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Abstract We show that for a locally σ -finite measure μ defined on a δ-ring, the
associate space theory can be developed as in the σ -finite case, and corresponding
properties are obtained. Given a saturated σ -order continuous μ-Banach function
space E , we prove that its dual space can be identified with the associate space E×
if, and only if, E× has the Fatou property. Applying the theory to the spaces L p(ν)

and L p
w(ν), where ν is a vector measure defined on a δ-ring R and 1 ≤ p < ∞, we

establish results corresponding to those of the case when the vector measure is defined
on a σ -algebra.

Keywords Banach function space · Associate space · Locally σ -finite measure ·
δ-ring · Fatou property · Order continuous · Vector measure
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1 Introduction

Let � be a set and R a δ-ring consisting of subsets of �. Given a vector measure
ν : R → X , where X is a (real or complex) Banach space, we obtain the Banach space
of weakly-integrable functions L1

w(ν), which has the space of ν-integrable functions
L1(ν) as a closed subspace. With the order given by f ≥ g if f ≥ g outside a ν-null
set, we have that L1

w(ν) is a σ -Fatou Banach lattice and L1(ν) is an order continuous
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Banach lattice. (See Sect. 2 for definitions.) The integration theory with respect to
vector measures defined on δ-rings was developed mainly by Lewis [18], Masani and
Niemi [21,22] and Delgado [8]. It extends the well known theory for vector measures
defined on σ -algebras [25, Ch. 3].

If E is a real or complex order continuous Banach lattice, Curbera [5, p. 22], [10,
p. 246] showed that there is a set�, a δ-ringR consisting of subsets of�, and a vector
measure ν : R → E , such that E and L1(ν) are order and isometrically isomorphic .
It follows that the dual spaces L1(ν)∗ and E∗, both of which are Banach lattices, are
also order and isometrically isomorphic. Hence by studying a dual space of the form
L1(ν)∗ we are implicitly analyzing the dual space of themost general order continuous
Banach lattice.

The study of L1(ν)∗ can be done through the associate space theory, systematically
developed by Luxemburg and Zaanen [28, Ch. 15], [29, Ch. 16, Sect. 112]. This
theory begins with an arbitrary positive measure space (�,�,μ) and applies to a μ-
Banach function space (μ-B.f.s. for short) E which is saturated. Then also its associate
space E× is a μ-Banach function space and the operator R : E× → E∗, defined by
R(g) := Rg , where Rg( f ) := ∫

�
f gdμ, is a linear isometry. This operator, called the

canonical isometry, allows us to consider the associate space E× as a closed subspace
of the dual space E∗. When the involved measure μ is σ -finite and the saturated B.f.s.
E is σ -order continuous, then the canonical isometry R is onto. Moreover, R also
preserves the lattice structure and so we write E× = E∗. In the following we will
maintain this notation to indicate that R is onto.

To apply the above theory for studying L1(ν)∗, in the first place we have to find a
positive measure μ which is also a local control measure for ν, that is, such that μ and
ν have the same null sets. In this situation L1(ν) is a μ-B.f.s. Assume the δ-ring R
on which the vector measure ν is defined is a σ -algebra. Then it is well known that ν
has a finite local control measure μ with respect to which L1(ν) is a saturated μ-B.f.s.
[25, pp. 107–108]. It follows that in this case we have L1(ν)× = L1(ν)∗.

If the δ-ring R is not a σ -algebra, we cannot proceed directly as above to obtain
for L1(ν) similar results to those we have just mentioned, since in this situation ν

may not have a σ -finite local control measure. This is a problem, since a key fact for
the associate space theory to work is that when the measure μ is σ -finite, then the
saturation of a μ-B.f.s. E implies that of E×.

However, relying on a result of Brooks and Dinculeanu [3], it has recently been
pointed out by Jiménez et al. [16] the fact that any vector measure defined on a δ-ring
R, always has a local control measureμ that is also σ -finite on any set B ∈ R. We will
see that a measure of this kind, which we have called Brooks–Dinculeanu measure, is
appropriate for our objectives.

In this paper we first study the associate space E× of a saturated μ-B.f.s., for a
locally σ -finite positive measure μ. Thereafter we consider a vector measure ν and
apply the results to the μ-Banach function spaces of p integrable functions L p(ν) and
of weakly integrable functions L p

w(ν), 1 ≤ p < ∞, where μ is a Brooks–Dinculeanu
measure for ν. The main question we discussed was that of the validity of the equality
L1(ν)× = L1(ν)∗.

We divided our work in five sections, including this Introduction. In Sect. 2 we
present the notation, definitions and basic results that we have needed.
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The general theory for the associate space E× of a saturated μ-B.f.s E is given
in Sect. 3. As in the well known σ -finite case, it turns out that the associate space
E× always has the σ -Fatou property. When μ is a σ -Fatou property, we show that
the σ -Fatou property and the Fatou properties are equivalent for E . Based on general
properties of the dual space of an arbitrary Banach lattice [29, Ch. 14, Ch. 15], we
establish that if E× = E∗, then E is order continuous and E× has the Fatou property.

In Sect. 4 we restrict our considerations to a locally σ -finite measure μ. In this
setting we obtain results that are well known in the σ -finite case. Particularly we show
that E× is also a saturatedμ-B.f.s., that E×× = E when E has the Fatou property, and
that the factorization L1(μ) = E E× holds. When the saturated μ-B.f.s. is σ -order
continuous, we prove that E× = E∗ if, and only if, E× has the Fatou property. In a
forthcoming work we plan to show that this last is not always the case.

In the last section we apply our development to the spaces L p(ν) and L p
w(ν),

1 ≤ p < ∞, obtained from a vector measure ν. These are Banach function spaces
with respect to any Brooks–Dinculeanumeasure for ν. Thus we show that L p(ν)×× =
L p

w(ν) and L p(ν)× = L p
w(ν)× for 1 ≤ p < ∞. When the vector measure ν is defined

on a σ -algebra the first of these equalities was established by Curbera and Ricker [6,
Prop. 2.4], [7, Prop. 1].

We give several situations where L1(ν)× = L1(ν)∗ holds, one of them being the
case of a decomposable vectormeasure. This turns out to be important, since the vector
measure ν that Calabuig et al. used to represent an order continuous Banach lattice as
L1(ν), is a decomposable vector measure [4].

Finally, we establish that L p(ν)× = L p(ν)∗ if 1 < p < ∞ and that L1(ν)× =
L1(ν)∗ when L1(ν) is reflexive. We also verify that a reflexivity criterion proven by
Fernández et al. [12, Cor. 3.10] for a vector measure defined on a σ -algebra is still
valid in the δ-ring case.

To complete this introduction, we want to note that Okada was the first to obtain a
description of L1(ν)∗ for a classical vector measure ν [24]. Later Galaz-Fontes gave a
representation for L p(ν)∗ when 1 < p < ∞ [14] and recently Mastylo and Sánchez
Pérez have established representations of these kind for a dual Banach space in a more
general context [23].

2 Notation and basic results

2.1 Banach lattices

Throughout this paper all vector spaces considered will be with respect to K, where
K = C, the field of complex numbers orK = R, the field of real numbers. Let X be a
normed space. By BX wewill indicate its unit closed ball and by X∗ its dual space.We
will represent by 〈·, ·〉 the duality pairing, i.e. 〈x, x∗〉 := x∗(x),∀ x ∈ X and x∗ ∈ X∗.
If Y is other normed space, to express that X = Y as sets and with equal norms, we
will write X ≡ Y .

Let X be a real vector lattice with order ≤. For A ⊂ X we will be denote by A+
the subset of X consisting of all f ∈ A such that 0 ≤ f . Given f ∈ X , we indicate by
f +, f − and | f | its positive part, negative part and modulus, respectively. Finally X is
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called Dedekind σ -complete if every non-empty countable subset which is bounded
from above has a supremum.

Let J be a directed set. A net { fτ }τ∈J ⊂ X is an upwards directed system if for τ1
and τ2 in J , there exists τ3 ∈ J such that fτ1 ≤ fτ3 and fτ2 ≤ fτ3 . In this case we will
use the notation fτ ↑. If additionally there exists f = supτ fτ ∈ X we write fτ ↑ f .
Similarly, if the sequence { fn} ⊂ X is such that fn ≤ fn+1, ∀ n ∈ N, we will indicate
fn ↑ and if additionally f = supn fn then we will write fn ↑ f . Analogously, we
define a downwards directed system { fτ } and the notations fτ ↓ and fτ ↓ f .

A real normed vector lattice X is a real normed space that is a vector lattice and
whose norm ‖ · ‖X has the lattice property, that is

if f, g ∈ Y satisfy, | f | ≤ |g|, then ‖ f ‖X ≤ ‖g‖X . (2.1)

If in addition the space is complete, we will say that X is real Banach lattice.
Let X be a real normed vector lattice. Then X has the weak Fatou property if

for each upwards directed system { fτ } ⊂ X+ with supτ ‖ fτ‖X < ∞, there exists
f = supτ fτ ∈ X ; if additionally ‖ f ‖X = supn ‖ fn‖X , then X has theFatou property.
Similarly, X has the weak σ -Fatou property, if given { fn} ⊂ X+ such that fn ↑ and
supn ‖ fn‖X < ∞, then there exists f = supn fn ∈ X , and if additionally ‖ f ‖X =
supn ‖ fn‖X , then X is said to have the σ -Fatou property. We say that X is order
continuous, if for any system { fτ } ⊂ X satisfying fτ ↓ 0 it follows that ‖ fτ‖X ↓ 0.
Analogously, X is σ -order continuous if for any sequence { fn} ⊂ X satisfying fn ↓ 0
we have that ‖ fn‖X ↓ 0.

