP(v)** and If N pxx <M fllpws Y f € LY ().
Let ¢ € S(R!°) be such that ¢ € L (v) and B € R. Then pxp € S(R) C LP(v).
By the Holder inequality, for each g € L? (v)*

/ lgold|rl < gl pvxllexslipy = 11gllpvxll@llp.o-
B

From Proposition 2.1 we have

/ lgpld|r] = SUB/ lgpldIAl < lIgllp, v l@llp,v-
Q BeRYB

It follows that ¢ € LP(v)** and

lollpvo < ll@llpv- (5.3)

Now consider f € L% (v) and take {g,} C S(R') with 0 < ¢, 1 |f]|. Then,
{on} C LL(0). By (5.3), lgnllpvx < l@nllp < [1flpw> ¥V n € N. Since LP (v)**
has the o-Fatou property it turns out that f € L”(v)** and || f]| 5 vxx < | fllp.v-

For the other contention let us fix B € R and let v be the restriction of v to the
o-algebra Rp. As L'(vg) = L'(v)p, it follows that L”(vg) = L”(v)p. Hence we
obtain that L” (vg)** = L (vp) [7, Prop. 2].

Take f € L?(v)** and let us denote by f its restriction to B, then fg € L} (vp)
and || f51lp.vy = Il £l < [l fllp.0ex. And so, for each x* € By

/ A1), x) ] < IFID e
B

From the above proposition we have | f|7 € L}U(v) and ||| f17]l, < ||f||§ xx - Hence
fe Ly and || fllpy < 1F1p e o

The following result was established in [4, p. 77] by other methods, we obtain it as
consequence of the above proposition and Corollary 3.6.

Corollary 5.7 Let 1 < p < oo. If v : R — X is a o-finite vector measure, then
L% (v) has the Fatou property.

From Theorem 5.6 and Proposition 3.3 we obtain:
Corollary 5.8 Ing,(v) cL', 1< p < 0o, then LY (v) has the Fatou property.

The sufficiency in the next result was proven in [4, Prop. 5.4]. Since L' (v) is o-order
continuous we obtain it from Theorems 4.10 and 5.6.

Corollary 5.9 L'(v) has the Fatou property if, and only if, L' (v) = Lllu(v).
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As in the o -finite case, we have the next result.

Lemma 5.10 If E and F are u-B.f.s such that E C F and there exists a > 0 with
IfllF <alflle ¥ f € E, then F* C E* and

Igllex < allgllpx, ¥geF~.

Corollary 5.11 L?(v)* = LL(v)* and L, (»)** = LE(v), 1 < p < 0.

Proof From the above lemma, we have L% (v)* c L?(v)* and lglpvx < 1IgllLpyxs
Vg e L, (v)*.Now consider f € LY, (v)and g € L?(v)*, from the Holder inequality
and Theorem 5.6 we have that

/ I8 f1dIA] < Mgl pvx L f Nl pv = Mgl p,vx 1l poo-
Q

Hence g € Lyy(v)* and [|gll1p (< < [1€llp,vx-
The second equality follows from Theorem 5.6. O

In Proposition 3.5 we have seen that the associate space of a p-B.f.s. has the Fatou
property when u is o-finite. We will show that this result remains true for certain
Brooks—Dinculeanu measures, introduced by Calabuig et al. [4, p. 77].

Definition 5.12 A vector measure v is R-decomposable if we can write Q2 = | J,ca
Qy UN, where N € Np(v) and {Q4}aeca C R is a family of pairwise disjoint sets
satisfying that

(a) if Ay € Ra,,Va € A, then Jyep Ag € R, and
(b) if x* € X* and Ny € No((v, x*)), YV € A, then Jycp No € No({v, x™)).

Note that if v is an R-decomposable vector measure and A € R!°¢ is such that
ANQy € Now),Ya € A, then AN Qyis (v, x*)-null, Vo € A and V x* € By=.
From b) in the above definition it follows that A is v-null.

