

Associate space with respect to a locally σ -finite measure on a δ -ring and applications to spaces of integrable functions defined by a vector measure

Celia Avalos-Ramos¹ · Fernando Galaz-Fontes¹

Received: 13 February 2015 / Accepted: 16 September 2015 / Published online: 26 September 2015 © Springer Basel 2015

Abstract We show that for a locally σ -finite measure μ defined on a δ -ring, the associate space theory can be developed as in the σ -finite case, and corresponding properties are obtained. Given a saturated σ -order continuous μ -Banach function space E, we prove that its dual space can be identified with the associate space E^{\times} if, and only if, E^{\times} has the Fatou property. Applying the theory to the spaces $L^{p}(\nu)$ and $L_{w}^{p}(\nu)$, where ν is a vector measure defined on a δ -ring \mathcal{R} and $1 \leq p < \infty$, we establish results corresponding to those of the case when the vector measure is defined on a σ -algebra.

Keywords Banach function space \cdot Associate space \cdot Locally σ -finite measure \cdot δ -ring \cdot Fatou property \cdot Order continuous \cdot Vector measure

Mathematics Subject Classification 46E30 · 46G10 · 46B10

1 Introduction

Let Ω be a set and \mathcal{R} a δ -ring consisting of subsets of Ω . Given a vector measure $\nu : \mathcal{R} \to X$, where X is a (real or complex) Banach space, we obtain the Banach space of weakly-integrable functions $L^1_w(\nu)$, which has the space of ν -integrable functions $L^1(\nu)$ as a closed subspace. With the order given by $f \ge g$ if $f \ge g$ outside a ν -null set, we have that $L^1_w(\nu)$ is a σ -Fatou Banach lattice and $L^1(\nu)$ is an order continuous

Fernando Galaz-Fontes galaz@cimat.mx

Celia Avalos-Ramos celia.avalos@cimat.mx

¹ Centro de investigación en Matemáticas, Col. Valenciana, 36240 Guanajuato, GTO, Mexico

Banach lattice. (See Sect. 2 for definitions.) The integration theory with respect to vector measures defined on δ -rings was developed mainly by Lewis [18], Masani and Niemi [21,22] and Delgado [8]. It extends the well known theory for vector measures defined on σ -algebras [25, Ch. 3].

If *E* is a real or complex order continuous Banach lattice, Curbera [5, p. 22], [10, p. 246] showed that there is a set Ω , a δ -ring \mathcal{R} consisting of subsets of Ω , and a vector measure $\nu : \mathcal{R} \to E$, such that *E* and $L^1(\nu)$ are order and isometrically isomorphic. It follows that the dual spaces $L^1(\nu)^*$ and E^* , both of which are Banach lattices, are also order and isometrically isomorphic. Hence by studying a dual space of the form $L^1(\nu)^*$ we are implicitly analyzing the dual space of the most general order continuous Banach lattice.

The study of $L^1(\nu)^*$ can be done through the associate space theory, systematically developed by Luxemburg and Zaanen [28, Ch. 15], [29, Ch. 16, Sect. 112]. This theory begins with an arbitrary positive measure space (Ω, Σ, μ) and applies to a μ -Banach function space (μ -B.f.s. for short) E which is saturated. Then also its associate space E^{\times} is a μ -Banach function space and the operator $R : E^{\times} \to E^*$, defined by $R(g) := R_g$, where $R_g(f) := \int_{\Omega} fg d\mu$, is a linear isometry. This operator, called the canonical isometry, allows us to consider the associate space E^{\times} as a closed subspace of the dual space E^* . When the involved measure μ is σ -finite and the saturated B.f.s. E is σ -order continuous, then the canonical isometry R is onto. Moreover, R also preserves the lattice structure and so we write $E^{\times} = E^*$. In the following we will maintain this notation to indicate that R is onto.

To apply the above theory for studying $L^1(\nu)^*$, in the first place we have to find a positive measure μ which is also a local control measure for ν , that is, such that μ and ν have the same null sets. In this situation $L^1(\nu)$ is a μ -B.f.s. Assume the δ -ring \mathcal{R} on which the vector measure ν is defined is a σ -algebra. Then it is well known that ν has a finite local control measure μ with respect to which $L^1(\nu)$ is a saturated μ -B.f.s. [25, pp. 107–108]. It follows that in this case we have $L^1(\nu)^* = L^1(\nu)^*$.

If the δ -ring \mathcal{R} is not a σ -algebra, we cannot proceed directly as above to obtain for $L^1(\nu)$ similar results to those we have just mentioned, since in this situation ν may not have a σ -finite local control measure. This is a problem, since a key fact for the associate space theory to work is that when the measure μ is σ -finite, then the saturation of a μ -B.f.s. *E* implies that of E^{\times} .

However, relying on a result of Brooks and Dinculeanu [3], it has recently been pointed out by Jiménez et al. [16] the fact that any vector measure defined on a δ -ring \mathcal{R} , always has a local control measure μ that is also σ -finite on any set $B \in \mathcal{R}$. We will see that a measure of this kind, which we have called *Brooks–Dinculeanu measure*, is appropriate for our objectives.

In this paper we first study the associate space E^{\times} of a saturated μ -B.f.s., for a locally σ -finite positive measure μ . Thereafter we consider a vector measure ν and apply the results to the μ -Banach function spaces of p integrable functions $L^p(\nu)$ and of weakly integrable functions $L^w(\nu)$, $1 \le p < \infty$, where μ is a Brooks–Dinculeanu measure for ν . The main question we discussed was that of the validity of the equality $L^1(\nu)^{\times} = L^1(\nu)^*$.

We divided our work in five sections, including this Introduction. In Sect. 2 we present the notation, definitions and basic results that we have needed.

The general theory for the associate space E^{\times} of a saturated μ -B.f.s E is given in Sect. 3. As in the well known σ -finite case, it turns out that the associate space E^{\times} always has the σ -Fatou property. When μ is a σ -Fatou property, we show that the σ -Fatou property and the Fatou properties are equivalent for E. Based on general properties of the dual space of an arbitrary Banach lattice [29, Ch. 14, Ch. 15], we establish that if $E^{\times} = E^*$, then E is order continuous and E^{\times} has the Fatou property.

In Sect. 4 we restrict our considerations to a locally σ -finite measure μ . In this setting we obtain results that are well known in the σ -finite case. Particularly we show that E^{\times} is also a saturated μ -B.f.s., that $E^{\times \times} = E$ when E has the Fatou property, and that the factorization $L^1(\mu) = EE^{\times}$ holds. When the saturated μ -B.f.s. is σ -order continuous, we prove that $E^{\times} = E^*$ if, and only if, E^{\times} has the Fatou property. In a forthcoming work we plan to show that this last is not always the case.

In the last section we apply our development to the spaces $L^p(v)$ and $L^p_w(v)$, $1 \le p < \infty$, obtained from a vector measure v. These are Banach function spaces with respect to any Brooks–Dinculeanu measure for v. Thus we show that $L^p(v)^{\times\times} = L^p_w(v)$ and $L^p(v)^{\times} = L^p_w(v)^{\times}$ for $1 \le p < \infty$. When the vector measure v is defined on a σ -algebra the first of these equalities was established by Curbera and Ricker [6, Prop. 2.4], [7, Prop. 1].

We give several situations where $L^1(\nu)^{\times} = L^1(\nu)^*$ holds, one of them being the case of a decomposable vector measure. This turns out to be important, since the vector measure ν that Calabuig et al. used to represent an order continuous Banach lattice as $L^1(\nu)$, is a decomposable vector measure [4].

Finally, we establish that $L^p(\nu)^{\times} = L^p(\nu)^*$ if $1 and that <math>L^1(\nu)^{\times} = L^1(\nu)^*$ when $L^1(\nu)$ is reflexive. We also verify that a reflexivity criterion proven by Fernández et al. [12, Cor. 3.10] for a vector measure defined on a σ -algebra is still valid in the δ -ring case.

To complete this introduction, we want to note that Okada was the first to obtain a description of $L^1(v)^*$ for a classical vector measure v [24]. Later Galaz-Fontes gave a representation for $L^p(v)^*$ when 1 [14] and recently Mastylo and Sánchez Pérez have established representations of these kind for a dual Banach space in a more general context [23].

2 Notation and basic results

2.1 Banach lattices

Throughout this paper all vector spaces considered will be with respect to \mathbb{K} , where $\mathbb{K} = \mathbb{C}$, the field of complex numbers or $\mathbb{K} = \mathbb{R}$, the field of real numbers. Let *X* be a normed space. By B_X we will indicate its unit closed ball and by X^* its dual space. We will represent by $\langle \cdot, \cdot \rangle$ the duality pairing, i.e. $\langle x, x^* \rangle := x^*(x), \forall x \in X$ and $x^* \in X^*$. If *Y* is other normed space, to express that X = Y as sets and with equal norms, we will write $X \equiv Y$.

Let X be a real vector lattice with order \leq . For $A \subset X$ we will be denote by A^+ the subset of X consisting of all $f \in A$ such that $0 \leq f$. Given $f \in X$, we indicate by f^+ , f^- and |f| its *positive part*, *negative part* and *modulus*, respectively. Finally X is

called *Dedekind* σ *-complete* if every non-empty countable subset which is bounded from above has a supremum.

Let *J* be a directed set. A net $\{f_{\tau}\}_{\tau \in J} \subset X$ is an *upwards directed system* if for τ_1 and τ_2 in *J*, there exists $\tau_3 \in J$ such that $f_{\tau_1} \leq f_{\tau_3}$ and $f_{\tau_2} \leq f_{\tau_3}$. In this case we will use the notation $f_{\tau} \uparrow$. If additionally there exists $f = \sup_{\tau} f_{\tau} \in X$ we write $f_{\tau} \uparrow f$. Similarly, if the sequence $\{f_n\} \subset X$ is such that $f_n \leq f_{n+1}, \forall n \in \mathbb{N}$, we will indicate $f_n \uparrow$ and if additionally $f = \sup_n f_n$ then we will write $f_n \uparrow f$. Analogously, we define a *downwards directed system* $\{f_{\tau}\}$ and the notations $f_{\tau} \downarrow$ and $f_{\tau} \downarrow f$.

A *real normed vector lattice* X is a real normed space that is a vector lattice and whose norm $\|\cdot\|_X$ has the *lattice property*, that is

if
$$f, g \in Y$$
 satisfy, $|f| \le |g|$, then $||f||_X \le ||g||_X$. (2.1)

If in addition the space is complete, we will say that X is *real Banach lattice*.

Let X be a real normed vector lattice. Then X has the *weak Fatou property* if for each upwards directed system $\{f_{\tau}\} \subset X^+$ with $\sup_{\tau} ||f_{\tau}||_X < \infty$, there exists $f = \sup_{\tau} f_{\tau} \in X$; if additionally $||f||_X = \sup_n ||f_n||_X$, then X has the *Fatou property*. Similarly, X has the *weak* σ -*Fatou property*, if given $\{f_n\} \subset X^+$ such that $f_n \uparrow$ and $\sup_n ||f_n||_X < \infty$, then there exists $f = \sup_n f_n \in X$, and if additionally $||f||_X =$ $\sup_n ||f_n||_X$, then X is said to have the σ -*Fatou property*. We say that X is *order continuous*, if for any system $\{f_{\tau}\} \subset X$ satisfying $f_{\tau} \downarrow 0$ it follows that $||f_{\tau}||_X \downarrow 0$. Analogously, X is σ -*order continuous* if for any sequence $\{f_n\} \subset X$ satisfying $f_n \downarrow 0$ we have that $||f_n||_X \downarrow 0$.

Take a real Banach lattice *X*. Then in Z := X + iX, the complexification of *X*, the modulus is defined by $|h| := \sup\{|(\cos \theta) f + (\sin \theta)g| : 0 \le \theta < 2\pi\}$, $\forall h := f + ig \in Z$ [29, Ch. 14; Thm. 91.2], the norm by $||h||_Z = ||h||_X$, $\forall h \in Z$, and the order is given by $f \le g$ in *Z*, if $f, g \in X$ and $f \le g$. In this case *Z* is called a *complex Banach lattice*, *X* is its *real part* and we write $X = Z_{\mathbb{R}}$. Observe that $Z^+ = X^+$. We will say that a complex Banach lattice has one of the properties we introduced above if its real part has it. Henceforth we will say only Banach lattice (normed vector lattice) to refer to a complex or real Banach lattice (normed vector lattice).