Take a real Banach lattice X . Then in Z := X + i X , the complexification of X ,
the modulus is defined by |h| := sup{|(cos θ) f + (sin θ)g| : 0 ≤ θ < 2π}, ∀ h :=
f + ig ∈ Z [29, Ch. 14; Thm. 91.2], the norm by ‖h‖Z = ‖ |h| ‖X , ∀ h ∈ Z , and the
order is given by f ≤ g in Z , if f, g ∈ X and f ≤ g. In this case Z is called a complex
Banach lattice, X is its real part and we write X = ZR. Observe that Z+ = X+. We
will say that a complex Banach lattice has one of the properties we introduced above if
its real part has it. Henceforth we will say only Banach lattice (normed vector lattice)
to refer to a complex or real Banach lattice (normed vector lattice).

Let X be a Banach lattice. An ideal Y of X is a vector subspace of X if f ∈ X with
| f | ≤ |g| for some g ∈ Y implies f ∈ Y .

Let T : X → Y be a linear operator between Banach lattices. Then T is said to
be positive if for each f ∈ X+ we have that T ( f ) ∈ Y +. In this case T (XR) ⊂ YR
and T is bounded [1, Lemma 3.22]. We will say that T is an order isometry if T is an
isometry, T is onto and both T and T −1 are positive operators. This last condition is
equivalent to

T f ≥ 0 if and only if f ≥ 0, ∀ f ∈ X.

In this case we have that T (XR) = YR, T (sup{ f, g}) = sup{T f, T g},∀ f, g ∈ XR

and T | f | = |T f |, ∀ f ∈ X .
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Let X be a real Banach lattice. Then its dual space X∗ is a Banach lattice with the
order given by

ϕ ≤ ψ, if ϕ( f ) ≤ ψ( f ), ∀ f ∈ X+, ϕ, ψ ∈ X∗. (2.2)

In this case the supremum and infimum are uniquely determined by

sup{ϕ,ψ}( f ) := sup{ϕ(g) + ψ(h) : f = g + h, g ≥ 0, h ≥ 0},
inf{ϕ,ψ}( f ) := inf{ϕ(g) + ψ(h) : f = g + h, g ≥ 0, h ≥ 0}, (2.3)

for each ϕ,ψ ∈ X∗ and f ∈ X+ [27][Chap II, Props. 4.2, 5.5] .
Now assume that X is a complex Banach lattice. Given ϕ ∈ X ∗

R
, we will indicate by

ϕ̃ : X → C its canonical extension, that is, ϕ̃(x + iy) = ϕ(x)+ iϕ(y). If � : X → C

is a bounded linear functional, then � has the form � = ϕ̃ + iψ̃ , where ϕ̃ and ψ̃

are the canonical extensions of linear functionals ϕ,ψ ∈ X ∗
R
. Identifying X ∗

R
with

X̃∗
R

⊂ X∗, we have that X∗ = X ∗
R

+ i X ∗
R
is a Banach lattice. As can be seen in [27,

§11], in this case
|�|( f ) = sup

|g|≤ f
|�(g)|, ∀ f ∈ X+. (2.4)

2.2 μ-Banach function spaces

Given a measurable space (�,�) we will denote by L0(�) the space formed by the
�-measurable functions f : � → K. If additionally we have a positive measure μ

defined on �, we indicate byN0(μ) the family of μ-null subsets, i. e., the sets A ∈ �

such that μ(A) = 0. As usual a property holds μ-almost everywhere (briefly μ-a.e.) if
it holds except on a μ-null set. We indicate by L0(μ) the space of equivalence classes
of functions in L0(�), where two functions are identified when they are equal μ-a.e.

Note that, when K = C, the space L0(μ) is the complexification of the real space
L0(μ)R := { f ∈ L0(μ) : f take its values in R μ-a.e.}.

In L0(μ)R we will always consider the μ-a.e. pointwise order. Let f ∈ L0(μ). So
Re f, Im f ∈ L0(μ)R and f = Re f + iIm f . Moreover,

sup
0≤θ<2π

|(cos θ)Re f + (sin θ)Im f | =
√

(Re f )2 + (Im f )2 = | f |. (2.5)

We will say that a normed space E ⊂ L0(μ) is a normed function space related
to μ (briefly μ-n.f.s.) if E is a vector subspace of L0(μ) such that f ∈ L0(μ) with
| f | ≤ |g| for some g ∈ E , implies f ∈ E and the lattice property (2.1) holds (with
E instead of X ). If additionally E is complete we will call it Banach function space
related to μ (briefly μ-B.f.s.). We must note that in the literature there appear other
definitions with the same name, such as in [19, Def. 1.b.17] and in [2, Def. I.1.3].

Let E be aμ-B.f.s. Then E is Dedekind σ -complete. So, E is σ -order continuous if
and only if E is order continuous [29, 103.9]. Now if E is a μ-n.f.s. with the σ -Fatou
property, then E is complete [28, Ch. 15, §65, Thm. 1]. Thus, E is a μ-B.f.s. with the
σ -Fatou property.
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Let E be a complex μ-B.f.s. Note that ER = E ∩ L0(μ)R, with the μ-
a.e. pointwise order, is a real Banach lattice and E = ER + i ER. It follows
from (2.5) that E is a complex Banach lattice. Moreover, f ∈ E if and only if
(Re f )+, (Re f )−, (Im f )+, (Im f )− ∈ E+.

2.3 Integration with respect to measures defined on δ-rings

Let� be a set. A familyR of subsets of� is a δ-ring ifR is a ringwhich is closed under
countable intersections. From now on in this paper R will be a δ-ring. We denote by
Rloc the σ -algebra of all sets A ⊂ � such that A ∩ B ∈ R, ∀ B ∈ R. Given A ∈ Rloc

we indicate by RA the δ-ring {B ⊂ A : B ∈ R} and by πA the collection of finite
families of pairwise disjoint sets in RA. Note that if � ∈ R, then R is a σ -algebra,
and in this case we have that Rloc = R. Moreover, for each B ∈ R it turns out that
RB is a σ -algebra.

A scalar measure (positive measure) is a function λ : R → K (λ : R → [0,∞])
satisfying that if {Bn} ⊂ R, is a family of pairwise disjoint sets such that

⋃∞
n=1 Bn ∈

R, then
∑∞

n=1 λ(Bn) = λ
(⋃∞

n=1 Bn
)
. The variation of λ is the countably additive

measure |λ| : Rloc → [0,∞] defined by

|λ|(A) := sup

⎧
⎨

⎩

n∑

j=1

|λ(A j )| : {A j } ∈ πA

⎫
⎬

⎭
.

A function f ∈ L0(Rloc) is λ-integrable if f ∈ L1(|λ|). We denote by L1(λ) the
subspace of L0(λ) formed by the λ-integrable functions. Then L1(λ) with norm given
by | f |1,λ := ∫

�
| f |d|λ| is a σ -order continuous |λ|-B.f.s. with the σ -Fatou property.

The following result is basic in the theory; whenλ is a scalarmeasure it was established
byMasani and Niemi [21, Lemma 2.30, Thm. 2.32], for the case of a positive measure
we can proceed similarly.

Proposition 2.1 If f ∈ L0(Rloc), then

∫

A
| f |d|λ| = sup

B∈RA

∫

B
| f |d|λ|, ∀ A ∈ Rloc. (2.6)

Therefore, f ∈ L1(|λ|) if and only if supB∈R
∫

B | f |d|λ| < ∞.

Let X be a Banach space. A function ν : R → X is a vector measure if∑∞
n=1 ν(Bn) = ν

(⋃∞
n=1 Bn

)
, for any collection {Bn} ⊂ R of pairwise disjoint sets

such that
⋃∞

n=1 Bn ∈ R. The variation of ν is the positive measure |ν| defined inRloc

by

|ν|(A) := sup

⎧
⎨

⎩

∑

j

‖ν(A j )‖X : {A j } ∈ πA

⎫
⎬

⎭
.
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The semivariation of ν is the function ‖ν‖ : Rloc → [0,∞] given by

‖ν‖(A) := sup{|〈ν, x∗〉|(A) : x∗ ∈ BX∗},

where |〈ν, x∗〉| is the variation of the scalar measure 〈ν, x∗〉 : R → K, where

〈ν, x∗〉(B) := 〈ν(B), x∗〉, ∀ B ∈ R.