Some examples of R-decomposable measures are the o-finite vector measures
and the discrete vector measures [4, Lemma 4.6, p. 77]. However there are R-
decomposable measures which are neither o -finite nor discrete [4, p. 85].

Proposition 5.13 Letv : R — X be avector measure, A : R — [0, oco] be a Brooks—
Dinculeanu measure for v and E be |A|-B.f.s. If S(R) C E and v is R-decomposable,
then E* has the Fatou property.

Proof Since v is R-decomposable, Q = (J,cp Qo UN, where N € Ny(v) and
{Qqy}aea C R is a family of pairwise disjoint sets satisfying (a) and (b) in Defini-
tion 5.12. Moreover, since A is locally o-finite we can consider that A(2,) < oo,
Va € A. Let us note that by Lemma 4.1, E is a saturated |1|-e.f.B.

Let I C A be a countable set and take Q; := Uae, Qu, R1 := Rgq, and A; the
restriction of A to the §-ring R;. Then (€2, (R)lee, |A7]) is a o -finite measure space
and E; := Egq, is a |A7|-B.f.s. Then, from Theorem 3.5, we obtain that EI>< is a
|17]-B.f.s. whit the Fatou property.
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Now let us consider an upwards directed system {g;};cx C E* such that g; > 0,
V1t e Kand M = sup, ||g-|[gx < oo. Denoting by g, ; to the restriction of
gr to 7, we have that {g; 1}rex C E,X is an upwards directed system, and from
(3.4), sup, llge 71l EX < M < oc. Since EIX has the Fatou property, it turns out that

g1 :=sup, g € E; and

Igrlgx = supllgesllpx =< M. (5.4)
T

In particular, for each a € A exists g(q) € E{Z} such that g(y} = sup, gr (o} and
g}l px = supllgzr,ja}ll gx -
fe} T fa)

Let us denote by g“ the canonical extension of g(,) and define g := > . g%. As
No(v) = Ny(|A]) and from (a) in Definition 5.12 we have that g € LO(|A]).

Letus prove that g = sup, g..Considero € Aandt € K. Since gr xo, < 8% < g,
it follows that g; < g. Let us assume that ¢’ € LO(|A|) is such that g, < g’. Then
grxa, < & xa,- S0, 8% < g . Hence g < g’ and g = sup, g-.

Finally we will establish that g € E*. Let us fix f € Bp andlet I C A be
a countable set. Note that the canonical extension of g; = sup, g;; is given by
gl = > e 8% and f1 € Bg,, where f; is the restriction of f to ;. Moreover,
fQ Ig! fld|r| = fQI |g1 fr1d|A1|. By using the monotone convergence theorem

Z/ Ig“fldlf\|=/ Ig’f|d|k|=/ g1 fild 12| < llgrl g
Q Q Q;

ael

From this and (5.4) we obtain that >, fQ |g% fldX| < M, for each finite subset I of
A. Then, there exists a countable set J C A such that fQ [g* fldIAl =0,Ya € A\ J.
This implies that

— o _ J
/ngfldl)»l —Z/ng fldlkl—/glg fldIAl <M. (5.5)

ael

We conclude that g € E™; moreover, from lattice property of the norm in E* and
from (5.5), we have that ||g||gx = sup; |Ig<llgx- O

Let us consider the canonical isometry R between L (v)* and L 1 (v)*. Whenvisa
o -finite vector measure, then v has a bounded local control measure A : R — [0, 00)
[8, Thm. 3.3]. Since L' (v) is a o-order continuous | |-B.f.s., then we have L' (v)* =
L! (v)* [28, Ch. 15, §72, Thm. 5]. In what follows we will present other situations
where this holds.

Since L'(v) is an order continuous |A|-B.f.s. from Theorem 4.12 we obtain the
following result.

