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Abstract In this paper,we introduce a notion of higher-order Studniarski epiderivative
of a set-valued map and study its properties. Then, we discuss their applications to
optimality conditions in set-valued optimization. Higher-order optimality conditions
for strict andweak efficient solutions of a constrained set-valued optimization problem
are established. Some remarks on the existing results in the literature are given from
our results.

Keywords Higher-order Studniarski epiderivative · Set-valued optimization
problem · Optimality condition · Strict efficient solution · Weak efficient solution ·
C-preinvexity

Mathematics Subject Classification 32F17 · 46G05 · 54C60 · 90C46

1 Introduction

Set-valued optimization problems have been recently received much attention from
mathematicians since many practical models involve set-valued maps. However, the
idea of studying optimality conditions in terms of Gâteaux and Fréchet derivatives
for smooth single-valued optimization problems still plays a crucial role for modern
researches. Thus, several generalized derivatives have been proposed to replace clas-
sical derivatives in set-valued optimization. Most of them are based on the graph and
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epigraph of kinds of tangency (local linear approximations of a set). Let A be a subset
of a normed space X . The earliest tangency notion is the contingent cone TA(x0) of
A at x0 ∈ clA (the closure of A), defined respectively (shortly resp) as, see [3],

TA(x0) := {u ∈ X |∃tn → 0+, ∃un → u, x0 + tnun ∈ A}.
For higher-order contingent set, with u1, . . . , um−1 ∈ X , we get

Tm
A (x0, u1, . . . , um−1)

:= {u ∈ X |∃tn → 0+, ∃un → u, x0 + tnu1 + · · · + tm−1
n um−1 + tmn un ∈ A}.

Let a set-valued map F : X → 2Y (Y is also a normed space), the corre-
sponding higher-order contingent derivative of F at (x0, y0) ∈ grF with respect to
(u1, v1), . . . , (um−1, vm−1) ∈ X × Y is the set-valued map DmF(x0, y0, u1, v1, . . . ,
um−1, vm−1) : X → 2Y , defined by its graph:

grDmF(x0, y0, u1, v1, . . . , um−1, vm−1) := Tm
grF (x0, y0, u1, v1, . . . , um−1, vm−1).

Inspired by [14], another higher-order contingent derivative, called the Studniarski
derivative, was proposed by

DmF(x0, y0)(u)

:= {v ∈ Y |∃tn → 0+, ∃(un, vn) → (u, v), y0 + tmn vn ∈ F(x0 + tnun)}.
A direction of the higher-order Studniarski derivative does not depend on lower-order
directions. Some applications of this derivative in nonsmooth optimization were men-
tioned in [1,2,9,13,15].

On the other hand, it is well-known that, considering minimization problems,
epigraphs play a vital role. They are even more important than the more classic and
basic geometrical notion of graph. Therefore, epiderivatives based on epigraphs, in a
similar manner as the contingent derivative is based on graphs, have certain advan-
tages over other kinds of derivatives, see [3] for epiderivatives of extended-real valued
functions, and [4,8] for that of set-valued maps. For higher-order epiderivatives and
applications to set-valued optimization, the reader is referred to [6,12,16,17]. All these
higher-order epiderivatives are defined upon informations of lower-order approximat-
ing directions.

Since higher-order considerations are of great importance in mathematics (espe-
cially in optimality conditions), motivated by [14], we propose a notion of higher-order
Studniarski epiderivative in the paper. Then, we apply this object to optimality condi-
tions in set-valued optimization.

The lay-out of this paper is as follows. In Sect. 2, we recall some notions and prelim-
inaries needed for our results. In Sect. 3, the Studniarski epiderivative of a set-valued
map is introduced and its properties are discussed. In Sect. 4, we establish higher-
order optimality conditions for weak efficient solutions and strict efficient solutions
of a generalized set-valued optimization problem in terms of this epiderivative. From
our results, some remarks on the existing ones in the literature are given.
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2 Preliminaries

Throughout the paper, let X,Y be normed spaces and C ⊆ Y be a pointed closed
convex cone. BX (x, δ) stands for the closed ball with radius δ > 0 and centered at
x ∈ X and U(x) for the set of all neighborhoods of x . For A ⊆ Y , intA and clA denote
the interior and closure of A, resp. Y ∗ is used for the dual space of Y and 〈., .〉 for
the canonical pairing. With the cone C and the subset A above, we use the following
cones

coneA := {λa|λ ≥ 0, a ∈ A}, A(u) := cone(A + u) for u ∈ Y,

C∗ := {y∗ ∈ Y ∗|〈y∗, c〉 ≥ 0, ∀c ∈ C}.