The semivariation of ν is finite inR and for any A ∈ Rloc satisfies‖ν‖(A) ≤ |ν|(A).
A set A ∈ Rloc is said to be ν-null if ‖ν‖(A) = 0. We will denote by N0(ν) the
collection of ν-null sets. It turns out that N0(ν) = N0(|ν|). Moreover A ∈ N0(ν) if
and only if ν(B) = 0, ∀ B ∈ RA. We say that a positive measure λ : R → [0,∞]
is a local control measure for ν, if N0(|λ|) = N0(ν) [8, p. 437]. Then, |ν| is a
local control measure for ν. We define L0(ν) as the space of equivalence classes of
functions in L0(Rloc), where two functions are identified when they are equal ν-a.e.
So, L0(ν) = L0(|λ|), where λ is any local control measure for ν.

A function f ∈ L0(Rloc) is weakly ν-integrable, if f ∈ L1(〈ν, x∗〉), for each
x∗ ∈ X∗. We will denote by L1

w(ν) the subspace of L0(ν) of all weakly ν-integrable
functions. With the norm ‖ f ‖ν := sup{∫

�
| f |d|〈ν, x∗〉| : x∗ ∈ BX∗}, L1

w(ν) is a |λ|-
B.f.s. with the σ -Fatou property, where λ is a local control measure for ν.

A function f ∈ L1
w(ν) is ν-integrable, if for each A ∈ Rloc there exists a vector

xA ∈ X , such that 〈xA, x∗〉 = ∫
A f d〈ν, x∗〉, ∀ x∗ ∈ X∗. The subset of all ν-integrable

functions is a closed subspace of L1
w(ν) and it will be denoted by L1(ν). We indicate

by S(R) the collection of simple functions in L0(Rloc) which have support in R. It
turns out that L1(ν), with norm ‖ · ‖ν is a σ -order continuous μ-B.f.s. where S(R) is
a dense subspace.

We also notice that L1(ν) = L1
w(ν) if X does not contain a copy of c0 [18, Thm. 5.1].

3 Associate space

Let (�,�,μ) be a positive measure space and let us consider a μ-B.f.s. E . We will
show that several of the basic results about the associate space of E whenμ is a σ -finite
measure, can also be established in the case that μ is not σ -finite. We will begin by
just enunciating some of these results; they can be proven as in the σ -finite case [28,
Ch. 15], [2, Ch. 1].

The vector space defined by E× := {g ∈ L0(μ) : g f ∈ L1(μ), ∀ f ∈ E} is called
the associate space of E and the function

‖g‖E× := sup

{∫

�

|g f |dμ : f ∈ BE

}

, ∀ g ∈ E×, (3.1)

is a seminorm. For each f ∈ E and g ∈ E× the Hölder inequality is satisfied:

∫

�

|g f |dμ ≤ ‖g‖E×‖ f ‖E .



522 C. Avalos-Ramos, F. Galaz-Fontes

We also have that for the function ‖ ·‖E× to be a norm, it is necessary and sufficient
that E be saturated, that is, for each A ∈ � with positive measure there exists B ∈ �A

such that μ(B) > 0 and χB ∈ E . Next we give an equivalent condition for saturation.
For this, let usfirst recall that aμ-B.f.s.Y isorder dense in L0(μ) if for any f ∈ L0(μ)+
there exists an upwards directed system { fτ } ⊂ Y + such that fτ ↑ f .

Lemma 3.1 Let E a μ-B.f.s. The following statements are equivalent:

(i) The space E is saturated.
(ii) The space E is order dense in L0(μ).
(iii) The seminorm ‖ · ‖E× is a norm.

Proof The equivalence (i) ⇔ (iii) is proved as in the σ -finite case [28, Ch. 15, §69,
Thm. 4]. Let us prove (i) ⇔ (ii).

Since E is a Banach lattice we have that E is archimedean. Then, it is enough to
prove that E is saturated if and only if for each 0 �= f ∈ L0(μ) there exists g ∈ E
such that 0 < |g| ≤ | f | [20, Thm. 22.3(vi)]. Assume that E is saturated. Consider
0 �= f ∈ L0(μ) and define

An :=
{

x ∈ � : 1
n

≤ | f (x)|
}

, ∀ n ∈ N.

Let us fix N ∈ N such that μ(AN ) > 0. Since E is saturated there exists B ⊂ AN

with μ(B) > 0 and χB ∈ E . Then, g := 1
N χB ∈ E and 0 < |g| ≤ | f |.

To establish the other implication, take A ∈ � such that μ(A) > 0. Hence 0 �=
χA ∈ L0(μ). Thus there exists g ∈ E satisfying 0 < |g| ≤ χA. As 0 �= g ∈ L0(μ)

we can take ϕ ∈ S(�) with 0 < ϕ ≤ |g|. Therefore ϕ ∈ E and so, there exists B ∈ �

such that B ⊂ suppϕ, μ(B) > 0 and χB ∈ E . ��
Henceforth we will assume that E is a saturated μ-B.f.s. Then as in the σ -finite

case we have:

Proposition 3.2 The space E× is a μ-B.f.s. with the σ -Fatou property.

For our next result, let us recall that a Banach lattice E is super Dedekind complete
if every non-empty subset D of E which is bounded from above has a supremum and
it contains an at most countable subset possessing the same supremum as D.

Proposition 3.3 If there exists a σ -order continuous μ-B.f.s. F with the σ -Fatou
property, such that E× ⊂ F, then E× has the Fatou property.

Proof Consider {gτ } ⊂ E× such that 0 ≤ gτ ↑ and supτ ‖gτ‖E× < ∞. Then
{gτ } ⊂ F+ is an upwards directed system such that supτ ‖gτ‖F < ∞. Since F is
σ -order continuous and has the σ -Fatou property, then F has the Fatou property and
is super Dedekind complete [29, Thm. 113.4]. Hence g := supτ gτ ∈ F and there
exists a sequence {gτn } ⊂ {gτ } such that gτn ↑ g [20, Thm. 23.2.(iii)]. From the
σ -Fatou property in E× we obtain that g ∈ E×. And since ‖ · ‖×

E is a lattice norm,
supτ ‖gτ‖E× ≤ ‖g‖E× .
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Now take f ∈ BE . Using the monotone convergence theorem and the Hölder
inequality we have

∫

�

|g f |dμ = sup
n

∫

�

|gτn f |dμ ≤ sup
n

‖gτn ‖E×‖ f ‖E ≤ sup
n

‖gτ‖E× .

Thus, ‖g‖E× ≤ supτ ‖gτ‖E× < ∞. Hence, E× has the Fatou property. ��
Since L1(μ) is σ -order continuous and has the σ -Fatou property, we obtain:

Corollary 3.4 If χ� ∈ E, then E× has the Fatou property.

Nextwewill show thatwhenμ isσ -finite, it turns out that the associate space always
has the Fatou property. For this it is necessary to make before a brief discussion.

Let A be in �. We denote by μA the restriction of the measure μ to the σ -algebra
�A formed by the measurable subsets of A. Thus (A, �A, μA) is a measure space.

For each f ∈ L0(�A) define the function f � : � → K by f �(x) = f (x), if
x ∈ A and f �(x) = 0 otherwise. Then f � is a �-measurable function which is
called canonical extension of f . Now, the set E A defined by

E A :=
{

f ∈ L0(μA) : f � ∈ E
}

(3.2)

is a vector space. If h ∈ E , then (h A)� = hχA ∈ E , where h A is the restriction of h
to A. Thus, h A ∈ E A. In E A we define the norm ‖ · ‖A by

‖ f ‖A := ‖ f �‖E , ∀ f ∈ E A. (3.3)

Since E is a saturated μ-B.f.s., it follows that also E A is a saturated μA-B.f.s. On the
other hand if A = ⋃∞

n=1 An , where An ∈ � and μ(An) < ∞, ∀ n ∈ N, we obtain
that μA is σ -finite. In this case it is well known that E×

A := (E A)× is saturated [28,
Ch. 15, §71, Thm. 4]. Furthermore E×

A = (E×)A and

‖g‖E×
A

= sup

{∫

A
|g f |dμA : f ∈ BE A

}

= ‖g�‖E× , ∀ g ∈ E×
A . (3.4)

Theorem 3.5 If the measure μ is σ -finite, then E× has the Fatou property.

Proof We will assume that μ(�) > 0. Let us take an upwards directed system
{gτ }τ∈I ⊂ E× such that gτ ≥ 0, ∀ τ ∈ I and supτ ‖gτ‖E× < ∞. Now since μ

is σ -finite and E is a saturated μ-B-f.s., there exist {�n} ⊂ � and N ∈ N0(μ) such
that �n ⊂ �n+1, 0 �= χ�n ∈ E , ∀ n ∈ N and � = ⋃∞

n=1 �n ∪ N [28, Ch. 15, §67,
Thm. 4].

Fix n ∈ N. Let us denote by �n the σ -algebra ��n and by μn the restriction of μ

to �n . Thus (�n, �n, μn) is a finite measure space. Then the space En := E�n with
the norm ‖ · ‖n := ‖ · ‖�n is a saturated μn-B.f.s. such that χ�n ∈ En . By the above
corollary we have that E×

n has the Fatou property.
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Let gτ,n be the restriction of gτ to the set �n . Thus {gτ,n}τ∈I ⊂ E×
n is an

upwards directed system with supτ ‖gτ,n‖E×
n

≤ supτ ‖gτ‖E× < ∞. Therefore
g(n) := supτ gτ,n ∈ E×

n and ‖g(n)‖E×
n

= supτ ‖gτ,n‖E×
n
.