Let *X* be a Banach lattice. An *ideal Y* of *X* is a vector subspace of *X* if $f \in X$ with $|f| \le |g|$ for some $g \in Y$ implies $f \in Y$.

Let $T : X \to Y$ be a linear operator between Banach lattices. Then T is said to be *positive* if for each $f \in X^+$ we have that $T(f) \in Y^+$. In this case $T(X_{\mathbb{R}}) \subset Y_{\mathbb{R}}$ and T is bounded [1, Lemma 3.22]. We will say that T is an *order isometry* if T is an isometry, T is onto and both T and T^{-1} are positive operators. This last condition is equivalent to

 $Tf \ge 0$ if and only if $f \ge 0$, $\forall f \in X$.

In this case we have that $T(X_{\mathbb{R}}) = Y_{\mathbb{R}}$, $T(\sup\{f, g\}) = \sup\{Tf, Tg\}, \forall f, g \in X_{\mathbb{R}}$ and $T|f| = |Tf|, \forall f \in X$. Let X be a real Banach lattice. Then its dual space X^* is a Banach lattice with the order given by

$$\varphi \le \psi$$
, if $\varphi(f) \le \psi(f)$, $\forall f \in X^+$, $\varphi, \psi \in X^*$. (2.2)

In this case the supremum and infimum are uniquely determined by

$$\sup\{\varphi, \psi\}(f) := \sup\{\varphi(g) + \psi(h) : f = g + h, g \ge 0, h \ge 0\},$$

$$\inf\{\varphi, \psi\}(f) := \inf\{\varphi(g) + \psi(h) : f = g + h, g \ge 0, h \ge 0\},$$
(2.3)

for each $\varphi, \psi \in X^*$ and $f \in X^+$ [27][Chap II, Props. 4.2, 5.5].

Now assume that X is a complex Banach lattice. Given $\varphi \in X_{\mathbb{R}}^*$, we will indicate by $\tilde{\varphi} : X \to \mathbb{C}$ its canonical extension, that is, $\tilde{\varphi}(x+iy) = \varphi(x) + i\varphi(y)$. If $\Phi : X \to \mathbb{C}$ is a bounded linear functional, then Φ has the form $\Phi = \tilde{\varphi} + i\tilde{\psi}$, where $\tilde{\varphi}$ and $\tilde{\psi}$ are the canonical extensions of linear functionals $\varphi, \psi \in X_{\mathbb{R}}^*$. Identifying $X_{\mathbb{R}}^*$ with $\tilde{X}_{\mathbb{R}}^* \subset X^*$, we have that $X^* = X_{\mathbb{R}}^* + iX_{\mathbb{R}}^*$ is a Banach lattice. As can be seen in [27, §11], in this case

$$|\Phi|(f) = \sup_{|g| \le f} |\Phi(g)|, \quad \forall \ f \in X^+.$$
(2.4)

2.2 μ -Banach function spaces

Given a measurable space (Ω, Σ) we will denote by $L^0(\Sigma)$ the space formed by the Σ -measurable functions $f : \Omega \to \mathbb{K}$. If additionally we have a positive measure μ defined on Σ , we indicate by $\mathcal{N}_0(\mu)$ the family of μ -null subsets, i. e., the sets $A \in \Sigma$ such that $\mu(A) = 0$. As usual a property holds μ -almost everywhere (briefly μ -a.e.) if it holds except on a μ -null set. We indicate by $L^0(\mu)$ the space of equivalence classes of functions in $L^0(\Sigma)$, where two functions are identified when they are equal μ -a.e.

Note that, when $\mathbb{K} = \mathbb{C}$, the space $L^0(\mu)$ is the complexification of the real space $L^0(\mu)_{\mathbb{R}} := \{f \in L^0(\mu) : f \text{ take its values in } \mathbb{R} \ \mu\text{-a.e.}\}.$

In $L^0(\mu)_{\mathbb{R}}$ we will always consider the μ -a.e. pointwise order. Let $f \in L^0(\mu)$. So Re f, Im $f \in L^0(\mu)_{\mathbb{R}}$ and f = Re f + i Im f. Moreover,

$$\sup_{0 \le \theta < 2\pi} |(\cos \theta) \operatorname{Re} f + (\sin \theta) \operatorname{Im} f| = \sqrt{(\operatorname{Re} f)^2 + (\operatorname{Im} f)^2} = |f|.$$
(2.5)

We will say that a normed space $E \subset L^0(\mu)$ is a *normed function space* related to μ (briefly μ -n.f.s.) if E is a vector subspace of $L^0(\mu)$ such that $f \in L^0(\mu)$ with $|f| \leq |g|$ for some $g \in E$, implies $f \in E$ and the lattice property (2.1) holds (with E instead of X). If additionally E is complete we will call it *Banach function space* related to μ (briefly μ -B.f.s.). We must note that in the literature there appear other definitions with the same name, such as in [19, Def. 1.b.17] and in [2, Def. I.1.3].

Let *E* be a μ -B.f.s. Then *E* is Dedekind σ -complete. So, *E* is σ -order continuous if and only if *E* is order continuous [29, 103.9]. Now if *E* is a μ -n.f.s. with the σ -Fatou property, then *E* is complete [28, Ch. 15, §65, Thm. 1]. Thus, *E* is a μ -B.f.s. with the σ -Fatou property.

Let *E* be a complex μ -B.f.s. Note that $E_{\mathbb{R}} = E \cap L^0(\mu)_{\mathbb{R}}$, with the μ a.e. pointwise order, is a real Banach lattice and $E = E_{\mathbb{R}} + iE_{\mathbb{R}}$. It follows from (2.5) that *E* is a complex Banach lattice. Moreover, $f \in E$ if and only if $(\operatorname{Re} f)^+$, $(\operatorname{Re} f)^-$, $(\operatorname{Im} f)^+$, $(\operatorname{Im} f)^- \in E^+$.

2.3 Integration with respect to measures defined on δ -rings

Let Ω be a set. A family \mathcal{R} of subsets of Ω is a δ -ring if \mathcal{R} is a ring which is closed under countable intersections. From now on in this paper \mathcal{R} will be a δ -ring. We denote by \mathcal{R}^{loc} the σ -algebra of all sets $A \subset \Omega$ such that $A \cap B \in \mathcal{R}$, $\forall B \in \mathcal{R}$. Given $A \in \mathcal{R}^{loc}$ we indicate by \mathcal{R}_A the δ -ring $\{B \subset A : B \in \mathcal{R}\}$ and by π_A the collection of finite families of pairwise disjoint sets in \mathcal{R}_A . Note that if $\Omega \in \mathcal{R}$, then \mathcal{R} is a σ -algebra, and in this case we have that $\mathcal{R}^{loc} = \mathcal{R}$. Moreover, for each $B \in \mathcal{R}$ it turns out that \mathcal{R}_B is a σ -algebra.

A scalar measure (positive measure) is a function $\lambda : \mathcal{R} \to \mathbb{K} \ (\lambda : \mathcal{R} \to [0, \infty])$ satisfying that if $\{B_n\} \subset \mathcal{R}$, is a family of pairwise disjoint sets such that $\bigcup_{n=1}^{\infty} B_n \in \mathcal{R}$, then $\sum_{n=1}^{\infty} \lambda(B_n) = \lambda (\bigcup_{n=1}^{\infty} B_n)$. The variation of λ is the countably additive measure $|\lambda| : \mathcal{R}^{loc} \to [0, \infty]$ defined by

$$|\lambda|(A) := \sup\left\{\sum_{j=1}^n |\lambda(A_j)| : \{A_j\} \in \pi_A\right\}.$$

A function $f \in L^0(\mathcal{R}^{loc})$ is λ -integrable if $f \in L^1(|\lambda|)$. We denote by $L^1(\lambda)$ the subspace of $L^0(\lambda)$ formed by the λ -integrable functions. Then $L^1(\lambda)$ with norm given by $|f|_{1,\lambda} := \int_{\Omega} |f| d|\lambda|$ is a σ -order continuous $|\lambda|$ -B.f.s. with the σ -Fatou property. The following result is basic in the theory; when λ is a scalar measure it was established by Masani and Niemi [21, Lemma 2.30, Thm. 2.32], for the case of a positive measure we can proceed similarly.

Proposition 2.1 If $f \in L^0(\mathcal{R}^{loc})$, then

$$\int_{A} |f|d|\lambda| = \sup_{B \in \mathcal{R}_{A}} \int_{B} |f|d|\lambda|, \quad \forall A \in \mathcal{R}^{loc}.$$
(2.6)

Therefore, $f \in L^1(|\lambda|)$ if and only if $\sup_{B \in \mathcal{R}} \int_B |f| d|\lambda| < \infty$.

Let X be a Banach space. A function $\nu : \mathcal{R} \to X$ is a *vector measure* if $\sum_{n=1}^{\infty} \nu(B_n) = \nu(\bigcup_{n=1}^{\infty} B_n)$, for any collection $\{B_n\} \subset \mathcal{R}$ of pairwise disjoint sets such that $\bigcup_{n=1}^{\infty} B_n \in \mathcal{R}$. The *variation of* ν is the positive measure $|\nu|$ defined in \mathcal{R}^{loc} by

$$|\nu|(A) := \sup\left\{\sum_{j} \|\nu(A_{j})\|_{X} : \{A_{j}\} \in \pi_{A}\right\}.$$

The *semivariation of* v is the function $||v|| : \mathcal{R}^{loc} \to [0, \infty]$ given by

$$\|\nu\|(A) := \sup\{|\langle \nu, x^* \rangle|(A) : x^* \in B_{X^*}\},\$$

where $|\langle v, x^* \rangle|$ is the variation of the scalar measure $\langle v, x^* \rangle : \mathcal{R} \to \mathbb{K}$, where

$$\langle \nu, x^* \rangle(B) := \langle \nu(B), x^* \rangle, \quad \forall B \in \mathcal{R}.$$

The semivariation of ν is finite in \mathcal{R} and for any $A \in \mathcal{R}^{loc}$ satisfies $\|\nu\|(A) \leq |\nu|(A)$. A set $A \in \mathcal{R}^{loc}$ is said to be ν -null if $\|\nu\|(A) = 0$. We will denote by $\mathcal{N}_0(\nu)$ the collection of ν -null sets. It turns out that $\mathcal{N}_0(\nu) = \mathcal{N}_0(|\nu|)$. Moreover $A \in \mathcal{N}_0(\nu)$ if and only if $\nu(B) = 0$, $\forall B \in \mathcal{R}_A$. We say that a positive measure $\lambda : \mathcal{R} \to [0, \infty]$ is a *local control measure* for ν , if $\mathcal{N}_0(|\lambda|) = \mathcal{N}_0(\nu)$ [8, p. 437]. Then, $|\nu|$ is a local control measure for ν . We define $L^0(\nu)$ as the space of equivalence classes of functions in $L^0(\mathcal{R}^{loc})$, where two functions are identified when they are equal ν -a.e. So, $L^0(\nu) = L^0(|\lambda|)$, where λ is any local control measure for ν .

A function $f \in L^0(\mathbb{R}^{loc})$ is weakly *v*-integrable, if $f \in L^1(\langle v, x^* \rangle)$, for each $x^* \in X^*$. We will denote by $L^1_w(v)$ the subspace of $L^0(v)$ of all weakly *v*-integrable functions. With the norm $||f||_v := \sup\{\int_{\Omega} |f|d|\langle v, x^* \rangle| : x^* \in B_{X^*}\}, L^1_w(v)$ is a $|\lambda|$ -B.f.s. with the σ -Fatou property, where λ is a local control measure for *v*.

A function $f \in L^1_w(v)$ is *v*-integrable, if for each $A \in \mathcal{R}^{loc}$ there exists a vector $x_A \in X$, such that $\langle x_A, x^* \rangle = \int_A f d\langle v, x^* \rangle$, $\forall x^* \in X^*$. The subset of all *v*-integrable functions is a closed subspace of $L^1_w(v)$ and it will be denoted by $L^1(v)$. We indicate by $S(\mathcal{R})$ the collection of simple functions in $L^0(\mathcal{R}^{loc})$ which have support in \mathcal{R} . It turns out that $L^1(v)$, with norm $\|\cdot\|_v$ is a σ -order continuous μ -B.f.s. where $S(\mathcal{R})$ is a dense subspace.