A nonempty convex subset B of the cone C is said to be a base of C if C = coneB
and 0 /∈ clB. For A ⊆ Y , y0 ∈ A is an efficient point of A (y0 ∈ MinC A) if
(A − y0) ∩ (−C\{0}) = ∅. If intC = ∅, then y0 ∈ A is a weak efficient point of A
(y0 ∈ WMinC A) if (A − y0) ∩ (−intC) = ∅.

Let S ⊆ X , the domain, graph, and epigraph of a set-valued map F : S → 2Y are
defined by, resp,

domF := {x ∈ X |F(x) = ∅}, gr F := {(x, y) ∈ X × Y |y ∈ F(x)},
epi F := {(x, y) ∈ X × Y |y ∈ F(x) + C}.

Definition 2.1 Let F : S → 2Y , (x0, y0) ∈ grF , and an integer m ≥ 1.

(i) The point (x0, y0) is said to be a local efficient solution of F on S if there exists
U ∈ U(x0) such that y0 ∈ MinC F(S ∩U ).

(ii) Suppose that intC = ∅, the point (x0, y0) is said to be a local weak efficient
solution of F on S if there exists U ∈ U(x0) such that y0 ∈ WMinC F(S ∩U ).

(iii) [7] The point (x0, y0) is said to be a local strict efficient solution of order m of
F on S if y0 ∈ MinC F(x0) and there exist α > 0, U ∈ U(x0) such that for all
x ∈ (S ∩U )\{x0},

(F(x) + C) ∩ BY (y0, α||x − x0||m) = ∅.

The set of local strict efficient solutions of order m of F on S is denoted by
m-StrC F(S ∩U ).
IfU = X , thenwe get corresponding definitions for global solutions. It is obvious
to see that m-StrC F(S) ⊆ MinC F(S) ⊆ WMinC F(S). The following example
shows a case where the above inclusions may be strict.

Example 2.1 Let X = R, Y = R
2, C = R

2+, S = {0, 1/n}n∈N, and F : S → 2Y be
defined by

F(x) :=
{ {(y1, y2) ∈ Y |y21 + y22 ≤ 2} + C, if x = 0,

{(y1, y2) ∈ Y |y21 + y22 ≤ 2, y1 + y2 = −2 + 2x2} + C, if x ∈{1/n}n∈N.



502 N. L. H. Anh

By calculating, we get

2-StrC F(S) = {(−1,−1)},
MinC F(S) = {(y1, y2) ∈ Y |y21 + y22 = 2, y1 ≤ 0, y2 ≤ 0},

WMinC F(S) = {(y1, y2) ∈ Y |y21 + y22 = 2, y1 ≤ 0, y2 ≤ 0}
∪ {(y1, y2) ∈ Y |y1 ≥ 0, y2 = −√

2}
∪ {(y1, y2) ∈ Y |y1 = −√

2, y2 ≥ 0}.
Thus,

2-StrC F(S) � MinC F(S) � WMinC F(S).

Definition 2.2 Let S ⊆ X and F : S → 2Y .

(i) The set S is said to be convex if for all x1, x2 ∈ S, λ ∈ [0, 1],
λx1 + (1 − λ)x2 ∈ S.

(ii) [18,19] The set S is said to be invex if there exists η : X × X → X such that for
all x1, x2 ∈ S, λ ∈ [0, 1],

x2 + λη(x1, x2) ∈ S.

(iii) The map F is said to be C-convex on a convex subset S if for all x1, x2 ∈ S,
λ ∈ [0, 1],

λF(x1) + (1 − λ)F(x2) ⊆ F(λx1 + (1 − λ)x2) + C.

(iv) [5] Themap F is said to beC-preinvex with respect to η on S if for all x1, x2 ∈ S,
λ ∈ [0, 1],

λF(x1) + (1 − λ)F(x2) ⊆ F(x2 + λη(x1, x2)) + C.

(v) [20] The map F is said to be nearly C-subconvexlike if clcone(F(S) + C) is
convex.

Remark 2.1 (i) The convexity of S (C-convexity of F) is a special case of the invexity
of S (C-preinvexity of F , resp) with η(x, y) = x − y.

(ii) If F is C-convex, then F is nearly C-subconvexlike.
(iii) In general, the preinvexness is incomparable with the near subconvexlikeness,

see Remark 2.1(iii) in [11].

3 Higher-order Studniarski epiderivative

Definition 3.1 (i) The mth-order Studniarski set of A ⊆ X × Y at (x0, y0) ∈ clA is
defined by
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SmA (x0, y0) := {(u, v) ∈ X × Y |∃tn → 0+, ∃(un, vn) → (u, v),

(x0 + tnun, y0 + tmn vn) ∈ A}.

(ii) For F : X → 2Y and (x0, y0) ∈ grF , a single-valued map EDmF(x0, y0) :
X → Y whose epigraph equals the mth-order Studniarski set of the epigraph of
F at (x0, y0), i.e.,

epiEDmF(x0, y0) = SmepiF (x0, y0),

is called the mth-order Studniarski epiderivative of F at (x0, y0).