Now let gn := (g(n))
� be the canonical extension of g(n). Then {gn} ⊂ E× is an

increasing sequence. By (3.4),

sup
n

‖gn‖E× = sup
n

‖g(n)‖E×
n

≤ sup
τ

‖gτ‖E× . (3.5)

From the σ -Fatou property in E× and (3.5), it follows that

g := sup
n

gn ∈ E× and ‖g‖E× ≤ sup
τ

‖gτ‖E× . (3.6)

Let us prove that g = supτ gτ . Fix τ ∈ I . Since gτ χ�n ≤ gn ≤ g for each n ∈ N,
we have that gτ ≤ g. Suppose that g′ ∈ E× satisfies gτ ≤ g′, ∀ τ ∈ I . Now fix
n ∈ N. Then gτ χ�n ≤ g′χ�n , ∀ τ , so gn ≤ g′. Therefore, g ≤ g′ and we obtain that
g = supτ gτ . Finally ‖ · ‖×

E is a lattice norm and so the conclusion follows from (3.6).
��

Since we are assuming that E is a saturated μ-B.f.s., then E× is a μ-B.f.s. and we
can consider its associate space, which is called second associate space of E and it is
denoted by E××. Thus

E×× := (E×)× =
{

h ∈ L0(μ) : hg ∈ L1(μ) ∀ g ∈ E×}

and the seminorm ‖ · ‖E×× : E×× → [0,∞) is given by

‖h‖E×× := sup

{∫

�

|hg|dμ : g ∈ BE×
}

.

Unlike the σ -finite case, we will see in Example 4.5 that it can happen that E× is
not saturated. Nevertheless, we have that E ⊂ E×× and

‖ f ‖E×× ≤ ‖ f ‖E ∀ f ∈ E . (3.7)

Corollary 3.6 Let E be a saturated μ-B.f.s. If μ is σ -finite, then

(i) E×× is a μ-B.f.s. with the Fatou property.
(ii) E has the σ -Fatou property if and only if E has the Fatou property.

Proof Since μ is σ -finite we have that E× is a saturated μ-B.f.s. [28, Ch. 15, §71,
Thm. 4]. Thus, from Theorem 3.5 we obtain (i).

Now from the σ -Fatou property in E it follows that E ≡ E×× [28, Ch. 15, §71,
Thm. 1]. Therefore from (i) we have (ii). ��
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Let us fix g ∈ E×. Then the function ϕg : E → K defined by

ϕg( f ) :=
∫

�

g f dμ, (3.8)

is a linear and bounded functional such that ‖ϕg‖ = ‖g‖E× . Thus we consider the
operator

R : E× → E∗ defined by R(g) := ϕg. (3.9)

Clearly R is a linear isometry, called canonical isometry. Accordingly, the associate
space E× can be identified with a certain closed subspace of E∗. The canonical
isometry also preserves the order in the sense that

g ≥ 0 if, and only if, ϕg ≥ 0.

In the case K = C we also have that g is real if, and only if, ϕg is real. Therefore if R
is onto, then R is an order isometry. Hence in what follows we will write E× = E∗
to mean that the canonical isometry R is onto.

Next we distinguish two necessary conditions for E× = E∗ to hold. We will need
the following result, which is obtained from [29, Thm. 102.3, p. 415].

Lemma 3.7 If E is a Banach lattice, then E∗ has the Fatou property.

We also need to recall that a functional ϕ ∈ E∗ is σ -order continuous whenever
fn ↓ 0 implies ϕ( fn) → 0.

Proposition 3.8 Let E be a saturated μ-B.f.s. If E∗ = E×, then E is order continuous
and E× has the Fatou property.

Proof Since E is a Dedekind σ -complete Banach lattice, we only have to show that
E is σ -order continuous. And so, by [29, Lemma 84.1, Thm. 102.7] it is enough to
establish that ϕ is σ -order continuous for any ϕ ∈ (E∗)+. So, take ϕ ∈ E∗ such that
ϕ ≥ 0 and consider { fn} ⊂ E satisfying that fn ↓ 0. Since ϕ is positive, there exists
g ∈ (E×)+ such that

ϕ( f ) =
∫

�

g f dμ, ∀ f ∈ E .

Then {g fn} ⊂ L1(μ) is a decreasing sequence such that 0 ≤ g fn . Since the space
L1(μ) is Dedekind σ -complete, there exists 0 ≤ h = infn g fn . Let A := suppg. It is
clear that hχ�\A = 0. Taking 0

0 := 0, we have that

hχA

g
≤ fnχA ≤ fn, ∀ n ∈ N.

It follows that hχA
g ∈ E and from fn ↓ 0 we have that hχA

g ≤ 0. Hence hχA = 0 and

then g fn ↓ 0. Therefore ϕ( fn) = ∫
�

g fndμ ↓ 0. So ϕ is σ -order continuous.
The other affirmation follows from the above lemma. ��
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4 Locally σ -finite measure defined on a δ-ring

Let us assume now that the σ -algebra � that we have been considering is given as
� = Rloc, where R is a δ-ring and μ = |λ|, where λ : R → [0,∞] is a measure on
R. Noting that for any A ∈ Rloc with |λ|(A) > 0 we can find B ∈ RA with λ(B) > 0,
next we give a simple sufficient condition for E to be saturated.

Lemma 4.1 Let E be a |λ|-B.f.s. If S(R) ⊂ E, then E is saturated.

Remark 4.2 When S(R) ⊂ E , the space E is a B.f.s. with respect to (�,R, λ) in the
sense introduced by Delgado in [9, Def. 3.1]. Thus these class of spaces are always
saturated.

Let ν : R → X be a vector measure having λ : R → [0,∞] as a local control
measure. For 1 ≤ p < ∞, the spaces L p

w(ν) and L p(ν) are defined by

L p
w(ν) :=

{
f ∈ L0(ν) : | f |p ∈ L1

w(ν)
}

and L p(ν) :=
{

f ∈ L0(ν) : | f |p ∈ L1(ν)
}

.

Each function in L p
w(ν) is called weakly p-integrable with respect to ν and each

function in L p(ν) is called p-integrable with respect to ν. Note that L p(ν) ⊂ L p
w(ν).

Moreover, L p
w(ν) and L p(ν) are |λ|-B.f.s. with norm

‖ f ‖p,ν := ‖| f |p‖
1
p
ν = sup

x∗∈BX∗

(∫

�

| f |pd|〈ν, x∗〉|
) 1

p

, ∀ f ∈ L p
w(ν).

Also S(R) is a dense subspace of L p(ν), the space L p(ν) is σ -order continuous and
L p

w(ν) has the σ -Fatou property [17, p. 37].
From the above lemma and Theorem 3.5 we obtain:

Proposition 4.3 Let 1 ≤ p < ∞. Then L p(ν) is saturated. Thus, L p(ν)×, with norm
‖ · ‖ν× := ‖ · ‖L p(ν)× , is a |λ|-B.f.s. with the σ -Fatou property. If in addition the
measure λ is σ -finite, then L p(ν)× has the Fatou property.

Remark 4.4 Since L1(ν) is always saturated with respect to any local control measure
for ν, by Lemma3.1we have that L1(ν) is order dense in L0(|λ|). Using othermethods,
this result was established by Calabuig et al. [4, 4.2].

Example 4.5 Given avectormeasure ν, let us consider its variation |ν| as a local control
measure. Then L1(ν)× is a |ν|-B.f.s. with the σ -Fatou property. It may happen that
the range of |ν| is {0,∞}. For instance, if � is the Lebesgue σ -algebra on [0, 1], then
the function ν : � → L2([0, 1]) defined by ν(A) := χA is a vector measure whose
range is {0,∞} [5, p. 57]. In this case L1(|ν|) = {0} and so L1(ν)× = {g ∈ L0(|ν|) :
g f = 0, ∀ f ∈ L1(ν)} = {0}. Thus clearly the space L1(ν)× is not saturated. Then
in this situation the study of the associate space will not give interesting information.

As we have just seen, when the measure involved is not σ -finite the associate space
is not necessarily saturated. This motivates to look for a class of measures for which
this problem does not occur. In this direction, let us recall the following definition,
introduced by Brooks and Dinculeanu [3, p. 162].
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Definition 4.6 A measure λ : R → [0,∞] is locally σ -finite, if for each B ∈ R,
there exists {Bn}n∈N ⊂ R such that B = ⋃∞

n=1 Bn and λ(Bn) < ∞, ∀ n ∈ N.

Clearly any positive σ -finite measure on a σ -algebra is locally σ -finite.

Example 4.7 Let us consider an uncountable set �. Let R := {B ⊂ � : B is finite}
and λ : R → [0,∞] be the counting measure. Then R is a δ-ring and λ is a locally
σ -finite measure which is not σ -finite.