We also notice that $L^{1}(\nu) = L^{1}_{w}(\nu)$ if X does not contain a copy of c_{0} [18, Thm. 5.1].

3 Associate space

Let (Ω, Σ, μ) be a positive measure space and let us consider a μ -B.f.s. *E*. We will show that several of the basic results about the associate space of *E* when μ is a σ -finite measure, can also be established in the case that μ is not σ -finite. We will begin by just enunciating some of these results; they can be proven as in the σ -finite case [28, Ch. 15], [2, Ch. 1].

The vector space defined by $E^{\times} := \{g \in L^0(\mu) : gf \in L^1(\mu), \forall f \in E\}$ is called *the associate space* of *E* and the function

$$\|g\|_{E^{\times}} := \sup\left\{\int_{\Omega} |gf| d\mu : f \in B_E\right\}, \quad \forall g \in E^{\times},$$
(3.1)

is a seminorm. For each $f \in E$ and $g \in E^{\times}$ the Hölder inequality is satisfied:

$$\int_{\Omega} |gf| d\mu \leq \|g\|_{E^{\times}} \|f\|_{E}.$$

We also have that for the function $\|\cdot\|_{E^{\times}}$ to be a norm, it is necessary and sufficient that *E* be *saturated*, that is, for each $A \in \Sigma$ with positive measure there exists $B \in \Sigma_A$ such that $\mu(B) > 0$ and $\chi_B \in E$. Next we give an equivalent condition for saturation. For this, let us first recall that a μ -B.f.s. *Y* is *order dense* in $L^0(\mu)$ if for any $f \in L^0(\mu)^+$ there exists an upwards directed system $\{f_{\tau}\} \subset Y^+$ such that $f_{\tau} \uparrow f$.

Lemma 3.1 Let $E \ a \ \mu$ -B.f.s. The following statements are equivalent:

- (i) The space E is saturated.
- (ii) The space E is order dense in $L^0(\mu)$.
- (iii) The seminorm $\|\cdot\|_{E^{\times}}$ is a norm.

Proof The equivalence (i) \Leftrightarrow (iii) is proved as in the σ -finite case [28, Ch. 15, §69, Thm. 4]. Let us prove (i) \Leftrightarrow (ii).

Since *E* is a Banach lattice we have that *E* is archimedean. Then, it is enough to prove that *E* is saturated if and only if for each $0 \neq f \in L^0(\mu)$ there exists $g \in E$ such that $0 < |g| \le |f|$ [20, Thm. 22.3(vi)]. Assume that *E* is saturated. Consider $0 \neq f \in L^0(\mu)$ and define

$$A_n := \left\{ x \in \Omega : \frac{1}{n} \le |f(x)| \right\}, \quad \forall n \in \mathbb{N}.$$

Let us fix $N \in \mathbb{N}$ such that $\mu(A_N) > 0$. Since *E* is saturated there exists $B \subset A_N$ with $\mu(B) > 0$ and $\chi_B \in E$. Then, $g := \frac{1}{N}\chi_B \in E$ and $0 < |g| \le |f|$.

To establish the other implication, take $A \in \Sigma$ such that $\mu(A) > 0$. Hence $0 \neq \chi_A \in L^0(\mu)$. Thus there exists $g \in E$ satisfying $0 < |g| \le \chi_A$. As $0 \neq g \in L^0(\mu)$ we can take $\varphi \in S(\Sigma)$ with $0 < \varphi \le |g|$. Therefore $\varphi \in E$ and so, there exists $B \in \Sigma$ such that $B \subset \text{supp}\varphi$, $\mu(B) > 0$ and $\chi_B \in E$.

Henceforth we will assume that *E* is a saturated μ -B.f.s. Then as in the σ -finite case we have:

Proposition 3.2 The space E^{\times} is a μ -B.f.s. with the σ -Fatou property.

For our next result, let us recall that a Banach lattice E is super Dedekind complete if every non-empty subset D of E which is bounded from above has a supremum and it contains an at most countable subset possessing the same supremum as D.

Proposition 3.3 If there exists a σ -order continuous μ -B.f.s. F with the σ -Fatou property, such that $E^{\times} \subset F$, then E^{\times} has the Fatou property.

Proof Consider $\{g_{\tau}\} \subset E^{\times}$ such that $0 \leq g_{\tau} \uparrow$ and $\sup_{\tau} ||g_{\tau}||_{E^{\times}} < \infty$. Then $\{g_{\tau}\} \subset F^{+}$ is an upwards directed system such that $\sup_{\tau} ||g_{\tau}||_{F} < \infty$. Since *F* is σ -order continuous and has the σ -Fatou property, then *F* has the Fatou property and is super Dedekind complete [29, Thm. 113.4]. Hence $g := \sup_{\tau} g_{\tau} \in F$ and there exists a sequence $\{g_{\tau_{n}}\} \subset \{g_{\tau}\}$ such that $g_{\tau_{n}} \uparrow g$ [20, Thm. 23.2.(iii)]. From the σ -Fatou property in E^{\times} we obtain that $g \in E^{\times}$. And since $|| \cdot ||_{E}^{\times}$ is a lattice norm, $\sup_{\tau} ||g_{\tau}||_{E^{\times}} \leq ||g||_{E^{\times}}$.

Now take $f \in B_E$. Using the monotone convergence theorem and the Hölder inequality we have

$$\int_{\Omega} |gf| d\mu = \sup_n \int_{\Omega} |g_{\tau_n} f| d\mu \leq \sup_n ||g_{\tau_n}||_{E^{\times}} ||f||_E \leq \sup_n ||g_{\tau}||_{E^{\times}}.$$

Thus, $||g||_{E^{\times}} \leq \sup_{\tau} ||g_{\tau}||_{E^{\times}} < \infty$. Hence, E^{\times} has the Fatou property.

Since $L^{1}(\mu)$ is σ -order continuous and has the σ -Fatou property, we obtain:

Corollary 3.4 If $\chi_{\Omega} \in E$, then E^{\times} has the Fatou property.

Next we will show that when μ is σ -finite, it turns out that the associate space always has the Fatou property. For this it is necessary to make before a brief discussion.

Let A be in Σ . We denote by μ_A the restriction of the measure μ to the σ -algebra Σ_A formed by the measurable subsets of A. Thus (A, Σ_A, μ_A) is a measure space.

For each $f \in L^0(\Sigma_A)$ define the function $f^{\Omega} : \Omega \to \mathbb{K}$ by $f^{\Omega}(x) = f(x)$, if $x \in A$ and $f^{\Omega}(x) = 0$ otherwise. Then f^{Ω} is a Σ -measurable function which is called *canonical extension* of f. Now, the set E_A defined by

$$E_A := \left\{ f \in L^0(\mu_A) : f^\Omega \in E \right\}$$
(3.2)

is a vector space. If $h \in E$, then $(h_A)^{\Omega} = h\chi_A \in E$, where h_A is the restriction of h to A. Thus, $h_A \in E_A$. In E_A we define the norm $\|\cdot\|_A$ by

$$\|f\|_{A} := \|f^{\Omega}\|_{E}, \quad \forall f \in E_{A}.$$
(3.3)

Since *E* is a saturated μ -B.f.s., it follows that also E_A is a saturated μ_A -B.f.s. On the other hand if $A = \bigcup_{n=1}^{\infty} A_n$, where $A_n \in \Sigma$ and $\mu(A_n) < \infty, \forall n \in \mathbb{N}$, we obtain that μ_A is σ -finite. In this case it is well known that $E_A^{\times} := (E_A)^{\times}$ is saturated [28, Ch. 15, §71, Thm. 4]. Furthermore $E_A^{\times} = (E^{\times})_A$ and

$$\|g\|_{E_A^{\times}} = \sup\left\{\int_A |gf| d\mu_A : f \in B_{E_A}\right\} = \|g^{\Omega}\|_{E^{\times}}, \quad \forall g \in E_A^{\times}.$$
(3.4)

Theorem 3.5 If the measure μ is σ -finite, then E^{\times} has the Fatou property.

Proof We will assume that $\mu(\Omega) > 0$. Let us take an upwards directed system $\{g_{\tau}\}_{\tau \in I} \subset E^{\times}$ such that $g_{\tau} \geq 0$, $\forall \tau \in I$ and $\sup_{\tau} ||g_{\tau}||_{E^{\times}} < \infty$. Now since μ is σ -finite and E is a saturated μ -B-f.s., there exist $\{\Omega_n\} \subset \Sigma$ and $N \in \mathcal{N}_0(\mu)$ such that $\Omega_n \subset \Omega_{n+1}, 0 \neq \chi_{\Omega_n} \in E, \forall n \in \mathbb{N}$ and $\Omega = \bigcup_{n=1}^{\infty} \Omega_n \cup N$ [28, Ch. 15, §67, Thm. 4].

Fix $n \in \mathbb{N}$. Let us denote by Σ_n the σ -algebra Σ_{Ω_n} and by μ_n the restriction of μ to Σ_n . Thus $(\Omega_n, \Sigma_n, \mu_n)$ is a finite measure space. Then the space $E_n := E_{\Omega_n}$ with the norm $\|\cdot\|_n := \|\cdot\|_{\Omega_n}$ is a saturated μ_n -B.f.s. such that $\chi_{\Omega_n} \in E_n$. By the above corollary we have that E_n^{\times} has the Fatou property.

Let $g_{\tau,n}$ be the restriction of g_{τ} to the set Ω_n . Thus $\{g_{\tau,n}\}_{\tau \in I} \subset E_n^{\times}$ is an upwards directed system with $\sup_{\tau} \|g_{\tau,n}\|_{E_n^{\times}} \leq \sup_{\tau} \|g_{\tau}\|_{E^{\times}} < \infty$. Therefore $g_{(n)} := \sup_{\tau} g_{\tau,n} \in E_n^{\times}$ and $\|g_{(n)}\|_{E_n^{\times}} = \sup_{\tau} \|g_{\tau,n}\|_{E_n^{\times}}$.

Now let $g_n := (g_{(n)})^{\Omega}$ be the canonical extension of $g_{(n)}$. Then $\{g_n\} \subset E^{\times}$ is an increasing sequence. By (3.4),

$$\sup_{n} \|g_{n}\|_{E^{\times}} = \sup_{n} \|g_{(n)}\|_{E_{n}^{\times}} \le \sup_{\tau} \|g_{\tau}\|_{E^{\times}}.$$
(3.5)

From the σ -Fatou property in E^{\times} and (3.5), it follows that

$$g := \sup_{n} g_n \in E^{\times} \text{ and } \|g\|_{E^{\times}} \le \sup_{\tau} \|g_{\tau}\|_{E^{\times}}.$$

$$(3.6)$$

Let us prove that $g = \sup_{\tau} g_{\tau}$. Fix $\tau \in I$. Since $g_{\tau} \chi_{\Omega_n} \leq g_n \leq g$ for each $n \in \mathbb{N}$, we have that $g_{\tau} \leq g$. Suppose that $g' \in E^{\times}$ satisfies $g_{\tau} \leq g', \forall \tau \in I$. Now fix $n \in \mathbb{N}$. Then $g_{\tau} \chi_{\Omega_n} \leq g' \chi_{\Omega_n}, \forall \tau$, so $g_n \leq g'$. Therefore, $g \leq g'$ and we obtain that $g = \sup_{\tau} g_{\tau}$. Finally $\|\cdot\|_E^{\times}$ is a lattice norm and so the conclusion follows from (3.6).

Since we are assuming that E is a saturated μ -B.f.s., then E^{\times} is a μ -B.f.s. and we can consider its associate space, which is called *second associate space* of E and it is denoted by $E^{\times\times}$. Thus

$$E^{\times\times} := (E^{\times})^{\times} = \left\{ h \in L^{0}(\mu) : hg \in L^{1}(\mu) \quad \forall g \in E^{\times} \right\}$$

and the seminorm $\|\cdot\|_{E^{\times\times}}: E^{\times\times} \to [0,\infty)$ is given by

$$\|h\|_{E^{\times\times}} := \sup\left\{\int_{\Omega} |hg|d\mu : g \in B_{E^{\times}}\right\}.$$

Unlike the σ -finite case, we will see in Example 4.5 that it can happen that E^{\times} is not saturated. Nevertheless, we have that $E \subset E^{\times \times}$ and

$$\|f\|_{E^{\times\times}} \le \|f\|_E \quad \forall \ f \in E.$$

$$(3.7)$$

Corollary 3.6 Let E be a saturated μ -B.f.s. If μ is σ -finite, then

- (i) $E^{\times\times}$ is a μ -B.f.s. with the Fatou property.
- (ii) *E* has the σ -Fatou property if and only if *E* has the Fatou property.