Remark 3.1 (i) If the mth-order Studniarski epiderivative exists, then it is unique.
The 1st-order Studniarski set and the 1st-order Studniarski epiderivative coincide
with the contingent cone and the contingent epiderivative, resp.

(ii) For comparison results (e.g., Proposition 3.1 below), recall that the mth-
order Studniarski derivative of F at (x0, y0), see [1], is the set-valued map
DmF(x0, y0) : X → 2Y such that grDmF(x0, y0) = SmgrF (x0, y0). Equivalently,
for all u ∈ X ,

DmF(x0, y0)(u)

:= {v ∈ Y | ∃tn → 0+, ∃(un, vn) → (u, v), y0 + tmn vn ∈ F(x0 + tnun)}.

The following definition will be necessary in the sequel.

Definition 3.2 For u ∈ X , F : X → 2Y is calledmth-order u-directionally compact at
(x0, y0) ∈ grF if, for every tn → 0+ and un → u, any sequence vn , with y0 + tmn vn ∈
F(x0 + tnun), contains a convergent subsequence. If this is satisfied for every u ∈ X ,
then “u-directionally” is replaced by “directionally”.

To get a basic relation between EDmF(x0, y0) and DmF(x0, y0), we need the
following property of the latter.

Lemma 3.1 Let F : X → 2Y be mth-order u-directionally compact at (x0, y0) ∈
grF. Then,

Dm(F + C)(x0, y0)(u) = DmF(x0, y0)(u) + C,

where (F + C)(.) := F(.) + C.

Proof “⊇”: Let v = y + c for some y ∈ DmF(x0, y0)(u) and c ∈ C . Then, there
exist tn → 0+, yn → y, and un → u such that, for all n,

y0 + tmn (yn + c) ∈ F(x0 + tnun) + C = (F + C)(x0 + tnun).

Because yn + c → y + c, v ∈ Dm(F + C)(x0, y0)(u).
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“⊆”: Let v ∈ Dm(F +C)(x0, y0)(u), i.e., there exist tn → 0+, (un, vn) → (u, v),
and cn ∈ C such that, for all n,

y0 + tmn

(
vn − cn

tmn

)
∈ F(x0 + tnun).

By the assumed compactness, vn − cn/tmn (or a subsequence) converges to some y.
Hence, y ∈ DmF(x0, y0)(u) and cn/tmn → v − y ∈ C . Thus, v ∈ DmF(x0, y0)
(u) + C . ��
Proposition 3.1 Let F : X → 2Y be mth-order directionally compact at (x0, y0) ∈
grF and EDmF(x0, y0) exist. Then, dom(EDmF(x0, y0)) = dom(DmF(x0, y0))
and for every u ∈ dom(EDmF(x0, y0)),

EDmF(x0, y0)(u) = MinDmF(x0, y0)(u).

Proof It follows from Definition 3.1(ii) and Remark 3.1(ii) that

epi(EDmF(x0, y0)) = SmepiF (x0, y0) = gr(Dm(F + C)(x0, y0)).

This means that, for u ∈ dom(Dm(F + C)(x0, y0)),

EDmF(x0, y0)(u) + C = Dm(F + C)(x0, y0)(u).

Hence,

EDmF(x0, y0)(u) = Min(EDmF(x0, y0)(u) + C)

= MinDm(F + C)(x0, y0)(u)

= Min(DmF(x0, y0)(u) + C) (Lemma 3.1)

= MinDmF(x0, y0)(u).

��
Example 3.1 Let X = Y = R, C = R+, F(x) := {y ∈ Y |y ≥ x2}, and (x0, y0) =
(0, 0). It is easy to check that F is 2nd-order directionally compact at (x0, y0). Direct
calculations yield, for all u ∈ X ,

ED2F(x0, y0)(u) = MinD2F(x0, y0)(u) = {u2}.

The compactness assumption in Proposition 3.1 is a sufficient condition, but not
necessary, as shown by the following example.

Example 3.2 Let X = R, Y = R
2, C = R

2+, F(x) ≡ R
2+, and (x0, y0) = (0, (0, 0)).

For all m ≥ 1, F is not mth-order directionally compact at (x0, y0) because, for any
u ∈ X and sequence un → u, by choosing tn = 1/n, yn = (n, n), we have y0+tmn yn ∈
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F(x0 + tnun) for all n. But, yn does not contain any convergent subsequence. By
calculating, one has, for all u ∈ X , DmF(x0, y0)(u) = R

2+ and

EDmF(x0, y0)(u) = MinDmF(x0, y0)(u) = {(0, 0)}.

The next proposition gives us an existence condition (inspired by [10]) for higher-
order Studniarski epiderivative in the case of Y = R.