Remark 4.8 Consider a locally σ -finite measure λ : R → [0,∞] and a |λ|-B.f.s. E .
Let us take A ∈ Rloc and assume that

A :=
∞⋃

n=1

Bn ∪ N with {Bn} ⊂ R, λ(Bn) < ∞, ∀ n ∈ N and N ∈ N0(|λ|). (4.1)

Hence (A, (RA)loc, |λA|) is a σ -finite measure space, where (RA)loc is the σ -
algebra related to RA and λA is the restriction of λ to RA. It follows that the space
E A defined in (3.2), with norm ‖ · ‖A, is a saturated |λA|-B.f.s. As in this case |λA| is
σ -finite, we have that E×

A , with norm ‖ · ‖E×
A
, is a saturated |λA|-B.f.s.

Note that if B ∈ R, then B has the form (4.1) and in this case RB = (RB)loc.
Hence (B,RB, λB) is a σ -finite measure space.

We now show that the problem of having nonsaturated associate spaces does not
appear when we work with a locally σ -finite measure.

Theorem 4.9 Let E be a saturated |λ|-B.f.s. If the measure λ is locally σ -finite, then
E× is a saturated |λ|-B.f.s.

Proof Let A ∈ Rloc be such that |λ|(A) > 0 and consider B ∈ RA satisfying
λ(B) > 0. Since EB , defined in (3.2), is a saturated λB-B.f.s. and λB(B) > 0 there
exists C ∈ RB with 0 < λB(C) = λ(C) and χC ∈ E×

B . Now take f ∈ E . Then
fB ∈ EB and

∫
�

| f |χC d|λ| = ∫
B | fB |χC d|λB | < ∞. Hence χC ∈ E×. ��

Hereafter, to the condition that E be a saturated |λ|-B.f.s. we will add that of
λ : R → [0,∞] being always a locally σ -finite measure and sometimes we will
omit it explicitly. In the σ -finite case it is well known that E ≡ E×× when E has the
σ -Fatou property. By using this fact we will establish the corresponding result in the
more general context we are discussing.

Theorem 4.10 If E has the Fatou property, then E ≡ E××.

Proof As we have that E ⊂ E×× and ‖ f ‖E×× ≤ ‖ f ‖E , ∀ f ∈ E , it only rests to
prove the another contention and the other norm inequality. For this, it is enough to
establish the conclusion only for non-negative functions.

Let 0 ≤ f ∈ E××. Fix B ∈ R. Since E has the Fatou property we have that EB is
also a λB-B.f.s. with the Fatou property. Moreover, as established in Remark 4.8, λB

is a σ -finite measure. Then we obtain EB ≡ E××
B [28, Ch. 15, §71, Thm. 1]. Denote
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by fB the restriction of f to B. Hence fB ∈ EB and ‖ fB‖B = ‖ fB‖E××
B

. Noting that

( fB)� = f χB , we have f χB ∈ E and ‖ f χB‖E = ‖ f χB‖E×× .
On the other hand, as R is a directed set with the order given by B ≤ C if, B ⊂

C, ∀B, C ∈ R, we can consider the net { f χB}B∈R ⊂ E . Then { f χB}B∈R is an
upwards directed system and ‖ f χB‖E = ‖ f χB‖E×× ≤ ‖ f ‖E×× , ∀ B ∈ R. Since E
has the Fatou property, there exists h ∈ E ⊂ E×× with h = supB∈R f χB and

‖h‖E = sup
B∈R

‖ f χB‖E = sup
B∈R

‖ f χB‖E×× ≤ ‖ f ‖E×× . (4.2)

Assume that there exists A ∈ Rloc such that hχA < f χA and |λ|(A) > 0. Then
for some B ∈ RA with positive measure we have that hχB < f χB , which is a
contradiction and it follows that f ∈ E . Moreover, as f χB ≤ f , ∀ B ∈ R we have
that h ≤ f , λ-a.e. Therefore h = f , |λ|-a.e. The remaining inequality between the
norms follows from (4.2). ��

It is well known that if μ is a σ -finite measure and E is a μ-B.f.s., then we can
write L1(μ) = { f g : f ∈ E, g ∈ E×}. Next we will show that this result remains
valid when we consider a locally σ -finite measure.

Proposition 4.11 Let λ be a locally σ -finite measure and E be a saturated |λ|-B.f.s.
If h ∈ L1(λ):

(i) then for each ε > 0 there exist f ∈ E and g ∈ E× such that

h = f g and ‖ f ‖E‖g‖E× ≤ (1 + ε)

∫

�

|h|d|λ|.

(ii) if in addition E has the σ -Fatou property, then there exist f ∈ E and g ∈ E×
such that

h = f g and ‖ f ‖E‖g‖E× =
∫

�

|h|d|λ|.

Proof If h = 0, the conclusion is clear. Assume that h �= 0. Since h ∈ L1(λ), we have
that A := supph = ⋃∞

n=1 Bn ∪ N , where {Bn} ⊂ R and N ∈ N0(λ). As λ is a locally
σ -finite measure we can assume that λ(Bn) < ∞, ∀ n ∈ N. Then λA is σ -finite and
h A ∈ L1(λA).

(i) Given ε > 0, [15, Thm. 1, (ii)] there exist f̃ ∈ E A and g̃ ∈ E×
A such that

h A = f̃ g̃ and ‖ f̃ ‖E A‖g̃‖E×
A

≤ (1 + ε)

∫

A
|h A|d|λA|.

(ii) Since E has the σ -Fatou property it follows that E A also has it. From [15,
Thm. 1i)] we get f̃ ∈ E A and g̃ ∈ E×

A such that

h A = f̃ g̃ and ‖ f̃ ‖E A‖g̃‖E×
A

=
∫

A
|h A|d|λA|.



Associate space with respect 529

As h = h AχA, by taking f := f̃ � ∈ E and g := g̃� ∈ E×, the conclusion
follows. ��

In the σ -finite case we know that E× = E∗ if, and only if, E is σ -order continuous
[28, Ch. 15, §72, Thm. 5]. We proved in Proposition 3.8 that if E× = E∗, then E
is σ -order continuous and E× has the Fatou property. Now we will show that the
converse also is valid in our context. For this let us recall that an ideal Y of a Banach
lattice X is a band whenever, for every subset D of Y possessing a supremum in X ,
this supremum is already in Y .

Theorem 4.12 If E is σ -order continuous, then the following properties are equiva-
lent:

(i) E× = E∗.
(ii) E× is a band of E∗.
(iii) E× has the Fatou property.
(iv) E× has the weak Fatou property.

Proof The implications (i)⇒ (ii) and (iii)⇒ (iv) are clear. (ii)⇒ (iii) Let {gτ } ⊂ E×
be an upwards directed system such that supτ ‖gτ‖E× < ∞. Let us take ϕτ := R(gτ ).
Then {ϕτ } ⊂ E∗ is an upwards directed system such that supτ ‖ϕτ‖ < ∞. From
Lemma 3.7 we have that E∗ has the Fatou property. Thus there exists ϕ ∈ E∗ such
that ϕτ ↑ ϕ and ‖ϕ‖ = supτ ‖ϕτ‖. Now since {ϕτ } ⊂ R(E×) and R(E×) is a band
of E∗ we have that ϕ ∈ R(E×). Let g ∈ E× be such that ϕ = R(g). Since R is an
order isometry gτ ↑ g and ‖g‖E× = supτ ‖gτ‖E× .

(iv) ⇒ (i) Now let us assume that E× has the weak Fatou property. First note that
since E∗ is a Banach lattice and R is a linear operator it is enough to represent only
the positive functionals. Take 0 ≤ ϕ ∈ E∗. Consider the δ-ring R(E) := {B ∈ R :
χB ∈ E} and define m : R(E) → [0,∞) by m(B) := ϕ(χB), ∀ B ∈ R(E). Since E
is σ -order continuous and ϕ is a positive linear functional we have that m is a positive
measure.

Fix B ∈ R(E). Then RB = R(E)B . Let us denote by m B the restriction of m
to RB .Then m B is bounded. On the other hand as λ is a locally σ -finite measure, its
restriction λB toRB is a positive σ -finite measure.

Now let A ∈ RB with λB(A) = |λ|(A) = 0, then χA = 0, λ-a.e. Hence m B(A) =
0. By the Radon–Nikodym Theorem [26, p. 121] there exists a unique hB ∈ L0(RB)

such that

ϕ(χA) = m B(A) =
∫

A
hBdλB =

∫

B
hBχAdλB, ∀ A ∈ RB .

Using a standard procedure it follows now that

ϕ( f ) =
∫

B
hB f dλB, ∀ f ∈ EB . (4.3)

Let us denote by HB the canonical extension of hB , then HB ∈ E×, ϕB( f ) :=
ϕ( f χB) = ∫

�
f HBd|λ|, ∀ f ∈ E and, by the uniqueness of hB it turns out that

HBχC = HB∩C , ∀ C ∈ R. Noting that ϕB ≤ ϕ we have that
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‖HB‖E× = ‖ϕB‖ ≤ ‖ϕ‖ < ∞.

This shows that supB∈R(E) ‖HB‖E× < ∞. It turns out that {HB}B∈R(E) ⊂ E× is
an upwards directed system. Now since E× has the weak Fatou property, there exists
h = supB∈R(E) HB ∈ E×.