Proof Since μ is σ -finite we have that E^{\times} is a saturated μ -B.f.s. [28, Ch. 15, §71, Thm. 4]. Thus, from Theorem 3.5 we obtain (i).

Now from the σ -Fatou property in *E* it follows that $E \equiv E^{\times \times}$ [28, Ch. 15, §71, Thm. 1]. Therefore from (i) we have (ii).

Let us fix $g \in E^{\times}$. Then the function $\varphi_g : E \to \mathbb{K}$ defined by

$$\varphi_g(f) := \int_{\Omega} gf d\mu, \qquad (3.8)$$

is a linear and bounded functional such that $\|\varphi_g\| = \|g\|_{E^{\times}}$. Thus we consider the operator

$$R: E^{\times} \to E^* \text{ defined by } R(g) := \varphi_g. \tag{3.9}$$

Clearly *R* is a linear isometry, called *canonical isometry*. Accordingly, the associate space E^{\times} can be identified with a certain closed subspace of E^* . The canonical isometry also preserves the order in the sense that

$$g \ge 0$$
 if, and only if, $\varphi_g \ge 0$.

In the case $\mathbb{K} = \mathbb{C}$ we also have that *g* is real if, and only if, φ_g is real. Therefore if *R* is onto, then *R* is an order isometry. Hence in what follows we will write $E^{\times} = E^*$ to mean that the canonical isometry *R* is onto.

Next we distinguish two necessary conditions for $E^{\times} = E^*$ to hold. We will need the following result, which is obtained from [29, Thm. 102.3, p. 415].

Lemma 3.7 If E is a Banach lattice, then E^* has the Fatou property.

We also need to recall that a functional $\varphi \in E^*$ is σ -order continuous whenever $f_n \downarrow 0$ implies $\varphi(f_n) \rightarrow 0$.

Proposition 3.8 Let E be a saturated μ -B.f.s. If $E^* = E^{\times}$, then E is order continuous and E^{\times} has the Fatou property.

Proof Since *E* is a Dedekind σ -complete Banach lattice, we only have to show that *E* is σ -order continuous. And so, by [29, Lemma 84.1, Thm. 102.7] it is enough to establish that φ is σ -order continuous for any $\varphi \in (E^*)^+$. So, take $\varphi \in E^*$ such that $\varphi \ge 0$ and consider $\{f_n\} \subset E$ satisfying that $f_n \downarrow 0$. Since φ is positive, there exists $g \in (E^{\times})^+$ such that

$$\varphi(f) = \int_{\Omega} gf d\mu, \quad \forall \ f \in E.$$

Then $\{gf_n\} \subset L^1(\mu)$ is a decreasing sequence such that $0 \leq gf_n$. Since the space $L^1(\mu)$ is Dedekind σ -complete, there exists $0 \leq h = \inf_n gf_n$. Let $A := \operatorname{supp} g$. It is clear that $h\chi_{\Omega\setminus A} = 0$. Taking $\frac{0}{0} := 0$, we have that

$$\frac{h\chi_A}{g} \le f_n\chi_A \le f_n, \quad \forall \ n \in \mathbb{N}.$$

It follows that $\frac{h\chi_A}{g} \in E$ and from $f_n \downarrow 0$ we have that $\frac{h\chi_A}{g} \leq 0$. Hence $h\chi_A = 0$ and then $gf_n \downarrow 0$. Therefore $\varphi(f_n) = \int_{\Omega} gf_n d\mu \downarrow 0$. So φ is σ -order continuous.

The other affirmation follows from the above lemma.

4 Locally σ -finite measure defined on a δ -ring

Let us assume now that the σ -algebra Σ that we have been considering is given as $\Sigma = \mathcal{R}^{loc}$, where \mathcal{R} is a δ -ring and $\mu = |\lambda|$, where $\lambda : \mathcal{R} \to [0, \infty]$ is a measure on \mathcal{R} . Noting that for any $A \in \mathcal{R}^{loc}$ with $|\lambda|(A) > 0$ we can find $B \in \mathcal{R}_A$ with $\lambda(B) > 0$, next we give a simple sufficient condition for E to be saturated.

Lemma 4.1 Let *E* be a $|\lambda|$ -*B*.f.s. If $S(\mathcal{R}) \subset E$, then *E* is saturated.

Remark 4.2 When $S(\mathcal{R}) \subset E$, the space *E* is a B.f.s. with respect to $(\Omega, \mathcal{R}, \lambda)$ in the sense introduced by Delgado in [9, Def. 3.1]. Thus these class of spaces are always saturated.

Let $\nu : \mathcal{R} \to X$ be a vector measure having $\lambda : \mathcal{R} \to [0, \infty]$ as a local control measure. For $1 \le p < \infty$, the spaces $L_w^p(\nu)$ and $L^p(\nu)$ are defined by

$$L_w^p(v) := \left\{ f \in L^0(v) : |f|^p \in L_w^1(v) \right\} \text{ and } L^p(v) := \left\{ f \in L^0(v) : |f|^p \in L^1(v) \right\}$$

Each function in $L_w^p(v)$ is called *weakly p-integrable* with respect to v and each function in $L^p(v)$ is called *p-integrable* with respect to v. Note that $L^p(v) \subset L_w^p(v)$. Moreover, $L_w^p(v)$ and $L^p(v)$ are $|\lambda|$ -B.f.s. with norm

$$\|f\|_{p,\nu} := \||f|^p\|_{\nu}^{\frac{1}{p}} = \sup_{x^* \in B_{X^*}} \left(\int_{\Omega} |f|^p d|\langle \nu, x^* \rangle| \right)^{\frac{1}{p}}, \quad \forall \ f \in L^p_w(\nu).$$

Also $S(\mathcal{R})$ is a dense subspace of $L^p(\nu)$, the space $L^p(\nu)$ is σ -order continuous and $L^p_w(\nu)$ has the σ -Fatou property [17, p. 37].

From the above lemma and Theorem 3.5 we obtain:

Proposition 4.3 Let $1 \le p < \infty$. Then $L^p(v)$ is saturated. Thus, $L^p(v)^{\times}$, with norm $\|\cdot\|_{v^{\times}} := \|\cdot\|_{L^p(v)^{\times}}$, is a $|\lambda|$ -B.f.s. with the σ -Fatou property. If in addition the measure λ is σ -finite, then $L^p(v)^{\times}$ has the Fatou property.

Remark 4.4 Since $L^{1}(v)$ is always saturated with respect to any local control measure for v, by Lemma 3.1 we have that $L^{1}(v)$ is order dense in $L^{0}(|\lambda|)$. Using other methods, this result was established by Calabuig et al. [4, 4.2].

Example 4.5 Given a vector measure ν , let us consider its variation $|\nu|$ as a local control measure. Then $L^1(\nu)^{\times}$ is a $|\nu|$ -B.f.s. with the σ -Fatou property. It may happen that the range of $|\nu|$ is $\{0, \infty\}$. For instance, if Σ is the Lebesgue σ -algebra on [0, 1], then the function $\nu : \Sigma \to L^2([0, 1])$ defined by $\nu(A) := \chi_A$ is a vector measure whose range is $\{0, \infty\}$ [5, p. 57]. In this case $L^1(|\nu|) = \{0\}$ and so $L^1(\nu)^{\times} = \{g \in L^0(|\nu|) : gf = 0, \forall f \in L^1(\nu)\} = \{0\}$. Thus clearly the space $L^1(\nu)^{\times}$ is not saturated. Then in this situation the study of the associate space will not give interesting information.

As we have just seen, when the measure involved is not σ -finite the associate space is not necessarily saturated. This motivates to look for a class of measures for which this problem does not occur. In this direction, let us recall the following definition, introduced by Brooks and Dinculeanu [3, p. 162]. **Definition 4.6** A measure $\lambda : \mathcal{R} \to [0, \infty]$ is *locally* σ *-finite*, if for each $B \in \mathcal{R}$, there exists $\{B_n\}_{n \in \mathbb{N}} \subset \mathcal{R}$ such that $B = \bigcup_{n=1}^{\infty} B_n$ and $\lambda(B_n) < \infty, \forall n \in \mathbb{N}$.

Clearly any positive σ -finite measure on a σ -algebra is locally σ -finite.

Example 4.7 Let us consider an uncountable set Γ . Let $\mathcal{R} := \{B \subset \Gamma : B \text{ is finite}\}$ and $\lambda : \mathcal{R} \to [0, \infty]$ be the counting measure. Then \mathcal{R} is a δ -ring and λ is a locally σ -finite measure which is not σ -finite.

Remark 4.8 Consider a locally σ -finite measure $\lambda : \mathcal{R} \to [0, \infty]$ and a $|\lambda|$ -B.f.s. *E*. Let us take $A \in \mathcal{R}^{loc}$ and assume that

$$A := \bigcup_{n=1}^{\infty} B_n \cup N \text{ with } \{B_n\} \subset \mathcal{R}, \ \lambda(B_n) < \infty, \quad \forall n \in \mathbb{N} \text{ and } N \in \mathcal{N}_0(|\lambda|).$$
(4.1)

Hence $(A, (\mathcal{R}_A)^{loc}, |\lambda_A|)$ is a σ -finite measure space, where $(\mathcal{R}_A)^{loc}$ is the σ algebra related to \mathcal{R}_A and λ_A is the restriction of λ to \mathcal{R}_A . It follows that the space E_A defined in (3.2), with norm $\|\cdot\|_A$, is a saturated $|\lambda_A|$ -B.f.s. As in this case $|\lambda_A|$ is σ -finite, we have that E_A^{\times} , with norm $\|\cdot\|_{E_A^{\times}}$, is a saturated $|\lambda_A|$ -B.f.s.

Note that if $B \in \mathcal{R}$, then *B* has the form (4.1) and in this case $\mathcal{R}_B = (\mathcal{R}_B)^{loc}$. Hence $(B, \mathcal{R}_B, \lambda_B)$ is a σ -finite measure space.

We now show that the problem of having nonsaturated associate spaces does not appear when we work with a locally σ -finite measure.

Theorem 4.9 Let *E* be a saturated $|\lambda|$ -*B.f.s.* If the measure λ is locally σ -finite, then E^{\times} is a saturated $|\lambda|$ -*B.f.s.*

Proof Let $A \in \mathcal{R}^{loc}$ be such that $|\lambda|(A) > 0$ and consider $B \in \mathcal{R}_A$ satisfying $\lambda(B) > 0$. Since E_B , defined in (3.2), is a saturated λ_B -B.f.s. and $\lambda_B(B) > 0$ there exists $C \in \mathcal{R}_B$ with $0 < \lambda_B(C) = \lambda(C)$ and $\chi_C \in E_B^{\times}$. Now take $f \in E$. Then $f_B \in E_B$ and $\int_{\Omega} |f| \chi_C d|\lambda| = \int_B |f_B| \chi_C d|\lambda_B| < \infty$. Hence $\chi_C \in E^{\times}$.

Hereafter, to the condition that *E* be a saturated $|\lambda|$ -B.f.s. we will add that of $\lambda : \mathcal{R} \to [0, \infty]$ being always a locally σ -finite measure and sometimes we will omit it explicitly. In the σ -finite case it is well known that $E \equiv E^{\times \times}$ when *E* has the σ -Fatou property. By using this fact we will establish the corresponding result in the more general context we are discussing.

Theorem 4.10 If *E* has the Fatou property, then $E \equiv E^{\times \times}$.

Proof As we have that $E \subset E^{\times\times}$ and $||f||_{E^{\times\times}} \leq ||f||_E$, $\forall f \in E$, it only rests to prove the another contention and the other norm inequality. For this, it is enough to establish the conclusion only for non-negative functions.