Proposition 3.2 For F : X → 2R and (x0, y0) ∈ grF, assume that there are functions
f, g : X → R with epig ⊆ SmepiF (x0, y0) ⊆ epi f . Then, EDmF(x0, y0) is explicitly
expressed as, for x ∈ X,

EDmF(x0, y0)(x) = min{y ∈ R|(x, y) ∈ SmepiF (x0, y0)}. (1)

Proof Let h : X → R ∪ {−∞} be defined by, for x ∈ X ,

h(x) = inf{y ∈ R|(x, y) ∈ SmepiF (x0, y0)}.

The function h is well-defined on X since for every x ∈ X , there exists y ∈ R with
(x, y) ∈ SmepiF (x0, y0) (by epig ⊆ SmepiF (x0, y0)). We now claim that

h(x) = min{y ∈ R|(x, y) ∈ SmepiF (x0, y0)}. (2)

In fact, for x ∈ X , there is an infimal sequence yn such that yn → h(x) and (x, yn) ∈
SmepiF (x0, y0). Thus, (x, h(x)) ∈ SmepiF (x0, y0) since the mth-order Studniarski set
is closed. By assumption, −∞ < f (x) ≤ h(x), and hence (2) holds. Next, we
prove that epih = SmepiF (x0, y0). Let (x, α) ∈ SmepiF (x0, y0), it follows from (2) that
(x, α) ∈ epih. For the reverse inclusion, take (x, α) ∈ epih. Because (x, h(x)) ∈
SmepiF (x0, y0), there exist tn → 0+ and (xn, yn) → (x, h(x)) such that y0 + tmn yn ∈
F(x0 + tnxn) + R+. Therefore,

y0 + tmn (yn + α − h(x)) ∈ F(x0 + tnxn) + tmn (α − h(x))

+R+ ⊆ F(x0 + tnxn) + R+.

By setting (xn, yn) = (xn, yn + α − h(x)), which tends to (x, α), we get

(x0 + tnxn, y0 + tmn yn) ∈ epiF,

i.e., (x, α) ∈ SmepiF (x0, y0). Hence, h is the mth-order Studniarski epiderivative of F
at (x0, y0) and it follows from the uniqueness of EDmF(x0, y0) that (1) is satisfied. ��

The following proposition collects some properties of EDm
R F(x0, y0).

Proposition 3.3 Let F : X → 2Y and (x0, y0) ∈ grF. Then,

(i) If EDmF(x0, y0) exists, then EDmF(x0, y0)(0) = 0.
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(ii) Suppose that SmepiF (x0, y0) is a cone. If EDmF(x0, y0) exists, then it is positively
homogeneous. If, additionally, SmepiF (x0, y0) is convex, then EDmF(x0, y0) is
subadditive.

(iii) If Y = R and EDmF(x0, y0) is expressed by (1), then this derivative is mth-order
positively homogeneous. ��

Proof (i) Since (0, EDmF(x0, y0)(0)) ∈ epiEDmF(x0, y0), then for all t > 0,

(t · 0, tm EDmF(x0, y0)(0)) ∈ epiEDmF(x0, y0),

i.e.,

tm EDmF(x0, y0)(0) ∈ EDmF(x0, y0)(0) + C,

which implies that (tm − 1)EDmF(x0, y0)(0) ∈ C for all t > 0. Take t = 2 and
t = 1/2, then EDmF(x0, y0)(0) ∈ C ∩ (−C). Since C is pointed (C ∩ (−C) =
{0}), we get that EDmF(x0, y0)(0) = 0.

(ii) Let t > 0 and x ∈ X . Since (x, EDmF(x0, y0)(x)) ∈ epiEDmF(x0, y0) and
SmepiF (x0, y0) is a cone, we have

(t x, t EDmF(x0, y0)(x)) ∈ epiEDmF(x0, y0) = SmepiF (x0, y0),

i.e.,

t EDmF(x0, y0)(x) ∈ EDmF(x0, y0)(t x) + C,

which implies

t EDmF(x0, y0)(x) − EDmF(x0, y0)(t x) ∈ C. (3)

Moreover, since (t x, EDmF(x0, y0)(t x)) ∈ epiEDmF(x0, y0), we get(
x,

1

t
EDmF(x0, y0)(t x)

)
∈ epiEDmF(x0, y0),

which means

1

t
EDmF(x0, y0)(t x) ∈ EDmF(x0, y0)(x) + C,

equivalently,

t EDmF(x0, y0)(x) − EDmF(x0, y0)(t x) ∈ −C. (4)

Since C is pointed, it follows from (3) and (4) that for all t > 0, x ∈ X ,

t EDmF(x0, y0)(x) = EDmF(x0, y0)(t x).