Let f ∈ E+. To prove that ϕ( f ) = ∫
�

f hd|λ| first we will show that HB =
hχB, ∀ B ∈ R(E). Fix B ∈ R(E). It is clear that HB ≤ hχB . Let us assume
that HB < hχB , so we can take C ∈ RB with positive measure such that HB(t) <

hχB( f ), ∀ t ∈ C . Define k = hχ�\C + HBχC . Now let D ∈ R(E), then

HD = HDχ�\C + HD∩C ≤ hχ�\C + HBχC = k,

that is, k is an upper bound of {HB}B∈R(E) which contradicts that h is the supremum.
We conclude that HB = hχB .

Since f h ∈ L1(|λ|), it follows that A := supp f h = ⋃∞
n=1 Bn ∪ N where {Bn}

is a disjoint family of subsets of R and N is a |λ|-null set. Observe that since λB is
σ -finite and EB is saturated, ∀ B ∈ R, by [28, Ch. 15, §67, Thm. 4] we can take
Bn ∈ R(E). Since E is order continuous, it follows that f χA = ∑∞

n=1 f χBn in E .
Assume that ϕ( f χ�\A) > 0. Then f χ�\A > 0, so we can choose B ∈ R(E)�\A such
that |λ|(B) > 0 and f χB > 0. Take its corresponding HB ∈ E×. So, 0 < ϕ( f χB) =∫
�

f HBd|λ| = ∫
�

f hχBd|λ|, but B ⊂ �\supp f h, thus
∫
�

f hχBd|λ| = 0, which is
a contradiction. Therefore ϕ( f χ�\A) = 0 and so

ϕ( f ) =
∞∑

n=1

ϕ( f χBn ) =
∞∑

n=1

∫

�

f HBd|λ|

=
∞∑

n=1

∫

�

f hχBd|λ| =
∫

�

∞∑

n=1

f χBhd|λ| =
∫

�

f hd|λ|.

This show that ϕ = ϕh ∈ R(L1(ν)×) and hence the conclusion follows. ��
Although the above theorem characterizes when E× = E∗, up to now we do not

know if E× always has the Fatou property. Next we present a situation where this
holds. The proof follows from Theorem 4.12 and Proposition 3.3.

Corollary 4.13 Let λ : R → [0,∞] a locally σ -finite measure and E be a saturated
λ-B.f.s. If E and E× are σ -order continuous, then E× = E∗.

Using Theorem 4.12 we can give a characterization of reflexivity as follows.

Theorem 4.14 Let λ be a locally σ -finite measure and E a saturated λ-B.f.s. If E is
order continuous then the space E is reflexive if, and only if, E = E×× and E× is
σ -order continuous.

Proof Let us denote by R1 : E× → E∗ and R2 : E×× → E×∗ the corresponding
canonical isometries. Then for the adjoint operator of R1 we have R∗

1 : E∗∗ → E×∗.
First assume that E× is σ -order continuous and E = E××. Then by Corollary 4.13
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R1 is onto and by hypothesis E×× = E . So E×× is σ -order continuous and has the
σ -Fatou property. It follows that E×× has the Fatou property and so we can apply
Theorem 4.12 to obtain that R2 is onto. Let us see that R∗

1 j = R2 where j : E → E∗∗
is the canonical injection. Take f ∈ E and g ∈ E×, then

〈g, R∗
1 j ( f )〉 = 〈R1(g), j ( f )〉 = 〈 f, R1(g)〉 =

∫

�

f gd|λ| = 〈g, R2( f )〉.

Therefore j is onto, that is, E is reflexive.
Now assume that E is reflexive. To establish that E = E×× it only rests to prove

that E×× ⊂ E . Take h ∈ E××. Since R1 is an injective linear operator with closed
range, it follows that R∗

1 is onto [11, Thm. VI.6.2]. Hence there exists ϕ ∈ E∗∗ such
that R∗

1(ϕ) = R2(h). Let f ∈ E satisfy j ( f ) = ϕ. Thus for g ∈ E× we have

〈g, R∗
1(ϕ)〉 = 〈R1(g), ϕ〉 = 〈R1(g), j ( f )〉 = 〈 f, R1(g)〉 =

∫

�

f gd|λ|.

Hence,
∫
�

f gd|λ| = 〈g, R2(h)〉 = ∫
�

hgd|λ|. Then h = f , |λ|-c.t.p. and h ∈ E .
We will now prove that R2 is onto, then by Proposition 3.8 we will obtain that

E× is order continuous. Consider ϕ ∈ L1(ν)∗∗, then ϕ ◦ R−1
1 : R1(E×) → K is

linear and bounded. By the Hahn–Banach Theorem there exists ϕ̃ ∈ E∗∗ such that
〈ψ, ϕ̃〉 = 〈ψ, ϕ ◦ R−1

1 〉, ∀ ϕ ∈ R1(E×). Let f ∈ E = E×× be satisfy j ( f ) = ϕ̃.
Then for each g ∈ E× we have

〈g, R2( f )〉 =
∫

�

f gd|λ| = 〈 f, R1(g)〉 = 〈R1(g), j ( f )〉

= 〈R1(g), ϕ̃〉 =
〈
R1(g), ϕ ◦ R−1

1

〉
= 〈g, ϕ〉

It follows that ϕ = R2( f ) and we conclude that R2 is onto. ��
Proposition 4.15 Let λ be a locally σ -finite measure and E a saturated |λ|-B.f.s. If
E× has the weak Fatou property, then E× is a band of E∗.

Proof To prove that R(E×) is an ideal of E∗ we can proceed as in implication (iv) ⇒
(i) of Theorem 4.12 only observing that if 0 ≤ ϕ ≤ ϕg ∈ R(E×), then the set function
mϕ : R(E) → [0,∞), defined by mϕ(B) = ϕ(χB) is a positive measure. Now let
A ⊂ E× be a non empty set such that there exists ϕ := supg∈A ϕg ∈ E∗. We have to
prove that ϕ ∈ R(E×).

Let us note that F := {F ⊂ A : F is finite} is a directed set with the order
given by F1 ≤ F2 if F1 ⊂ F2. For each F ∈ F define ϕF := maxg∈F ϕg . Let us fix
F0 ∈ F and take F0 := {F ∈ F : F0 ⊂ F}. It turns out that supF∈F0

ϕF = ϕ. Then
0 ≤ ϕF − ϕF0 ≤ ϕ − ϕF0 , ∀ F ∈ F0. Thus {ϕF − ϕF0}F0 is an upwards directed
system such that supF∈F0

‖ϕF − ϕF0‖ < ∞. Since {ϕF − ϕF0}F0 ⊂ R(E×) and R

is an order isometry we obtain an upwards directed system {gF }F0 ⊂ E×+ with
supF∈F0

‖gF‖E× < ∞. By the weak Fatou property in E×, there exists g ∈ E× such



532 C. Avalos-Ramos, F. Galaz-Fontes

that gF ↑ g. Using again that R is an order isometry we have that ϕF − ϕF0 ↑ ϕg .
Since supF∈F0

ϕF = ϕ we have that ϕ − ϕF0 = ϕg . Therefore ϕ ∈ R(E×). ��
The following result was established in [29, p. 418]. We obtain it as consequence

of the above proposition and Theorem 3.5.

Corollary 4.16 Let E be a saturated |λ|-B.f.s. If |λ| is σ -finite, then E× is a band of
E∗.

5 Brooks–Dinculeanu measure

Let ν : R → X be a vector measure defined on a δ-ring. Since we are interested
in providing a representation of the dual space of L1(ν) as its associate space, it is
important to know if ν has a local control measure which is locally σ -finite. Then, by
Theorem 4.9, the associate space of L1(ν), with respect to this local control measure,
will be saturated. Let us distinguish this kind of measures.

Definition 5.1 A measure λ : R → [0,∞] is a Brooks–Dinculeanu measure for ν,
if λ is a local control measure for ν which is locally σ -finite.

Example 5.2 1. Let ν : � → X be a vector measure defined on a σ -algebra. If
μ : � → [0,∞) is a Rybakov control measure for ν, then μ is a Brooks–
Dinculeanu measure for ν.

2. Let ν : R → X be a σ -finite vector measure. Then ν has a bounded local control
measure λ : R → [0,∞) [8, Thm. 3.3]. Hence, λ is a Brooks–Dinculeanu for ν.

Fortunately, it turns out that each vector measure defined in a δ-ring has a Brooks–
Dinculeanu measure. This result was established by Jiménez Fernández et al. in [16,
p. 3]. Given its importance, we will state it below.

Theorem 5.3 If ν : R → X is a vector measure, then ν has a Brooks–Dinculeanu
measure.