Let $0 \le f \in E^{\times\times}$. Fix $B \in \mathcal{R}$. Since *E* has the Fatou property we have that E_B is also a λ_B -B.f.s. with the Fatou property. Moreover, as established in Remark 4.8, λ_B is a σ -finite measure. Then we obtain $E_B \equiv E_B^{\times\times}$ [28, Ch. 15, §71, Thm. 1]. Denote

by f_B the restriction of f to B. Hence $f_B \in E_B$ and $||f_B||_B = ||f_B||_{E_B^{\times \times}}$. Noting that $(f_B)^{\Omega} = f\chi_B$, we have $f\chi_B \in E$ and $||f\chi_B||_E = ||f\chi_B||_{E^{\times \times}}$.

On the other hand, as \mathcal{R} is a directed set with the order given by $B \leq C$ if, $B \subset C$, $\forall B, C \in \mathcal{R}$, we can consider the net $\{f\chi_B\}_{B\in\mathcal{R}} \subset E$. Then $\{f\chi_B\}_{B\in\mathcal{R}}$ is an upwards directed system and $\|f\chi_B\|_E = \|f\chi_B\|_{E^{\times\times}} \leq \|f\|_{E^{\times\times}}, \forall B \in \mathcal{R}$. Since *E* has the Fatou property, there exists $h \in E \subset E^{\times\times}$ with $h = \sup_{B\in\mathcal{R}} f\chi_B$ and

$$\|h\|_{E} = \sup_{B \in \mathcal{R}} \|f\chi_{B}\|_{E} = \sup_{B \in \mathcal{R}} \|f\chi_{B}\|_{E^{\times \times}} \le \|f\|_{E^{\times \times}}.$$
(4.2)

Assume that there exists $A \in \mathbb{R}^{loc}$ such that $h\chi_A < f\chi_A$ and $|\lambda|(A) > 0$. Then for some $B \in \mathbb{R}_A$ with positive measure we have that $h\chi_B < f\chi_B$, which is a contradiction and it follows that $f \in E$. Moreover, as $f\chi_B \leq f, \forall B \in \mathbb{R}$ we have that $h \leq f, \lambda$ -a.e. Therefore $h = f, |\lambda|$ -a.e. The remaining inequality between the norms follows from (4.2).

It is well known that if μ is a σ -finite measure and E is a μ -B.f.s., then we can write $L^1(\mu) = \{fg : f \in E, g \in E^{\times}\}$. Next we will show that this result remains valid when we consider a locally σ -finite measure.

Proposition 4.11 Let λ be a locally σ -finite measure and E be a saturated $|\lambda|$ -B.f.s. If $h \in L^1(\lambda)$:

(i) then for each $\varepsilon > 0$ there exist $f \in E$ and $g \in E^{\times}$ such that

$$h = fg \quad and \quad \|f\|_E \|g\|_{E^{\times}} \le (1+\varepsilon) \int_{\Omega} |h| d|\lambda|.$$

(ii) if in addition *E* has the σ -Fatou property, then there exist $f \in E$ and $g \in E^{\times}$ such that

$$h = fg$$
 and $||f||_E ||g||_{E^{\times}} = \int_{\Omega} |h|d|\lambda|.$

Proof If h = 0, the conclusion is clear. Assume that $h \neq 0$. Since $h \in L^1(\lambda)$, we have that $A := \text{supp}h = \bigcup_{n=1}^{\infty} B_n \cup N$, where $\{B_n\} \subset \mathcal{R}$ and $N \in \mathcal{N}_0(\lambda)$. As λ is a locally σ -finite measure we can assume that $\lambda(B_n) < \infty$, $\forall n \in \mathbb{N}$. Then λ_A is σ -finite and $h_A \in L^1(\lambda_A)$.

(i) Given $\varepsilon > 0$, [15, Thm. 1, (ii)] there exist $\tilde{f} \in E_A$ and $\tilde{g} \in E_A^{\times}$ such that

$$h_A = \tilde{f}\tilde{g} \text{ and } \|\tilde{f}\|_{E_A} \|\tilde{g}\|_{E_A^{\times}} \le (1+\varepsilon) \int_A |h_A| d|\lambda_A|$$

(ii) Since *E* has the σ -Fatou property it follows that E_A also has it. From [15, Thm. 1i)] we get $\tilde{f} \in E_A$ and $\tilde{g} \in E_A^{\times}$ such that

$$h_A = \tilde{f}\tilde{g}$$
 and $\|\tilde{f}\|_{E_A} \|\tilde{g}\|_{E_A^{\times}} = \int_A |h_A| d|\lambda_A|.$

As $h = h_A \chi_A$, by taking $f := \tilde{f}^{\Omega} \in E$ and $g := \tilde{g}^{\Omega} \in E^{\times}$, the conclusion follows.

In the σ -finite case we know that $E^{\times} = E^*$ if, and only if, E is σ -order continuous [28, Ch. 15, §72, Thm. 5]. We proved in Proposition 3.8 that if $E^{\times} = E^*$, then E is σ -order continuous and E^{\times} has the Fatou property. Now we will show that the converse also is valid in our context. For this let us recall that an ideal Y of a Banach lattice X is a *band* whenever, for every subset D of Y possessing a supremum in X, this supremum is already in Y.

Theorem 4.12 If *E* is σ -order continuous, then the following properties are equivalent:

- (i) $E^{\times} = E^*$.
- (ii) E^{\times} is a band of E^* .

(iii) E^{\times} has the Fatou property.

(iv) E^{\times} has the weak Fatou property.

Proof The implications (i) \Rightarrow (ii) and (iii) \Rightarrow (iv) are clear. (ii) \Rightarrow (iii) Let $\{g_{\tau}\} \subset E^{\times}$ be an upwards directed system such that $\sup_{\tau} \|g_{\tau}\|_{E^{\times}} < \infty$. Let us take $\varphi_{\tau} := R(g_{\tau})$. Then $\{\varphi_{\tau}\} \subset E^{*}$ is an upwards directed system such that $\sup_{\tau} \|\varphi_{\tau}\| < \infty$. From Lemma 3.7 we have that E^{*} has the Fatou property. Thus there exists $\varphi \in E^{*}$ such that $\varphi_{\tau} \uparrow \varphi$ and $\|\varphi\| = \sup_{\tau} \|\varphi_{\tau}\|$. Now since $\{\varphi_{\tau}\} \subset R(E^{\times})$ and $R(E^{\times})$ is a band of E^{*} we have that $\varphi \in R(E^{\times})$. Let $g \in E^{\times}$ be such that $\varphi = R(g)$. Since R is an order isometry $g_{\tau} \uparrow g$ and $\|g\|_{E^{\times}} = \sup_{\tau} \|g_{\tau}\|_{E^{\times}}$.

(iv) \Rightarrow (i) Now let us assume that E^{\times} has the weak Fatou property. First note that since E^* is a Banach lattice and R is a linear operator it is enough to represent only the positive functionals. Take $0 \le \varphi \in E^*$. Consider the δ -ring $\mathcal{R}(E) := \{B \in \mathcal{R} : \chi_B \in E\}$ and define $m : \mathcal{R}(E) \rightarrow [0, \infty)$ by $m(B) := \varphi(\chi_B), \forall B \in \mathcal{R}(E)$. Since E is σ -order continuous and φ is a positive linear functional we have that m is a positive measure.

Fix $B \in \mathcal{R}(E)$. Then $\mathcal{R}_B = \mathcal{R}(E)_B$. Let us denote by m_B the restriction of m to \mathcal{R}_B . Then m_B is bounded. On the other hand as λ is a locally σ -finite measure, its restriction λ_B to \mathcal{R}_B is a positive σ -finite measure.

Now let $A \in \mathcal{R}_B$ with $\lambda_B(A) = |\lambda|(A) = 0$, then $\chi_A = 0$, λ -a.e. Hence $m_B(A) = 0$. By the Radon–Nikodym Theorem [26, p. 121] there exists a unique $h_B \in L^0(\mathcal{R}_B)$ such that

$$\varphi(\chi_A) = m_B(A) = \int_A h_B d\lambda_B = \int_B h_B \chi_A d\lambda_B, \quad \forall A \in \mathcal{R}_B.$$

Using a standard procedure it follows now that

$$\varphi(f) = \int_{B} h_B f d\lambda_B, \quad \forall f \in E_B.$$
(4.3)

Let us denote by H_B the canonical extension of h_B , then $H_B \in E^{\times}$, $\varphi_B(f) := \varphi(f\chi_B) = \int_{\Omega} f H_B d|\lambda|, \forall f \in E$ and, by the uniqueness of h_B it turns out that $H_B\chi_C = H_{B\cap C}, \forall C \in \mathcal{R}$. Noting that $\varphi_B \leq \varphi$ we have that

$$\|H_B\|_{E^{\times}} = \|\varphi_B\| \le \|\varphi\| < \infty.$$

This shows that $\sup_{B \in \mathcal{R}(E)} ||H_B||_{E^{\times}} < \infty$. It turns out that $\{H_B\}_{B \in \mathcal{R}(E)} \subset E^{\times}$ is an upwards directed system. Now since E^{\times} has the weak Fatou property, there exists $h = \sup_{B \in \mathcal{R}(E)} H_B \in E^{\times}$.

Let $f \in E^+$. To prove that $\varphi(f) = \int_{\Omega} f h d|\lambda|$ first we will show that $H_B = h\chi_B$, $\forall B \in \mathcal{R}(E)$. Fix $B \in \mathcal{R}(E)$. It is clear that $H_B \leq h\chi_B$. Let us assume that $H_B < h\chi_B$, so we can take $C \in \mathcal{R}_B$ with positive measure such that $H_B(t) < h\chi_B(f)$, $\forall t \in C$. Define $k = h\chi_{\Omega\setminus C} + H_B\chi_C$. Now let $D \in \mathcal{R}(E)$, then

$$H_D = H_D \chi_{\Omega \setminus C} + H_{D \cap C} \le h \chi_{\Omega \setminus C} + H_B \chi_C = k,$$

that is, k is an upper bound of $\{H_B\}_{B \in \mathcal{R}(E)}$ which contradicts that h is the supremum. We conclude that $H_B = h\chi_B$.

Since $fh \in L^1(|\lambda|)$, it follows that $A := \operatorname{supp} fh = \bigcup_{n=1}^{\infty} B_n \cup N$ where $\{B_n\}$ is a disjoint family of subsets of \mathcal{R} and N is a $|\lambda|$ -null set. Observe that since λ_B is σ -finite and E_B is saturated, $\forall B \in \mathcal{R}$, by [28, Ch. 15, §67, Thm. 4] we can take $B_n \in \mathcal{R}(E)$. Since E is order continuous, it follows that $f\chi_A = \sum_{n=1}^{\infty} f\chi_{B_n}$ in E. Assume that $\varphi(f\chi_{\Omega\setminus A}) > 0$. Then $f\chi_{\Omega\setminus A} > 0$, so we can choose $B \in \mathcal{R}(E)_{\Omega\setminus A}$ such that $|\lambda|(B) > 0$ and $f\chi_B > 0$. Take its corresponding $H_B \in E^{\times}$. So, $0 < \varphi(f\chi_B) = \int_{\Omega} fH_B d|\lambda| = \int_{\Omega} fh\chi_B d|\lambda|$, but $B \subset \Omega \setminus \operatorname{supp} fh$, thus $\int_{\Omega} fh\chi_B d|\lambda| = 0$, which is a contradiction. Therefore $\varphi(f\chi_{\Omega\setminus A}) = 0$ and so

$$\varphi(f) = \sum_{n=1}^{\infty} \varphi(f\chi_{B_n}) = \sum_{n=1}^{\infty} \int_{\Omega} fH_B d|\lambda|$$
$$= \sum_{n=1}^{\infty} \int_{\Omega} fh\chi_B d|\lambda| = \int_{\Omega} \sum_{n=1}^{\infty} f\chi_B h d|\lambda| = \int_{\Omega} fh d|\lambda|.$$

This show that $\varphi = \varphi_h \in R(L^1(\nu)^{\times})$ and hence the conclusion follows.

Although the above theorem characterizes when $E^{\times} = E^*$, up to now we do not know if E^{\times} always has the Fatou property. Next we present a situation where this holds. The proof follows from Theorem 4.12 and Proposition 3.3.

Corollary 4.13 Let $\lambda : \mathcal{R} \to [0, \infty]$ a locally σ -finite measure and E be a saturated λ -B.f.s. If E and E^{\times} are σ -order continuous, then $E^{\times} = E^*$.

Using Theorem 4.12 we can give a characterization of reflexivity as follows.