Higher-order optimality conditions for strict and weak… 507

On the other hand, from (i), it follows that EDmF(x0, y0)(0) = 0. Hence,
EDmF(x0, y0) is positively homogeneous.
Next, we prove the subadditivity of EDmF(x0, y0). Let x1, x2 ∈ X , since
SmepiF (x0, y0) is convex and (xi , EDmF(x0, y0)(xi ))∈ epiEDmF(x0, y0),
i = 1, 2, we get

(
1

2
x1 + 1

2
x2,

1

2
EDmF(x0, y0)(x1) + 1

2
EDmF(x0, y0)(x2)

)
∈ epiEDmF(x0, y0),

i.e.,

1

2
(EDmF(x0, y0)(x1) + EDmF(x0, y0)(x2))

∈ EDmF(x0, y0)

(
1

2
(x1 + x2)

)
+ C

∈ 1

2
EDmF(x0, y0)(x1 + x2) + C.

Thus,

EDmF(x0, y0)(x1) + EDmF(x0, y0)(x2) ∈ EDmF(x0, y0)(x1 + x2) + C,

which means that EDmF(x0, y0) is subadditive.
(iii) For a general F : X → 2Y , observe that, for t > 0,

(t x, y) ∈ SmepiF (x0, y0) ⇐⇒
(
x,

y

tm

)
∈ SmepiF (x0, y0).

Therefore, by (1),

EDmF(x0, y0)(t x) = min
{
y ∈ R

∣∣ (x, y

tm

)
∈ SmepiF (x0, y0)

}
.

Set z := y/tm , we obtain

EDmF(x0, y0)(t x) = tmmin{z ∈ R|(x, z) ∈ SmepiF (x0, y0)}
= tm EDmF(x0, y0)(x),

i.e., EDmF(x0, y0) is mth-order positively homogeneous.

Definition 3.3 Let F : X → 2Y , (x0, y0) ∈ grF , and EDmF(x0, y0) exists. The map
F is said to have a mth-order radial-Studniarski epiderivative at (x0, y0) if

epiEDmF(x0, y0) = {(u, v) ∈ X × Y |∃tn > 0, ∃(un, vn) → (u, v),

(x0 + tnun, y0 + tmn vn) ∈ epiF}
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Proposition 3.4 Let F : S → 2Y , (x0, y0) ∈ grF, and EDmF(x0, y0) exists. Suppose
that F is C-preinvex with respect to η on S. Then, for all x ∈ X,

(i) F(x) − y0 ⊆ ED1F(x0, y0)(η(x, x0)) + C.
(ii) For m ≥ 2, if F has a mth-order radial-Studniarski epiderivative at (x0, y0),

then

F(x) − y0 ⊆ EDmF(x0, y0)(η(x, x0)) + C.

Proof (i) Let (x, y) ∈ grF . Since F is C-preinvex with respect to η on S, for all
x ∈ S, λ ∈ [0, 1],

(1 − λ)F(x0) + λF(x) ⊆ F(x0 + λη(x, x0)) + C,

which implies that

y − y0 ∈ F(x0 + λη(x, x0)) + C − y0
λ

. (5)

With an arbitrary sequence tn → 0+, ones have tn ∈ [0, 1] for n large enough.
Since (5) is fulfilled for all λ ∈ [0, 1], then for n large enough,

y − y0 ∈ F(x0 + tnη(x, x0)) + C − y0
tn

.

By setting un := η(x, x0) (un → η(x, x0)), vn := y − y0 (vn → y − y0) for n
large enough, it follows that y0 + tnvn ∈ F(x0 + tnun) + C . Hence, y − y0 ∈
ED1F(x0, y0)(η(x, x0)) + C .

(ii) Let any (x, y) ∈ grF , it follows from (5) with λ = 1 that

y − y0 ∈ F(x0 + η(x, x0)) + C − y0.

Then, there exist tn := 1, un := η(x, x0) (un → η(x, x0)), and vn := y − y0
(vn → y − y0) for all n such that y0 + tmn vn ∈ F(x0 + tnun) + C . Since F has a
mth-order radial-Studniarski derivative at (x0, y0), we get that (η(x, x0), y−y0) ∈
epiEDmF(x0, y0), i.e., y − y0 ∈ EDmF(x0, y0)(η(x, x0)). ��

4 Applications of higher-order Studniarski epiderivatives

Let X,Y, Z be normed spaces, and C ⊆ Y , D ⊆ Z be closed pointed convex cones
with int(C × D) = ∅. We consider the following constrained set-valued optimization
problem

(SOP)

⎧⎨
⎩
Min F(x),
s.t. x ∈ S,

G(x) ∩ (−D) = ∅,



Higher-order optimality conditions for strict and weak… 509

where S ⊆ X , F : X → 2Y , and G : X → 2Z with domF ∪ domG ⊆ S. Then,
A := {x ∈ S|G(x) ∩ (−D) = ∅} denotes the feasible solution set of (SOP).