Let us define

R̂ := {B ∈ R : λ(B) < ∞}.
It is clear that R̂ is a δ-ring satisfying that R̂ ⊂ R. Moreover, it turns out that
Rloc = R̂loc. Now let us show that

|〈ν, x∗〉| = |〈̂ν, x∗〉|, ∀ x∗ ∈ X∗, (5.1)

where ν̂ is the restriction of ν to R̂. By definition we obtain that |〈̂ν, x∗〉| ≤ |〈ν, x∗〉|.
To establish the other inequality let us fix x∗ ∈ X∗ and consider A ∈ Rloc. Take
B ∈ RA. Since λ is locally σ -finite, there exists an increasing sequence, {Bn} ⊂ R̂
such that B = ⋃∞

n=1 Bn . So,

|〈ν, x∗〉|(B) = sup
n

|〈ν, x∗〉|(Bn) = sup
n

|〈̂ν, x∗〉|(Bn)

≤ sup
C∈R̂A

|〈̂ν, x∗〉|(C) = |〈̂ν, x∗〉|(A).
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It follows that |〈ν, x∗〉|(A) ≤ |〈̂ν, x∗〉|(A). Hence we have established (5.1).
From (5.1) we have that

‖ f ‖ν = ‖ f ‖̂ν, ∀ f ∈ L0(Rloc). (5.2)

Thus L1
w(ν) ≡ L1

w(̂ν). Since (5.2) is valid, from the density of S(R) in L1(ν) and of
S(R̂) in L1(̂ν), to prove that L1(ν) ≡ L1(̂ν), it is sufficient to check that S(R) ⊂ L1(̂ν)

and that S(R̂) ⊂ L1(ν). Noting that R̂ ⊂ R the second contention is clear. Now
consider B ∈ R and take {Bn} ⊂ R̂ satisfying that Bn ⊂ Bn+1 and B = ⋃∞

n=1 Bn .
Then χBn → χB , moreover

∫

A
χBn d ν̂ = ν̂(Bn ∩ A) = ν(Bn ∩ A) =

∫

A
χBn dν →

∫

A
χBdν, ∀ A ∈ Rloc.

From [8, Prop. 2.3] we have that χB ∈ L1(̂ν). It follows that S(R) ⊂ L1(̂ν) and
Iν(s) = Îν(s), ∀ s ∈ S(R). By the continuity of the integration operators we have
Iν = Îν . Therefore, we have proven the following result and so, whenever we find it
convenient we can work on the δ-ring R̂ instead of R.

Lemma 5.4 If λ : R → [0,∞] is a Brooks–Dinculeanu measure for a given vector
measure ν, then

(i) for each x∗ ∈ X∗ we have that |〈ν, x∗〉| = |〈̂ν, x∗〉|,
(ii) L1

w(ν) ≡ L1
w(̂ν), L1(ν) ≡ L1(̂ν) and

∫
�

f dν = ∫
�

f d ν̂, ∀ f ∈ L1(ν).

Curbera and Ricker established that L p(ν)×× ≡ L p
w(ν) when a vector measure

defined on a σ -algebra and a Rybakov control measure are considered [7, Prop. 2]. We
will show that this equality remains true ifwe consider instead a vectormeasure defined
on a δ-ring and a Brooks–Dinculeanu measure. Before it is necessary to establish a
useful characterization for the functions in L1

w(ν).

Lemma 5.5 Let f ∈ L0(Rloc). Then f ∈ L1
w(ν) if and only if for each B ∈ R,

f χB ∈ L1
w(ν) and supB∈R ‖ f χB‖ν < ∞. In this case ‖ f ‖ν = supB∈R ‖ f χB‖ν .

Proof First let us assume that f ∈ L1
w(ν). Since L1

w(ν) is a Banach latticewe have that
f χB ∈ L1

w(ν) and ‖ f χB‖ν ≤ ‖ f ‖ν ,∀ B ∈ R. Then, supB∈R ‖ f χB‖ν ≤ ‖ f ‖ν < ∞.
Now assume that f χB ∈ L1

w(ν), ∀ B ∈ R and M := supB∈R ‖ f χB‖ν < ∞. Let
x∗ ∈ BX∗ , then

sup
B∈R

∫

B
| f |d|〈x∗, ν〉| ≤ M .

From Proposition 2.1 we obtain that f ∈ L1(|〈x∗, ν〉|), ∀ x∗ ∈ BX∗ . Thus f ∈ L1
w(ν)

and ‖ f ‖ν ≤ M . ��
Although most of the time we will not state it explicitly, in what follows λ : R →

[0,∞] will be a Brooks–Dinculeanu measure for a given vector measure ν and we
will consider L p

w(ν) and L p(ν) as Banach function spaces with respect to |λ|.
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Theorem 5.6 Let 1 ≤ p < ∞. Then L p(ν)×× ≡ L p
w(ν).

Proof First we prove that L p
w(ν) ⊂ L p(ν)×× and ‖ f ‖p,ν×× ≤ ‖ f ‖p,ν , ∀ f ∈ L p

w(ν).
Let ϕ ∈ S(Rloc) be such that ϕ ∈ L p

w(ν) and B ∈ R̂. Then ϕχB ∈ S(R) ⊂ L p(ν).
By the Hölder inequality, for each g ∈ L p(ν)×

∫

B
|gϕ|d|λ| ≤ ‖g‖p,ν×‖ϕχB‖p,ν ≤ ‖g‖p,ν×‖ϕ‖p,ν .

From Proposition 2.1 we have

∫

�

|gϕ|d|λ| = sup
B∈R̂

∫

B
|gϕ|d|λ| ≤ ‖g‖p,ν×‖ϕ‖p,ν .

It follows that ϕ ∈ L p(ν)×× and

‖ϕ‖p,ν×× ≤ ‖ϕ‖p,ν . (5.3)

Now consider f ∈ L p
w(ν) and take {ϕn} ⊂ S(Rloc) with 0 ≤ ϕn ↑ | f |. Then,

{ϕn} ⊂ L p
w(ν). By (5.3), ‖ϕn‖p,ν×× ≤ ‖ϕn‖p,ν ≤ ‖ f ‖p,ν , ∀ n ∈ N. Since L p(ν)××

has the σ -Fatou property it turns out that f ∈ L p(ν)×× and ‖ f ‖p,ν×× ≤ ‖ f ‖p,ν .
For the other contention let us fix B ∈ R and let νB be the restriction of ν to the

σ -algebra RB . As L1(νB) ≡ L1(ν)B , it follows that L p(νB) ≡ L p(ν)B . Hence we
obtain that L p(νB)×× ≡ L p

w(νB) [7, Prop. 2].
Take f ∈ L p(ν)×× and let us denote by fB its restriction to B, then fB ∈ L p

w(νB)

and ‖ fB‖p,νB = ‖ fB‖p,ν××
B

≤ ‖ f ‖p,ν×× . And so, for each x∗ ∈ BX∗

∫

B
| f |pd|〈ν, x∗〉| ≤ ‖ f ‖p

p,ν×× .

From the above proposition we have | f |p ∈ L1
w(ν) and ‖| f |p‖ν ≤ ‖ f ‖p

p,ν×× . Hence

f ∈ L p
w(ν) and ‖ f ‖p,ν ≤ ‖ f ‖p,ν×× . ��

The following result was established in [4, p. 77] by other methods, we obtain it as
consequence of the above proposition and Corollary 3.6.

Corollary 5.7 Let 1 ≤ p < ∞. If ν : R → X is a σ -finite vector measure, then
L p

w(ν) has the Fatou property.

From Theorem 5.6 and Proposition 3.3 we obtain:

Corollary 5.8 If L p
w(ν) ⊂ L1(λ), 1 ≤ p < ∞, then L p

w(ν) has the Fatou property.

The sufficiency in the next result was proven in [4, Prop. 5.4]. Since L1(ν) isσ -order
continuous we obtain it from Theorems 4.10 and 5.6.

Corollary 5.9 L1(ν) has the Fatou property if, and only if, L1(ν) = L1
w(ν).
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As in the σ -finite case, we have the next result.

Lemma 5.10 If E and F are μ-B.f.s such that E ⊂ F and there exists a > 0 with
‖ f ‖F ≤ a‖ f ‖E , ∀ f ∈ E, then F× ⊂ E× and

‖g‖E× ≤ a‖g‖F× , ∀ g ∈ F×.

Corollary 5.11 L p(ν)× ≡ L p
w(ν)× and L p

w(ν)×× ≡ L p
w(ν), 1 ≤ p < ∞.

Proof From the above lemma,we have L p
w(ν)× ⊂ L p(ν)× and ‖g‖p,ν× ≤ ‖g‖L p

w(ν)× ,

∀ g ∈ L p
w(ν)×. Now consider f ∈ L p

w(ν) and g ∈ L p(ν)×, from theHölder inequality
and Theorem 5.6 we have that

∫

�

|g f |d|λ| ≤ ‖g‖p,ν×‖ f ‖p,ν×× = ‖g‖p,ν×‖ f ‖p,ν .

Hence g ∈ L p
w(ν)× and ‖g‖L p

w(ν)× ≤ ‖g‖p,ν× .
The second equality follows from Theorem 5.6. ��
In Proposition 3.5 we have seen that the associate space of a μ-B.f.s. has the Fatou

property when μ is σ -finite. We will show that this result remains true for certain
Brooks–Dinculeanu measures, introduced by Calabuig et al. [4, p. 77].

Definition 5.12 A vector measure ν isR-decomposable if we can write � = ⋃
α∈�

�α ∪ N , where N ∈ N0(ν) and {�α}α∈� ⊂ R is a family of pairwise disjoint sets
satisfying that

(a) if Aα ∈ R�α , ∀ α ∈ �, then
⋃

α∈� Aα ∈ Rloc, and
(b) if x∗ ∈ X∗ and Nα ∈ N0(〈ν, x∗〉), ∀ α ∈ �, then

⋃
α∈�Nα ∈ N0(〈ν, x∗〉).