Theorem 4.14 Let λ be a locally σ -finite measure and E a saturated λ -B.f.s. If E is order continuous then the space E is reflexive if, and only if, $E = E^{\times \times}$ and E^{\times} is σ -order continuous.

Proof Let us denote by $R_1 : E^{\times} \to E^*$ and $R_2 : E^{\times \times} \to E^{\times *}$ the corresponding canonical isometries. Then for the adjoint operator of R_1 we have $R_1^* : E^{**} \to E^{\times *}$. First assume that E^{\times} is σ -order continuous and $E = E^{\times \times}$. Then by Corollary 4.13

 R_1 is onto and by hypothesis $E^{\times\times} = E$. So $E^{\times\times}$ is σ -order continuous and has the σ -Fatou property. It follows that $E^{\times\times}$ has the Fatou property and so we can apply Theorem 4.12 to obtain that R_2 is onto. Let us see that $R_1^* j = R_2$ where $j : E \to E^{**}$ is the canonical injection. Take $f \in E$ and $g \in E^{\times}$, then

$$\langle g, R_1^*j(f) \rangle = \langle R_1(g), j(f) \rangle = \langle f, R_1(g) \rangle = \int_{\Omega} fg d|\lambda| = \langle g, R_2(f) \rangle.$$

Therefore j is onto, that is, E is reflexive.

Now assume that *E* is reflexive. To establish that $E = E^{\times\times}$ it only rests to prove that $E^{\times\times} \subset E$. Take $h \in E^{\times\times}$. Since R_1 is an injective linear operator with closed range, it follows that R_1^* is onto [11, Thm. VI.6.2]. Hence there exists $\varphi \in E^{**}$ such that $R_1^*(\varphi) = R_2(h)$. Let $f \in E$ satisfy $j(f) = \varphi$. Thus for $g \in E^{\times}$ we have

$$\langle g, R_1^*(\varphi) \rangle = \langle R_1(g), \varphi \rangle = \langle R_1(g), j(f) \rangle = \langle f, R_1(g) \rangle = \int_{\Omega} fgd|\lambda|.$$

Hence, $\int_{\Omega} fgd|\lambda| = \langle g, R_2(h) \rangle = \int_{\Omega} hgd|\lambda|$. Then h = f, $|\lambda|$ -c.t.p. and $h \in E$.

We will now prove that R_2 is onto, then by Proposition 3.8 we will obtain that E^{\times} is order continuous. Consider $\varphi \in L^1(\nu)^{**}$, then $\varphi \circ R_1^{-1} : R_1(E^{\times}) \to \mathbb{K}$ is linear and bounded. By the Hahn–Banach Theorem there exists $\tilde{\varphi} \in E^{**}$ such that $\langle \psi, \tilde{\varphi} \rangle = \langle \psi, \varphi \circ R_1^{-1} \rangle$, $\forall \varphi \in R_1(E^{\times})$. Let $f \in E = E^{\times \times}$ be satisfy $j(f) = \tilde{\varphi}$. Then for each $g \in E^{\times}$ we have

$$\begin{aligned} \langle g, R_2(f) \rangle &= \int_{\Omega} fg d|\lambda| = \langle f, R_1(g) \rangle = \langle R_1(g), j(f) \rangle \\ &= \langle R_1(g), \widetilde{\varphi} \rangle = \left\langle R_1(g), \varphi \circ R_1^{-1} \right\rangle = \langle g, \varphi \rangle \end{aligned}$$

It follows that $\varphi = R_2(f)$ and we conclude that R_2 is onto.

Proposition 4.15 Let λ be a locally σ -finite measure and E a saturated $|\lambda|$ -B.f.s. If E^{\times} has the weak Fatou property, then E^{\times} is a band of E^* .

Proof To prove that $R(E^{\times})$ is an ideal of E^* we can proceed as in implication (iv) \Rightarrow (i) of Theorem 4.12 only observing that if $0 \le \varphi \le \varphi_g \in R(E^{\times})$, then the set function $m_{\varphi} : \mathcal{R}(E) \rightarrow [0, \infty)$, defined by $m_{\varphi}(B) = \varphi(\chi_B)$ is a positive measure. Now let $A \subset E^{\times}$ be a non empty set such that there exists $\varphi := \sup_{g \in A} \varphi_g \in E^*$. We have to prove that $\varphi \in R(E^{\times})$.

Let us note that $\mathcal{F} := \{F \subset A : F \text{ is finite}\}\$ is a directed set with the order given by $F_1 \leq F_2$ if $F_1 \subset F_2$. For each $F \in \mathcal{F}$ define $\varphi_F := \max_{g \in F} \varphi_g$. Let us fix $F_0 \in \mathcal{F}$ and take $\mathcal{F}_0 := \{F \in \mathcal{F} : F_0 \subset F\}$. It turns out that $\sup_{F \in \mathcal{F}_0} \varphi_F = \varphi$. Then $0 \leq \varphi_F - \varphi_{F_0} \leq \varphi - \varphi_{F_0}, \forall F \in \mathcal{F}_0$. Thus $\{\varphi_F - \varphi_{F_0}\}_{\mathcal{F}_0}$ is an upwards directed system such that $\sup_{F \in \mathcal{F}_0} \|\varphi_F - \varphi_{F_0}\| < \infty$. Since $\{\varphi_F - \varphi_{F_0}\}_{\mathcal{F}_0} \subset R(E^{\times})$ and Ris an order isometry we obtain an upwards directed system $\{g_F\}_{\mathcal{F}_0} \subset E^{\times +}$ with $\sup_{F \in \mathcal{F}_0} \|g_F\|_{E^{\times}} < \infty$. By the weak Fatou property in E^{\times} , there exists $g \in E^{\times}$ such

that $g_F \uparrow g$. Using again that *R* is an order isometry we have that $\varphi_F - \varphi_{F_0} \uparrow \varphi_g$. Since $\sup_{F \in \mathcal{F}_0} \varphi_F = \varphi$ we have that $\varphi - \varphi_{F_0} = \varphi_g$. Therefore $\varphi \in R(E^{\times})$.

The following result was established in [29, p. 418]. We obtain it as consequence of the above proposition and Theorem 3.5.

Corollary 4.16 Let *E* be a saturated $|\lambda|$ -*B.f.s.* If $|\lambda|$ is σ -finite, then E^{\times} is a band of E^* .

5 Brooks–Dinculeanu measure

Let $\nu : \mathcal{R} \to X$ be a vector measure defined on a δ -ring. Since we are interested in providing a representation of the dual space of $L^1(\nu)$ as its associate space, it is important to know if ν has a local control measure which is locally σ -finite. Then, by Theorem 4.9, the associate space of $L^1(\nu)$, with respect to this local control measure, will be saturated. Let us distinguish this kind of measures.

Definition 5.1 A measure $\lambda : \mathcal{R} \to [0, \infty]$ is a *Brooks–Dinculeanu measure for* ν , if λ is a local control measure for ν which is locally σ -finite.

- *Example 5.2* 1. Let $\nu : \Sigma \to X$ be a vector measure defined on a σ -algebra. If $\mu : \Sigma \to [0, \infty)$ is a Rybakov control measure for ν , then μ is a Brooks–Dinculeanu measure for ν .
- Let ν : R → X be a σ-finite vector measure. Then ν has a bounded local control measure λ : R → [0, ∞) [8, Thm. 3.3]. Hence, λ is a Brooks–Dinculeanu for ν.

Fortunately, it turns out that each vector measure defined in a δ -ring has a Brooks– Dinculeanu measure. This result was established by Jiménez Fernández et al. in [16, p. 3]. Given its importance, we will state it below.

Theorem 5.3 If $v : \mathcal{R} \to X$ is a vector measure, then v has a Brooks–Dinculeanu measure.

Let us define

$$\widehat{\mathcal{R}} := \{ B \in \mathcal{R} : \lambda(B) < \infty \}.$$

It is clear that $\widehat{\mathcal{R}}$ is a δ -ring satisfying that $\widehat{\mathcal{R}} \subset \mathcal{R}$. Moreover, it turns out that $\mathcal{R}^{loc} = \widehat{\mathcal{R}}^{loc}$. Now let us show that

$$|\langle \nu, x^* \rangle| = |\langle \widehat{\nu}, x^* \rangle|, \quad \forall \, x^* \in X^*, \tag{5.1}$$

where $\hat{\nu}$ is the restriction of ν to $\hat{\mathcal{R}}$. By definition we obtain that $|\langle \hat{\nu}, x^* \rangle| \leq |\langle \nu, x^* \rangle|$. To establish the other inequality let us fix $x^* \in X^*$ and consider $A \in \mathcal{R}^{loc}$. Take $B \in \mathcal{R}_A$. Since λ is locally σ -finite, there exists an increasing sequence, $\{B_n\} \subset \hat{\mathcal{R}}$ such that $B = \bigcup_{n=1}^{\infty} B_n$. So,

$$\begin{split} |\langle \nu, x^* \rangle|(B) &= \sup_n |\langle \nu, x^* \rangle|(B_n) = \sup_n |\langle \widehat{\nu}, x^* \rangle|(B_n) \\ &\leq \sup_{C \in \widehat{\mathcal{R}}_A} |\langle \widehat{\nu}, x^* \rangle|(C) = |\langle \widehat{\nu}, x^* \rangle|(A). \end{split}$$

It follows that $|\langle v, x^* \rangle|(A) \le |\langle \hat{v}, x^* \rangle|(A)$. Hence we have established (5.1). From (5.1) we have that

$$\|f\|_{\nu} = \|f\|_{\widehat{\nu}}, \quad \forall \ f \in L^{0}(\mathcal{R}^{loc}).$$
(5.2)

Thus $L_w^1(v) \equiv L_w^1(\widehat{v})$. Since (5.2) is valid, from the density of $S(\mathcal{R})$ in $L^1(v)$ and of $S(\widehat{\mathcal{R}})$ in $L^1(\widehat{v})$, to prove that $L^1(v) \equiv L^1(\widehat{v})$, it is sufficient to check that $S(\mathcal{R}) \subset L^1(\widehat{v})$ and that $S(\widehat{\mathcal{R}}) \subset L^1(v)$. Noting that $\widehat{\mathcal{R}} \subset \mathcal{R}$ the second contention is clear. Now consider $B \in \mathcal{R}$ and take $\{B_n\} \subset \widehat{\mathcal{R}}$ satisfying that $B_n \subset B_{n+1}$ and $B = \bigcup_{n=1}^{\infty} B_n$. Then $\chi_{B_n} \to \chi_B$, moreover

$$\int_{A} \chi_{B_n} d\widehat{\nu} = \widehat{\nu}(B_n \cap A) = \nu(B_n \cap A) = \int_{A} \chi_{B_n} d\nu \to \int_{A} \chi_B d\nu, \quad \forall A \in \mathcal{R}^{loc}.$$

From [8, Prop. 2.3] we have that $\chi_B \in L^1(\widehat{\nu})$. It follows that $S(\mathcal{R}) \subset L^1(\widehat{\nu})$ and $I_{\nu}(s) = I_{\widehat{\nu}}(s), \forall s \in S(\mathcal{R})$. By the continuity of the integration operators we have $I_{\nu} = I_{\widehat{\nu}}$. Therefore, we have proven the following result and so, whenever we find it convenient we can work on the δ -ring $\widehat{\mathcal{R}}$ instead of \mathcal{R} .

Lemma 5.4 If $\lambda : \mathcal{R} \to [0, \infty]$ is a Brooks–Dinculeanu measure for a given vector measure v, then

(i) for each $x^* \in X^*$ we have that $|\langle v, x^* \rangle| = |\langle \widehat{v}, x^* \rangle|$, (ii) $L^1_w(v) \equiv L^1_w(\widehat{v}), L^1(v) \equiv L^1(\widehat{v})$ and $\int_{\Omega} f dv = \int_{\Omega} f d\widehat{v}, \forall f \in L^1(v)$.

Curbera and Ricker established that $L^p(v)^{\times\times} \equiv L^p_w(v)$ when a vector measure defined on a σ -algebra and a Rybakov control measure are considered [7, Prop. 2]. We will show that this equality remains true if we consider instead a vector measure defined on a δ -ring and a Brooks–Dinculeanu measure. Before it is necessary to establish a useful characterization for the functions in $L^1_w(v)$.