Apoint (x0, y0) ∈ grF is said to be a localweak efficient solution (efficient solution,
strict efficient solution of order m) of (SOP) if x0 ∈ A and there exists U ∈ U(x0):
y0 ∈ WMinC F(A ∩U ) (y0 ∈ MinC F(A ∩U ), y0 ∈ m-StrC F(A ∩U ), resp).

We need the following definitions for our results:

• A subset S ⊆ X is invex near x0 if there existsU ∈ U(x0) such that S∩U is invex
for all U ∈ U(x0) : U ⊆ U .

• A map F : S → 2Y is nearly C-subconvexlike on S near x0 ∈ S (C-preinvex
with respect to η on S near x0) if there exists U ∈ U(x0) such that F is nearly
C-subconvexlike on S ∩ U (C-preinvex with respect to η on S ∩ U , resp) for all
U ∈ U(x0): U ⊆ U .

Let (x0, y0) ∈ grF , z0 ∈ G(x0)∩(−D). We assume that EDm(F,G)(x0, (y0, z0))
exists and set � := domEDm(F,G)(x0, (y0, z0)). Firstly, necessary conditions in
Fritz–John and Kuhn–Tucker types for weak efficient solutions of (SOP) are given as
follows.

Theorem 4.1 Suppose that (x0, y0) is a local weak efficient solution of (SOP) and
either of the following conditions is satisfied

(i) (F − y0,G) is nearly (C × D)-subconvexlike on S near x0, where (F − y0)(.) :=
F(.) − y0;

(ii) S is invex near x0 and (F,G) is (C × D)-preinvex with respect to η on S near x0.

Then, there exists (c∗, d∗) ∈ (C∗ × D∗)\{(0, 0)} such that for all (y, z) ∈
EDm(F,G)(x0, (y0, z0))(�),

〈c∗, y〉 + 〈d∗, z〉 ≥ 0, (6)

and

〈d∗, z0〉 = 0. (7)

If, additionally, for all U ∈ U(x0), there exists (x, z) ∈ grG: x ∈ S ∩ U and
〈d∗, z〉 < 0, then c∗ = 0.

Proof Since (x0, y0) is a local weak efficient solution of (SOP), then there exists
U ∈ U(x0) such that

((F,G)(S ∩U ) − (y0, 0)) ∩ (−int(C × D)) = ∅. (8)

Indeed, suppose to the contrary, i.e., for every U ∈ U(x0), there are x ∈ S ∩ U and
(y, z) ∈ (F,G)(x) with (y − y0, z) ∈ −int(C × D), which implies that G(S ∩U ) ∩
−D = ∅, i.e., x ∈ A ∩ U . Thus, y0 /∈ WMinCF(A ∩ U) (since y − y0 ∈ −intC),
which contradicts the local weak efficiency of (x0, y0). Consequently, it follows from
(8) that

((F,G)(S ∩U ) + C × D − (y0, 0)) ∩ (−int(C × D)) = ∅. (9)
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• If the condition (i) holds, there is U ∈ U(x0) such that clcone((F,G)(S ∩ Û ) +
C × D − (y0, 0)) is convex for all Û ∈ U(x0): Û ⊆ U . Set Û := U ∩ U ∈ U(x0), it
follows from (9) that

((F,G)(S ∩ Û ) + C × D − (y0, 0)) ∩ (−int(C × D)) = ∅,

thus

clcone((F,G)(S ∩ Û ) + C × D − (y0, 0)) ∩ (−int(C × D)) = ∅,

i.e., we can separate clcone((F,G)(S ∩ Û ) + C × D − (y0, 0)) and −int(C × D).
• If the condition (ii) is satisfied, we have Ũ ,U ∈ U(x0) such that S ∩ Û is invex

and (F,G) is (C×D)-preinvex with respect to η on S∩Û for any neighborhood Û (⊆
U∩Ũ ) of x0. Let Û := U∩U∩Ũ , we claim that H := (F,G)(S∩Û )+C×D−(y0, 0)
is convex. Take hi ∈ H , i = 1, 2, then there exist xi ∈ S ∩ Û , (yi , zi ) ∈ (F,G)(xi ),
and (ci , di ) ∈ C × D such that hi = (yi , zi ) + (ci , di ) − (y0, 0), i = 1, 2. By the
assumption, we get, for all x1, x2 ∈ S ∩ Û , λ ∈ [0, 1],

λ(F,G)(x1) + (1 − λ)(F,G)(x2) ⊆ (F,G)(x2 + λη(x1, x2)) + C × D,

so

λ((y1, z1) + (c1, d1) − (y0, 0)) + (1 − λ)((y2, z2) + (c2, d2) − (y0, 0))

∈ (F,G)(x2 + λη(x1, x2)) + (C × D) − (y0, 0),

where x2+λη(x1, x2) ∈ S∩Û (since S is invex near x0). Therefore, λh1+(1−λ)h2 ∈
H , i.e., H is convex. Thus, by (9), H and −int(C × D) can be separated.