Corollary 5.14 The following properties are equivalent:
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) L'(w)* =L'm*
(i) L'(v)* is a band of L' (v)*.
(iii) L'(v)* has the Fatou property.
(iv) L'(v)* has the weak Fatou property.

The next result is a consequence of Proposition 5.13 and the previous result.
Corollary 5.15 If v is R-decomposable, then L' (v)* = L' (v)*.

If E is a real o-order continuous Banach lattice it is well known that there exists
an R-decomposable vector measure v : 'R — E such that E is order isometric to
the space L'(v) [10, Thm. 5]. Then from the above corollary we obtain the following
result.

Corollary 5.16 If E is a o-order continuous Banach lattice, then there exist an R-
decomposable vector measure v : R — E and a order isometry from L' (v)* onto
E*. More precisely, if T is a lattice isometry from E onto L'(v), » : R — [0, 0o] is
a Brooks—Dinculeanu measure for v and ¢ € E*, then there exists g € L' (v)* such
that

o(f) =/Q(Tf)gd|k|, vV fekE.

Proof Note that it only rests to verify that the result mentioned before remains valid
in the complex case. Since E is a o-order continuous Banach lattice, then ER is
also a o -order continuous Banach lattice. Thus, there exist an /R-decomposable vector
measure ¥ : R — ER and an onto lattice isometry S : L!(v) — Eg.Now let us define
v:R — E,byv(B) =v(B), VB € R. It turns out that v is an R-decomposable
vector measure and L! Wr = LY(¥).Let T : L'(v) — E be the canonical extension
of S, then T is an onto lattice isometry [25, Lemma 3.8]. O

As a consequence of Theorem 4.14 we obtain the following result.

Corollary 5.17 L'(v) is reflexive if, and only if, L'(v) = Ll (v) and L'(v)* is
o-order continuous.

Now from the previous result and Corollary 4.13 we have:
Corollary 5.18 If L' (v) is reflexive, then L' (v)* = L'(v)*.

If 1 < p < oo, Ferrando and Rodriguez established that L? (v)* is order contin-
uous when v is defined on a ¢-algebra [13, Thm 3.1]. Using the same arguments, it
follows that in our context we also have that L”(v)* is order continuous. Then from
Corollary 4.13 we have the following result.

Corollary 5.19 L?(v)* = LP(v)*, 1 < p < o0.

Since L?(v)* is order continuous and L?(v) = L% (v) if, and only if, L'(v) =
L}u(v) [17, Prop. 3.1.6], the next result follows from Theorems 4.14 and 5.6. It was
proven when v is defined in a o -algebra by Fernandez et al. [12, Cor. 3.10].
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Corollary 5.20 Let 1 < p < oo. Then LP(v) is reflexive if. and only if, L'(v) =
L}u(v).

Letus fix I < p < 0o. Then Corollary 5.19 implies that each functional in L” (v)*
has the form ¢, ¢ € L?(v)*. So we can define S : L? (v)** — LP(v)** by

(0g. S(h)) = /Q ghd|h.

It turns out that S is a linear isometry and we will write L”(v)** = L”(v)** to
indicate that is onto. Let Ry : LP(v)* — LP(v)* and Ry : LP(v)** — LP(v)** be
the corresponding canonical isometries, then S = (RT)_l o Ry. Thus S is onto if, and
only if, R is it. So from Theorems 5.6 and 4.12 we have:

Corollary 5.21 Let | < p < oo. Then Lk (v) has the Fatou property if. and only if.
L5 (w) = LP(v)*™.

Remark 5.22 Calabuig, Delgado, Juan and Sanchez-Pérez asked if in general L,‘U(v)
always has the Fatou property [4, pp. 77-78]. With respect to this question we have
the following. Let 1 < p < oo and notice that L}U(v) has the Fatou property if, and
only if, LY, (v) has it. Then from the previous result we obtain that

L}D(v) has the Fatou property if, and only if, L}, (v) = LP (v)**.
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