Lemma 5.5 Let $f \in L^0(\mathcal{R}^{loc})$. Then $f \in L^1_w(v)$ if and only if for each $B \in \mathcal{R}$, $f\chi_B \in L^1_w(v)$ and $\sup_{B \in \mathcal{R}} ||f\chi_B||_v < \infty$. In this case $||f||_v = \sup_{B \in \mathcal{R}} ||f\chi_B||_v$.

Proof First let us assume that $f \in L^1_w(v)$. Since $L^1_w(v)$ is a Banach lattice we have that $f\chi_B \in L^1_w(v)$ and $||f\chi_B||_v \le ||f||_v, \forall B \in \mathcal{R}$. Then, $\sup_{B \in \mathcal{R}} ||f\chi_B||_v \le ||f||_v < \infty$. Now assume that $f\chi_B \in L^1_w(v), \forall B \in \mathcal{R}$ and $M := \sup_{B \in \mathcal{R}} ||f\chi_B||_v < \infty$. Let

 $x^* \in B_{X^*}$, then

$$\sup_{B\in\mathcal{R}}\int_B|f|d|\langle x^*,\nu\rangle|\leq M.$$

From Proposition 2.1 we obtain that $f \in L^1(|\langle x^*, \nu \rangle|), \forall x^* \in B_{X^*}$. Thus $f \in L^1_w(\nu)$ and $||f||_{\nu} \leq M$.

Although most of the time we will not state it explicitly, in what follows $\lambda : \mathcal{R} \to [0, \infty]$ will be a Brooks–Dinculeanu measure for a given vector measure ν and we will consider $L_w^p(\nu)$ and $L^p(\nu)$ as Banach function spaces with respect to $|\lambda|$.

Theorem 5.6 Let $1 \le p < \infty$. Then $L^p(v)^{\times \times} \equiv L^p_w(v)$.

Proof First we prove that $L_w^p(v) \subset L^p(v)^{\times \times}$ and $||f||_{p,v^{\times \times}} \leq ||f||_{p,v}, \forall f \in L_w^p(v)$. Let $\varphi \in S(\mathcal{R}^{loc})$ be such that $\varphi \in L_w^p(v)$ and $B \in \widehat{\mathcal{R}}$. Then $\varphi \chi_B \in S(\mathcal{R}) \subset L^p(v)$. By the Hölder inequality, for each $g \in L^p(v)^{\times}$

$$\int_{B} |g\varphi| d|\lambda| \le ||g||_{p,\nu^{\times}} ||\varphi\chi_{B}||_{p,\nu} \le ||g||_{p,\nu^{\times}} ||\varphi||_{p,\nu}$$

From Proposition 2.1 we have

$$\int_{\Omega} |g\varphi| d|\lambda| = \sup_{B \in \widehat{\mathcal{R}}} \int_{B} |g\varphi| d|\lambda| \le ||g||_{p,\nu^{\times}} ||\varphi||_{p,\nu}$$

It follows that $\varphi \in L^p(\nu)^{\times \times}$ and

$$\|\varphi\|_{p,\nu^{\times\times}} \le \|\varphi\|_{p,\nu}.$$
(5.3)

Now consider $f \in L^p_w(v)$ and take $\{\varphi_n\} \subset S(\mathcal{R}^{loc})$ with $0 \leq \varphi_n \uparrow |f|$. Then, $\{\varphi_n\} \subset L^p_w(v)$. By (5.3), $\|\varphi_n\|_{p,v^{\times \times}} \leq \|\varphi_n\|_{p,v} \leq \|f\|_{p,v}, \forall n \in \mathbb{N}$. Since $L^p(v)^{\times \times}$ has the σ -Fatou property it turns out that $f \in L^p(v)^{\times \times}$ and $\|f\|_{p,v^{\times \times}} \leq \|f\|_{p,v}$.

For the other contention let us fix $B \in \mathcal{R}$ and let v_B be the restriction of v to the σ -algebra \mathcal{R}_B . As $L^1(v_B) \equiv L^1(v)_B$, it follows that $L^p(v_B) \equiv L^p(v)_B$. Hence we obtain that $L^p(v_B)^{\times \times} \equiv L^p_w(v_B)$ [7, Prop. 2].

Take $f \in L^p(v)^{\times \times}$ and let us denote by f_B its restriction to B, then $f_B \in L^p_w(v_B)$ and $||f_B||_{p,v_B} = ||f_B||_{p,v_B^{\times \times}} \le ||f||_{p,v^{\times \times}}$. And so, for each $x^* \in B_{X^*}$

$$\int_{B} |f|^{p} d|\langle v, x^{*} \rangle| \leq ||f||_{p, v^{\times \times +}}^{p}$$

From the above proposition we have $|f|^p \in L^1_w(\nu)$ and $||f|^p||_{\nu} \le ||f||^p_{p,\nu^{\times\times}}$. Hence $f \in L^p_w(\nu)$ and $||f||_{p,\nu} \le ||f||_{p,\nu^{\times\times}}$.

The following result was established in [4, p. 77] by other methods, we obtain it as consequence of the above proposition and Corollary 3.6.

Corollary 5.7 Let $1 \le p < \infty$. If $v : \mathcal{R} \to X$ is a σ -finite vector measure, then $L^p_w(v)$ has the Fatou property.

From Theorem 5.6 and Proposition 3.3 we obtain:

Corollary 5.8 If $L_w^p(v) \subset L^1(\lambda)$, $1 \le p < \infty$, then $L_w^p(v)$ has the Fatou property.

The sufficiency in the next result was proven in [4, Prop. 5.4]. Since $L^{1}(v)$ is σ -order continuous we obtain it from Theorems 4.10 and 5.6.

Corollary 5.9 $L^{1}(v)$ has the Fatou property if, and only if, $L^{1}(v) = L^{1}_{w}(v)$.

As in the σ -finite case, we have the next result.

Lemma 5.10 If E and F are μ -B.f.s such that $E \subset F$ and there exists a > 0 with $||f||_F \le a ||f||_E$, $\forall f \in E$, then $F^{\times} \subset E^{\times}$ and

$$\|g\|_{E^{\times}} \le a \|g\|_{F^{\times}}, \quad \forall \ g \in F^{\times}.$$

Corollary 5.11 $L^p(v)^{\times} \equiv L^p_w(v)^{\times}$ and $L^p_w(v)^{\times \times} \equiv L^p_w(v), 1 \le p < \infty$.

Proof From the above lemma, we have $L_w^p(v)^{\times} \subset L^p(v)^{\times}$ and $||g||_{p,v^{\times}} \leq ||g||_{L_w^p(v)^{\times}}$, $\forall g \in L_w^p(v)^{\times}$. Now consider $f \in L_w^p(v)$ and $g \in L^p(v)^{\times}$, from the Hölder inequality and Theorem 5.6 we have that

$$\int_{\Omega} |gf| d|\lambda| \le ||g||_{p,\nu^{\times}} ||f||_{p,\nu^{\times}} = ||g||_{p,\nu^{\times}} ||f||_{p,\nu}.$$

Hence $g \in L_w^p(v)^{\times}$ and $\|g\|_{L_w^p(v)^{\times}} \le \|g\|_{p,v^{\times}}$.

The second equality follows from Theorem 5.6.

In Proposition 3.5 we have seen that the associate space of a μ -B.f.s. has the Fatou property when μ is σ -finite. We will show that this result remains true for certain Brooks–Dinculeanu measures, introduced by Calabuig et al. [4, p. 77].

Definition 5.12 A vector measure ν is \mathcal{R} -decomposable if we can write $\Omega = \bigcup_{\alpha \in \Delta} \Omega_{\alpha} \cup N$, where $N \in \mathcal{N}_{0}(\nu)$ and $\{\Omega_{\alpha}\}_{\alpha \in \Delta} \subset \mathcal{R}$ is a family of pairwise disjoint sets satisfying that

(a) if $A_{\alpha} \in \mathcal{R}_{\Omega_{\alpha}}, \forall \alpha \in \Delta$, then $\bigcup_{\alpha \in \Delta} A_{\alpha} \in \mathcal{R}^{loc}$, and

(b) if $x^* \in X^*$ and $N_{\alpha} \in \mathcal{N}_0(\langle v, x^* \rangle), \forall \alpha \in \Delta$, then $\bigcup_{\alpha \in \Delta} N_{\alpha} \in \mathcal{N}_0(\langle v, x^* \rangle)$.

Note that if ν is an \mathcal{R} -decomposable vector measure and $A \in \mathcal{R}^{loc}$ is such that $A \cap \Omega_{\alpha} \in \mathcal{N}_0(\nu), \forall \alpha \in \Delta$, then $A \cap \Omega_{\alpha}$ is $\langle \nu, x^* \rangle$ -null, $\forall \alpha \in \Delta$ and $\forall x^* \in B_{X^*}$. From b) in the above definition it follows that A is ν -null.

Some examples of \mathcal{R} -decomposable measures are the σ -finite vector measures and the discrete vector measures [4, Lemma 4.6, p. 77]. However there are \mathcal{R} -decomposable measures which are neither σ -finite nor discrete [4, p. 85].

Proposition 5.13 Let $v : \mathbb{R} \to X$ be a vector measure, $\lambda : \mathbb{R} \to [0, \infty]$ be a Brooks– Dinculeanu measure for v and E be $|\lambda|$ -B.f.s. If $S(\mathbb{R}) \subset E$ and v is \mathbb{R} -decomposable, then E^{\times} has the Fatou property.

Proof Since ν is \mathcal{R} -decomposable, $\Omega = \bigcup_{\alpha \in \Delta} \Omega_{\alpha} \cup N$, where $N \in \mathcal{N}_{0}(\nu)$ and $\{\Omega_{\alpha}\}_{\alpha \in \Delta} \subset \mathcal{R}$ is a family of pairwise disjoint sets satisfying (a) and (b) in Definition 5.12. Moreover, since λ is locally σ -finite we can consider that $\lambda(\Omega_{\alpha}) < \infty$, $\forall \alpha \in \Delta$. Let us note that by Lemma 4.1, *E* is a saturated $|\lambda|$ -e.f.B.

Let $I \subset \Delta$ be a countable set and take $\Omega_I := \bigcup_{\alpha \in I} \Omega_\alpha$, $\mathcal{R}_I := \mathcal{R}_{\Omega_I}$ and λ_I the restriction of λ to the δ -ring \mathcal{R}_I . Then $(\Omega_I, (\mathcal{R}_I)^{loc}, |\lambda_I|)$ is a σ -finite measure space and $E_I := E_{\Omega_I}$ is a $|\lambda_I|$ -B.f.s. Then, from Theorem 3.5, we obtain that E_I^{\times} is a $|\lambda_I|$ -B.f.s. whit the Fatou property.

Now let us consider an upwards directed system $\{g_{\tau}\}_{\tau \in K} \subset E^{\times}$ such that $g_{\tau} \ge 0$, $\forall \tau \in K$ and $M := \sup_{\tau} \|g_{\tau}\|_{E^{\times}} < \infty$. Denoting by $g_{\tau,I}$ to the restriction of g_{τ} to Ω_I , we have that $\{g_{\tau,I}\}_{\tau \in K} \subset E_I^{\times}$ is an upwards directed system, and from (3.4), $\sup_{\tau} \|g_{\tau,I}\|_{E_I^{\times}} \le M < \infty$. Since E_I^{\times} has the Fatou property, it turns out that $g_I := \sup_{\tau} g_{\tau,I} \in E_I^{\times}$ and

$$\|g_I\|_{E_I^{\times}} = \sup_{\tau} \|g_{\tau,I}\|_{E_I^{\times}} \le M.$$
(5.4)

In particular, for each $\alpha \in \Delta$ exists $g_{\{\alpha\}} \in E_{\{\alpha\}}^{\times}$ such that $g_{\{\alpha\}} = \sup_{\tau} g_{\tau,\{\alpha\}}$ and

$$||g_{\{\alpha\}}||_{E_{\{\alpha\}}^{\times}} = \sup_{\tau} ||g_{\tau,\{\alpha\}}||_{E_{\{\alpha\}}^{\times}}$$

Let us denote by g^{α} the canonical extension of $g_{\{\alpha\}}$ and define $g := \sum_{\alpha \in \Delta} g^{\alpha}$. As $\mathcal{N}_0(\nu) = \mathcal{N}_0(|\lambda|)$ and from (a) in Definition 5.12 we have that $g \in L^0(|\lambda|)$.