From two above cases, there exist Û ∈ U(x0) and (c∗, d∗) ∈ (X∗ × Y ∗)\{(0, 0)}
such that for all (y, z) ∈ (F,G)(S ∩ Û ), (c, d) ∈ C × D,

〈c∗, y + c − y0〉 + 〈d∗, z + d〉 ≥ 0. (10)

Take y = y0, c = 0, z = z0 in (10), we get 〈d∗, z0 + d〉 ≥ 0, which implies that
〈d∗, z0〉 ≥ 0 (d = 0) and 〈d∗, d〉 ≥ 0 for all d ∈ D (since D is a cone), i.e., d∗ ∈ D∗.
On the other hand, 〈d∗, z0〉 ≤ 0 (z0 ∈ −D). Consequently, (7) hold.

With y = y0, z = z0, and d = −z0, it follows from (10) that 〈c∗, c〉 ≥ 0 for all
c ∈ C , i.e., c∗ ∈ C∗.

Let (y, z) ∈ EDm(F,G)(x0, (y0, z0))(�), then there exists x ∈ � such that
(x, (y, z)) ∈ epiEDm(F,G)(x0, (y0, z0)). By the definition, there are tn → 0+,
{xn}n∈N ⊆ S, (yn, zn) ∈ (F,G)(xn), and (cn, dn) ∈ C × D such that

xn − x0
tn

→ x,
yn + cn − y0

tmn
→ y,

zn + dn − z0
tmn

→ z.
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Set un := xn − x0
tn

(un → x), then xn = x0 + tnun → x0. Thus, xn ∈ S ∩ Û with

large enough n, and from (7), (10), we get

〈
c∗, yn + cn − y0

tmn

〉
+

〈
d∗, zn + dn − z0

tmn

〉
≥ 0.

Hence, we obtain (6) as n → +∞.
Finally, we prove that c∗ = 0. Suppose to the contrary, i.e., c∗ = 0, it follows from

(10) that 〈d∗, z + d〉 ≥ 0 for all z ∈ G(S ∩ Û ) and d ∈ D. By the assumption, with
z = z and d = 0, we get 〈d∗, z〉 ≥ 0, which is a contradiction. Therefore, c∗ = ∅. ��

For global solutions, terminology “near x0” is omitted in conditions (i), (ii), while
the condition ensuring c∗ = 0 is reduced to ∃(x, z) ∈ grG : 〈d∗, z〉 < 0. Theorem
4.1 is also a necessary condition for efficient solutions and strict efficient solutions of
(SOP) since these solutions are included in the set of weak efficient solutions. For this
reason, it is enough to establish sufficient conditions only for strict efficient solutions.

Inspired by [1], we get a sufficient condition for strict efficient solutions based on
the stableness of objective and constraint maps. Recall that a map F : X → 2Y is
called to be stable of order m at (x0, y0) if there exists λ > 0 and U ∈ U(x0) such
that for all x ∈ U\{0},

F(x) ⊆ {y0} + λ||x − x0||mBY (0, 1).

Theorem 4.2 Let X,Y, Z are finite-dimensional and y0 ∈ MinC F(x0). Suppose that

(i) (F,G) is stable of order m at (x0, (y0, z0));
(ii) EDm(F,G)(x0, (y0, z0))(u) = {0} for all u ∈ �\{0};
(iii) there exist c∗ ∈ C∗\{0}, d∗ ∈ D∗ such that (7) holds and for all (y, z) ∈

EDm(F,G)(x0, (y0, z0))(�\{0}),

〈c∗, y〉 + 〈d∗, z〉 > 0. (11)

Then, (x0, y0) is a local strict efficient solution of order m of (SOP).

Proof Suppose that (x0, y0) is not a local strict efficient solution of order m of (SOP),
then there exists xn ∈ A ∩ BX (0, n−1)\{x0} such that for all n,

(F(xn) + C) ∩ BY (y0, n
−1||xn − x0||m) = ∅.

Thus, we get (yn, zn) ∈ (F,G)(xn) and (cn, dn) ∈ C × D with zn = −dn and

yn + cn ∈ y0 + ||xn − x0||mBY (0, n−1),

which implies

(yn − y0, zn − z0) ∈ −(cn, dn) − (0, z0) + ||xn − x0||m(BY (0, n−1) × {0})
⊆ −(C × D(z0)) + ||xn − x0||mBY×Z (0, n−1). (12)
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Moreover, from (i), there exists λ > 0 such that

(yn, zn) ∈ (F,G)(xn) ⊆ {(y0, z0)} + λ||xn − x0||mBY×Z (0, 1).