Note that if ν is an R-decomposable vector measure and A ∈ Rloc is such that
A ∩ �α ∈ N0(ν), ∀ α ∈ �, then A ∩ �α is 〈ν, x∗〉-null, ∀ α ∈ � and ∀ x∗ ∈ BX∗ .
From b) in the above definition it follows that A is ν-null.

Some examples of R-decomposable measures are the σ -finite vector measures
and the discrete vector measures [4, Lemma 4.6, p. 77]. However there are R-
decomposable measures which are neither σ -finite nor discrete [4, p. 85].

Proposition 5.13 Let ν : R → X be a vector measure, λ : R → [0,∞] be a Brooks–
Dinculeanu measure for ν and E be |λ|-B.f.s. If S(R) ⊂ E and ν is R-decomposable,
then E× has the Fatou property.

Proof Since ν is R-decomposable, � = ⋃
α∈� �α ∪ N , where N ∈ N0(ν) and

{�α}α∈� ⊂ R is a family of pairwise disjoint sets satisfying (a) and (b) in Defini-
tion 5.12. Moreover, since λ is locally σ -finite we can consider that λ(�α) < ∞,
∀α ∈ �. Let us note that by Lemma 4.1, E is a saturated |λ|-e.f.B.

Let I ⊂ � be a countable set and take �I := ⋃
α∈I �α , RI := R�I and λI the

restriction of λ to the δ-ringRI . Then (�I , (RI )
loc, |λI |) is a σ -finite measure space

and EI := E�I is a |λI |-B.f.s. Then, from Theorem 3.5, we obtain that E×
I is a

|λI |-B.f.s. whit the Fatou property.
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Now let us consider an upwards directed system {gτ }τ∈K ⊂ E× such that gτ ≥ 0,
∀ τ ∈ K and M := supτ ‖gτ‖E× < ∞. Denoting by gτ,I to the restriction of
gτ to �I , we have that {gτ,I }τ∈K ⊂ E×

I is an upwards directed system, and from
(3.4), supτ ‖gτ,I ‖E×

I
≤ M < ∞. Since E×

I has the Fatou property, it turns out that

gI := supτ gτ,I ∈ E×
I and

‖gI ‖E×
I

= sup
τ

‖gτ,I ‖E×
I

≤ M . (5.4)

In particular, for each α ∈ � exists g{α} ∈ E×
{α} such that g{α} = supτ gτ,{α} and

‖g{α}‖E×
{α}

= sup
τ

‖gτ,{α}‖E×
{α}

.

Let us denote by gα the canonical extension of g{α} and define g := ∑
α∈� gα . As

N0(ν) = N0(|λ|) and from (a) in Definition 5.12 we have that g ∈ L0(|λ|).
Let us prove that g = supτ gτ . Consider α ∈ � and τ ∈ K . Since gτ χ�α ≤ gα ≤ g,

it follows that gτ ≤ g. Let us assume that g′ ∈ L0(|λ|) is such that gτ ≤ g′. Then
gτ χ�α ≤ g′χ�α . So, gα ≤ g′. Hence g ≤ g′ and g = supτ gτ .

Finally we will establish that g ∈ E×. Let us fix f ∈ BE and let I ⊂ � be
a countable set. Note that the canonical extension of gI = supτ gτ,I is given by
gI = ∑

α∈I gα and f I ∈ BEI , where f I is the restriction of f to �I . Moreover,∫
�

|gI f |d|λ| = ∫
�I

|gI f I |d|λI |. By using the monotone convergence theorem

∑

α∈I

∫

�

|gα f |d|λ| =
∫

�

|gI f |d|λ| =
∫

�I

|gI f I |d|λI | ≤ ‖gI ‖E×
I
.

From this and (5.4) we obtain that
∑

α∈I

∫
�

|gα f |dλ| ≤ M , for each finite subset I of
�. Then, there exists a countable set J ⊂ � such that

∫
�

|gα f |d|λ| = 0, ∀ α ∈ �\ J .
This implies that

∫

�

|g f |d|λ| =
∑

α∈J

∫

�

|gα f |d|λ| =
∫

�

|g J f |d|λ| ≤ M . (5.5)

We conclude that g ∈ E×; moreover, from lattice property of the norm in E× and
from (5.5), we have that ‖g‖E× = supτ ‖gτ‖E× . ��

Let us consider the canonical isometry R between L1(ν)× and L1(ν)∗. When ν is a
σ -finite vector measure, then ν has a bounded local control measure λ : R → [0,∞)

[8, Thm. 3.3]. Since L1(ν) is a σ -order continuous |λ|-B.f.s., then we have L1(ν)∗ =
L1(ν)× [28, Ch. 15, §72, Thm. 5]. In what follows we will present other situations
where this holds.

Since L1(ν) is an order continuous |λ|-B.f.s. from Theorem 4.12 we obtain the
following result.

Corollary 5.14 The following properties are equivalent:
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(i) L1(ν)× = L1(ν)∗.
(ii) L1(ν)× is a band of L1(ν)∗.
(iii) L1(ν)× has the Fatou property.
(iv) L1(ν)× has the weak Fatou property.

The next result is a consequence of Proposition 5.13 and the previous result.

Corollary 5.15 If ν is R-decomposable, then L1(ν)× = L1(ν)∗.

If E is a real σ -order continuous Banach lattice it is well known that there exists
an R-decomposable vector measure ν : R → E such that E is order isometric to
the space L1(ν) [10, Thm. 5]. Then from the above corollary we obtain the following
result.

Corollary 5.16 If E is a σ -order continuous Banach lattice, then there exist an R-
decomposable vector measure ν : R → E and a order isometry from L1(ν)× onto
E∗. More precisely, if T is a lattice isometry from E onto L1(ν), λ : R → [0,∞] is
a Brooks–Dinculeanu measure for ν and ϕ ∈ E∗, then there exists g ∈ L1(ν)× such
that

ϕ( f ) =
∫

�

(T f )gd|λ|, ∀ f ∈ E .

Proof Note that it only rests to verify that the result mentioned before remains valid
in the complex case. Since E is a σ -order continuous Banach lattice, then ER is
also a σ -order continuous Banach lattice. Thus, there exist anR-decomposable vector
measure ν̃ : R → ER and an onto lattice isometry S : L1(ν) → ER. Now let us define
ν : R → E , by ν(B) = ν̃(B), ∀ B ∈ R. It turns out that ν is an R-decomposable
vector measure and L1(ν)R = L1(ν̃). Let T : L1(ν) → E be the canonical extension
of S, then T is an onto lattice isometry [25, Lemma 3.8]. ��

As a consequence of Theorem 4.14 we obtain the following result.

Corollary 5.17 L1(ν) is reflexive if, and only if, L1(ν) = L1
w(ν) and L1(ν)× is

σ -order continuous.

Now from the previous result and Corollary 4.13 we have:

Corollary 5.18 If L1(ν) is reflexive, then L1(ν)× = L1(ν)∗.

If 1 < p < ∞, Ferrando and Rodríguez established that L p(ν)∗ is order contin-
uous when ν is defined on a σ -algebra [13, Thm 3.1]. Using the same arguments, it
follows that in our context we also have that L p(ν)× is order continuous. Then from
Corollary 4.13 we have the following result.

Corollary 5.19 L p(ν)× = L p(ν)∗, 1 < p < ∞.

Since L p(ν)× is order continuous and L p(ν) = L p
w(ν) if, and only if, L1(ν) =

L1
w(ν) [17, Prop. 3.1.6], the next result follows from Theorems 4.14 and 5.6. It was

proven when ν is defined in a σ -algebra by Fernández et al. [12, Cor. 3.10].
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Corollary 5.20 Let 1 < p < ∞. Then L p(ν) is reflexive if, and only if, L1(ν) =
L1

w(ν).

Let us fix 1 < p < ∞. Then Corollary 5.19 implies that each functional in L p(ν)∗
has the form ϕg , g ∈ L p(ν)×. So we can define S : L p(ν)×× → L p(ν)∗∗ by

〈ϕg, S(h)〉 :=
∫

�

ghd|λ|.

It turns out that S is a linear isometry and we will write L p(ν)×× = L p(ν)∗∗ to
indicate that is onto. Let R1 : L p(ν)× → L p(ν)∗ and R2 : L p(ν)×× → L p(ν)×∗ be
the corresponding canonical isometries, then S = (R∗

1)
−1 ◦ R2. Thus S is onto if, and

only if, R2 is it. So from Theorems 5.6 and 4.12 we have:

Corollary 5.21 Let 1 < p < ∞. Then L p
w(ν) has the Fatou property if, and only if,

L p
w(ν) = L p(ν)∗∗.

Remark 5.22 Calabuig, Delgado, Juan and Sánchez-Pérez asked if in general L1
w(ν)

always has the Fatou property [4, pp. 77–78]. With respect to this question we have
the following. Let 1 < p < ∞ and notice that L1

w(ν) has the Fatou property if, and
only if, L p

w(ν) has it. Then from the previous result we obtain that

L1
w(ν) has the Fatou property if, and only if, L p

w(ν) = L p(ν)∗∗.
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