Let us prove that $g = \sup_{\tau} g_{\tau}$. Consider $\alpha \in \Delta$ and $\tau \in K$. Since $g_{\tau} \chi_{\Omega_{\alpha}} \leq g^{\alpha} \leq g$, it follows that $g_{\tau} \leq g$. Let us assume that $g' \in L^0(|\lambda|)$ is such that $g_{\tau} \leq g'$. Then $g_{\tau} \chi_{\Omega_{\alpha}} \leq g' \chi_{\Omega_{\alpha}}$. So, $g^{\alpha} \leq g'$. Hence $g \leq g'$ and $g = \sup_{\tau} g_{\tau}$.

Finally we will establish that $g \in E^{\times}$. Let us fix $f \in B_E$ and let $I \subset \Delta$ be a countable set. Note that the canonical extension of $g_I = \sup_{\tau} g_{\tau,I}$ is given by $g^I = \sum_{\alpha \in I} g^{\alpha}$ and $f_I \in B_{E_I}$, where f_I is the restriction of f to Ω_I . Moreover, $\int_{\Omega} |g^I f| d|\lambda| = \int_{\Omega_I} |g_I f_I| d|\lambda_I|$. By using the monotone convergence theorem

$$\sum_{\alpha \in I} \int_{\Omega} |g^{\alpha} f| d|\lambda| = \int_{\Omega} |g^{I} f| d|\lambda| = \int_{\Omega_{I}} |g_{I} f_{I}| d|\lambda_{I}| \le ||g_{I}||_{E_{I}^{\times}}.$$

From this and (5.4) we obtain that $\sum_{\alpha \in I} \int_{\Omega} |g^{\alpha} f| d\lambda| \leq M$, for each finite subset *I* of Δ . Then, there exists a countable set $J \subset \Delta$ such that $\int_{\Omega} |g^{\alpha} f| d|\lambda| = 0, \forall \alpha \in \Delta \setminus J$. This implies that

$$\int_{\Omega} |gf|d|\lambda| = \sum_{\alpha \in J} \int_{\Omega} |g^{\alpha}f|d|\lambda| = \int_{\Omega} |g^{J}f|d|\lambda| \le M.$$
(5.5)

We conclude that $g \in E^{\times}$; moreover, from lattice property of the norm in E^{\times} and from (5.5), we have that $||g||_{E^{\times}} = \sup_{\tau} ||g_{\tau}||_{E^{\times}}$.

Let us consider the canonical isometry *R* between $L^1(\nu)^{\times}$ and $L^1(\nu)^*$. When ν is a σ -finite vector measure, then ν has a bounded local control measure $\lambda : \mathcal{R} \to [0, \infty)$ [8, Thm. 3.3]. Since $L^1(\nu)$ is a σ -order continuous $|\lambda|$ -B.f.s., then we have $L^1(\nu)^* = L^1(\nu)^{\times}$ [28, Ch. 15, §72, Thm. 5]. In what follows we will present other situations where this holds.

Since $L^{1}(\nu)$ is an order continuous $|\lambda|$ -B.f.s. from Theorem 4.12 we obtain the following result.

Corollary 5.14 *The following properties are equivalent:*

- (i) $L^1(v)^{\times} = L^1(v)^*$.
- (ii) $L^1(v)^{\times}$ is a band of $L^1(v)^*$.
- (iii) $L^1(v)^{\times}$ has the Fatou property.
- (iv) $L^1(v)^{\times}$ has the weak Fatou property.

The next result is a consequence of Proposition 5.13 and the previous result.

Corollary 5.15 If v is \mathcal{R} -decomposable, then $L^1(v)^{\times} = L^1(v)^*$.

If *E* is a real σ -order continuous Banach lattice it is well known that there exists an \mathcal{R} -decomposable vector measure $\nu : \mathcal{R} \to E$ such that *E* is order isometric to the space $L^1(\nu)$ [10, Thm. 5]. Then from the above corollary we obtain the following result.

Corollary 5.16 If *E* is a σ -order continuous Banach lattice, then there exist an \mathcal{R} -decomposable vector measure $v : \mathcal{R} \to E$ and a order isometry from $L^1(v)^{\times}$ onto E^* . More precisely, if *T* is a lattice isometry from *E* onto $L^1(v)$, $\lambda : \mathcal{R} \to [0, \infty]$ is a Brooks–Dinculeanu measure for v and $\varphi \in E^*$, then there exists $g \in L^1(v)^{\times}$ such that

$$\varphi(f) = \int_{\Omega} (Tf)gd|\lambda|, \quad \forall \ f \in E.$$

Proof Note that it only rests to verify that the result mentioned before remains valid in the complex case. Since *E* is a σ -order continuous Banach lattice, then $E_{\mathbb{R}}$ is also a σ -order continuous Banach lattice. Thus, there exist an \mathcal{R} -decomposable vector measure $\tilde{v} : \mathcal{R} \to E_{\mathbb{R}}$ and an onto lattice isometry $S : L^1(v) \to E_{\mathbb{R}}$. Now let us define $v : \mathcal{R} \to E$, by $v(B) = \tilde{v}(B)$, $\forall B \in \mathcal{R}$. It turns out that v is an \mathcal{R} -decomposable vector measure and $L^1(v)_{\mathbb{R}} = L^1(\tilde{v})$. Let $T : L^1(v) \to E$ be the canonical extension of *S*, then *T* is an onto lattice isometry [25, Lemma 3.8].

As a consequence of Theorem 4.14 we obtain the following result.

Corollary 5.17 $L^{1}(v)$ is reflexive if, and only if, $L^{1}(v) = L^{1}_{w}(v)$ and $L^{1}(v)^{\times}$ is σ -order continuous.

Now from the previous result and Corollary 4.13 we have:

Corollary 5.18 If $L^{1}(v)$ is reflexive, then $L^{1}(v)^{\times} = L^{1}(v)^{*}$.

If $1 , Ferrando and Rodríguez established that <math>L^p(\nu)^*$ is order continuous when ν is defined on a σ -algebra [13, Thm 3.1]. Using the same arguments, it follows that in our context we also have that $L^p(\nu)^{\times}$ is order continuous. Then from Corollary 4.13 we have the following result.

Corollary 5.19 $L^{p}(v)^{\times} = L^{p}(v)^{*}, 1$

Since $L^p(\nu)^{\times}$ is order continuous and $L^p(\nu) = L^p_w(\nu)$ if, and only if, $L^1(\nu) = L^1_w(\nu)$ [17, Prop. 3.1.6], the next result follows from Theorems 4.14 and 5.6. It was proven when ν is defined in a σ -algebra by Fernández et al. [12, Cor. 3.10].

Corollary 5.20 Let $1 . Then <math>L^p(v)$ is reflexive if, and only if, $L^1(v) = L^1_w(v)$.

Let us fix $1 . Then Corollary 5.19 implies that each functional in <math>L^p(\nu)^*$ has the form $\varphi_g, g \in L^p(\nu)^{\times}$. So we can define $S : L^p(\nu)^{\times \times} \to L^p(\nu)^{**}$ by

$$\langle \varphi_g, S(h) \rangle := \int_{\Omega} ghd|\lambda|.$$

It turns out that *S* is a linear isometry and we will write $L^p(v)^{\times\times} = L^p(v)^{**}$ to indicate that is onto. Let $R_1 : L^p(v)^{\times} \to L^p(v)^*$ and $R_2 : L^p(v)^{\times\times} \to L^p(v)^{\times*}$ be the corresponding canonical isometries, then $S = (R_1^*)^{-1} \circ R_2$. Thus *S* is onto if, and only if, R_2 is it. So from Theorems 5.6 and 4.12 we have:

Corollary 5.21 Let $1 . Then <math>L_w^p(v)$ has the Fatou property if, and only if, $L_w^p(v) = L^p(v)^{**}$.

Remark 5.22 Calabuig, Delgado, Juan and Sánchez-Pérez asked if in general $L_w^1(v)$ always has the Fatou property [4, pp. 77–78]. With respect to this question we have the following. Let $1 and notice that <math>L_w^1(v)$ has the Fatou property if, and only if, $L_w^p(v)$ has it. Then from the previous result we obtain that

 $L_w^1(v)$ has the Fatou property if, and only if, $L_w^p(v) = L^p(v)^{**}$.

References

- Abramovich, Y.A., Aliprantis, C.D.: An Invitation to Operator Theory. Providence, Graduate Studies in Math., vol. 50. AMS, Providence (2002)
- 2. Bennett, C., Sharpley, R.: Interpolation of Operators Boston. Academic Press, New York (1988)
- Brooks, J.K., Dinculeanu, N.: Strong additivity, absolute continuity and compactness in spaces of measures. J. Math. Anal. Appl. 45, 156–175 (1974)
- Calabuig, J.M., Delgado, O., Juan, M.A., Sánchez-Pérez, E.A.: On the Banach lattice structure of L¹_w of a vector measure on a δ-ring. Collect. Math. 65, 67–85 (2014)
- 5. Curbera, G.P.: The space of integrable functions with respect to a vector measure, Ph.D. Thesis. Univ. of Sevilla (1992)
- Curbera, G.P., Ricker, W.J.: Banach lattices whith the Fatou property and optimal domains for kernel operators. Indag. Mathem. N. S. 17(2), 187–204 (2006)
- Curbera, G.P., Ricker, W.J.: The Fatou property in *p*-convex Banach lattices. J. Math. Anal. Appl. 328, 287–294 (2007)
- 8. Delgado, O.: L^1 -spaces of vector measures defined on δ -rings. Arch. Math 84, 432–443 (2005)
- 9. Delgado, O.: Further Developments on L^1 of a vector measure, Ph.D. Thesis. University of Sevilla (2004)
- Delgado, O., Juan, M.A.: Representation of Banach lattices as L¹_w spaces of a vector measure defined on a δ-ring. Bull. Belg. Math. Soc. Simon Stevin 19, 239–256 (2012)
- Dunford, N., Schwartz, J.T.: Linear Operators. Part I General Theory. Interscience Publishers Inc, New York (1958)
- 12. Fernández, A., Mayoral, F., Naranjo, F., Saéz, C., Sánchez-Pérez, E.A.: Spaces of p-integrable functions with respect to a vector measure. Positivity **10**, 1–16 (2006)
- Ferrrando, I., Rodríguez, J.: The weak topology on L^p of a vector measure. Topology Appl. 155, 1439–1444 (2008)
- 14. Galaz-Fontes, F.: The dual space of L^p of a vector measure. Positivity 14(4), 715–729 (2010)
- 15. Gillespie, T.A.: Factorization in Banach function spaces. Proc. A 84(3), 287-300 (1981)

- Jiménez Fernández, E., Juan, M.A., Sánchez-Pérez, E.A.: The Köthe dual of an abstract Banach lattice. J. Funct. Sps. Appl., 1–8 (2013)
- Juan, M.A.: Vector measures on δ-rings and representations theorems of Banach lattices, Ph.D. Thesis. Univ. Politec. of Valencia (2011)
- 18. Lewis, D.R.: On integrability and summability in vector spaces. Ill. J. Math. 16, 294–307 (1972)
- 19. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Springer, Berlin (1979)
- Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces I. North-Holland Publishing Company, Amsterdam (1971)
- Masani, P.R., Niemi, H.: The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. I. Scalar-valued measures on δ-rings. Adv. Math. 73, 204–241 (1989)
- Masani, P.R., Niemi, H.: The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. II. Pettis integration. Adv. Math. 75, 121–167 (1989)
- Mastylo, M., Sanchez-Perez, E.A.: Köthe dual of Banach lattices generated by vector measures. Monatsh. Math. 173(4), 541–557 (2014)
- 24. Okada, S.: The dual space of $L^{1}(\mu)$ for a vector measure μ . J. Math. Anal. Appl. **177**, 583–599 (1993)
- Okada, S., Ricker, W.J., Sánchez-Pérez, E.: Optimal Domain and Integral Extension of Operators. Birkhauser, Basel (2008)
- 26. Rudin, W.: Real and Complex Analysis. McGraw Hill, Boston (1987)
- 27. Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974)
- 28. Zaanen, A.: Integration. North-Holland Publishing Company, Amsterdam (1967)
- 29. Zaanen, A.: Riesz Spaces II. North-Holland Publishing Company, Amsterdam (1983)