Therefore,

(
yn − y0

||xn − x0||m ,
zn − z0

||xn − x0||m
)

∈ λBY×Z (0, 1). (13)

Since Y × Z is finite-dimensional, the sequence ||xn − x0||−m(yn − y0, zn − z0)
(or its subsequence) converges to some (y, z) ∈ Y × Z . It follows from (12) that
(y, z) ∈ −(C × D(z0)). On the other hand, we have

(yn, zn) ∈ (F,G)(xn) = (F,G)(x0 + tnun),

where tn := ||xn − x0|| → 0+ and un := ||xn − x0||−1(xn − x0) → u with ||u|| = 1
(since X is finite-dimensional). It means that (u, y, z) ∈ Smepi(F,G)(x0, (y0, z0)) =
epiEDm(F,G)(x0, (y0, z0)), or (y, z) ∈ EDm(F,G)(x0, (y0, z0))(u)+C × D. So,

EDm(F,G)(x0, (y0, z0))(u) ∈ (y, z) − (C × D) ⊆ −(C × D(z0)).

Therefore, there exist (c, d) ∈ C × D and t > 0 such that EDm(F,G)(x0, (y0, z0))
(u) = −(c, td + t z0) ( =(0, 0) (from (ii))). Hence, with c∗ ∈ C∗\{0} and d∗ ∈ D∗ in
(iii), we obtain

〈(c∗, d∗), EDm(F,G)(x0, (y0, z0))(u)〉 = 〈c∗,−c〉 + t〈d∗,−d〉 + t〈d∗,−z0〉 ≤ 0,

which contradicts assumption (iii). ��
From Theorem 4.2, we have some remarks on the earlier results in the literature as

follows.

Remark 4.1 To get a sufficient condition for a local isolated minimizer of order m (in
terms of the Studniarski derivative Dm(F,G)+(x0, (y0, z0))(x), see Definition 3.1
in [1]), we proposed the following assumption (see Theorem 3.8 in [1]): for every
x ∈ �\{0},

Dm(F,G)+(x0, (y0, z0))(x) ∩ −(clC × clD(z0)) = ∅,

However, (0, 0) possibly belongs to Dm(F,G)(x0, (y0, z0))(x) even x = 0 (see some
examples in [1]). For this case, the above assumption cannot be employed. Toovercome
the situation, a condition that (0, 0) /∈ Dm(F,G)+(x0, (y0, z0))(x) for all x = 0
(0 /∈ Dm(F)+(x0, y0)(x) for all x = 0) should be supplemented in Theorems 3.8,
3.10 (Theorem 3.9, resp) in [1] (without changing their proofs).

Theorem 4.2 is also a sufficient condition for efficient solutions and weak efficient
solutions of (SOP). However, for these solutions, we have other conditions as follows.
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Theorem 4.3 Suppose that (F,G) is (C × D)-preinvex with respect to η on S and
(F,G) has amth-order radial Studniarski epiderivative at (x0, (y0, z0)) for all m ≥ 2.
If there exist m ≥ 1, c∗ ∈ C∗\{0} and d∗ ∈ D∗ such that (7) and (11) hold for all
(y, z) ∈ EDm(F,G)(x0, (y0, z0))(�\{0}), then (x0, y0) is a local efficient solution
of (SOP).

Proof Suppose that (x0, y0) is not a local efficient solution of (SOP), i.e., for all
U ∈ U(x0), there exists x ∈ A∩U such that (F(x) − y0) ∩ (−C\{0}) = ∅. Then, we
get z ∈ G(x) with z ∈ −D and

(y − y0, z − z0) ∈ −(C\{0} × D(z0))

It follows from Proposition 3.4 that

(y − y0, z − z0) ∈ EDm(F,G)(x0, (y0, z0))(η(x, x0)) + C × D.

If EDm(F,G)(x0, (y0, z0))(η(x, x0)) = 0, then y−y0 ∈ C , which contradicts the fact
that y−y0 ∈ −C\{0} andC is pointed. Thus, EDm(F,G)(x0, (y0, z0))(η(x, x0)) = 0
and

EDm(F,G)(x0, (y0, z0))(η(x, x0)) ∈ (y − y0, z − z0) − (C × D)

⊆ −(C\{0} × D(z0)).

Hence, with (c∗, d∗) in the assumption, we obtain

〈(c∗, d∗), EDm(F,G)(x0, (y0, z0))(η(x, x0))〉 ≤ 0,

which is a contradiction. ��
Theorem 4.4 Suppose that (F,G) is (C × D)-preinvex with respect to η on S and
(F,G) has amth-order radial Studniarski epiderivative at (x0, (y0, z0)) for all m ≥ 2.
If there exist m ≥ 1, c∗ ∈ C∗\{0} and d∗ ∈ D∗ such that (6) and (7) hold for
all (y, z) ∈ EDm(F,G)(x0, (y0, z0))(�\{0}), then (x0, y0) is a local weak efficient
solution of (SOP).

Proof The proof is similar to that of Theorem 4.3. ��
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