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Abstract The note points out that the sufficiency of proposition 2.1 in Anh (Positivity
18:449–473, 2014) is erroneous and we provide an example to illustrate it. Also the
proof of proposition 2.2 in Anh (Positivity 18:449–473, 2014) is incorrect and we give
a new proof.
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1 Introduction

The concept of generalized convexity plays an important role in operations research
and appliedmathematics. Yang et al. [1,2] introduced the concepts of generalized cone
subconvexlike set-valuedmap andnearly cone-subconvexlike set-valuedmap. Sach [3]
introduced a new convexity notion for set-valuedmaps, called ic-cone-convexlikeness.
Xu and Song [4] obtained the following results: (a) when the ordering cone has non-
empty interior, ic-cone-convexness is equivalent to near cone-subconvexlikeness; (b)
when the ordering cone has empty interior, ic-cone-convexness implies near cone-
subconvexlikeness, a counter example is given to show that the converse implication
is not true.
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Anh [5] gave an equivalent characterization of generalized cone subconvexlikeness
in Proposition 2.1 and applied it to obtain Proposition 2.2, under the assumption of
generalized cone subconvexlikeness, some higher-order optimality conditions were
established.

In this paper, we will point out that the sufficiency of [5, Proposition 2.1] is invalid
and the proof of [5, Proposition 2.2] is incorrect.

2 Preliminaries

Throughout the paper, suppose X,Y are two normed spaces, 0X and 0Y denote the
original points of X and Y , respectively. C ⊂ Y is a convex cone with nonempty
interior intC such that 0Y ∈ C .

Definition 2.1 (See [1,5]) Suppose S is a nonempty set in X and F : S → 2Y is
a set-valued map. F is said to be generalized C−subconvexlike on S if ∃v ∈ intC ,
∀x1, x2 ∈ S, ∀λ ∈ (0, 1), ∀ε > 0, ∃x3 ∈ S and ∃r > 0 such that

εv + λF(x1) + (1 − λ)F(x2) ⊆ r F(x3) + C.

3 Main result

By virtue of generalized C−subconvexlike of set-valued maps, Anh obtained an
equivalent characterization for generalized C−subconvexlikeness, as is shown in the
following proposition.

Proposition 3.1 (See [5, Proposition 2.1]) The map F : S → 2Y is general-
ized C−subconvexlike on S if and only if cone+(F(S)) + intC is convex, where
cone+(F(S)) := {r y : r > 0, y ∈ F(S)}.
Remark 3.1 The sufficiency of [5, Proposition 2.1] is incorrect, to illustrate the point,
we need the following Lemma.

Lemma 3.1 The following statements are equivalent for the set-valued map F:

(i) ∀û ∈ intC, ∀x1, x2 ∈ S, ∀α ∈ [0, 1], ∃x3 ∈ S and ∃ρ > 0, such that

û + αF(x1) + (1 − α)F(x2) ⊆ ρF(x3) + C;

(ii) F is generalized C−subconvexlike on S;
(iii) ∀x1, x2 ∈ S, ∀α ∈ [0, 1], ∃u = u(x1, x2, α) ∈ intC, and ∀ε > 0, ∃x3 =

x3(u, ε) ∈ S and ∃ρ = ρ(u, ε) > 0 such that

εu + αF(x1) + (1 − α)F(x2) ⊆ ρF(x3) + C.

Proof By Theorem 2.1 of [1], (i) implies (ii) and (ii) implies (iii).
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In what follows, we show that (iii) implies (i). Let

û ∈ intC, x1, x2 ∈ S, α ∈ [0, 1].

Then, from (iii), ∃u = u(x1, x2, α) ∈ intC , and ∀ε > 0, ∃x̄3 = x̄3(u, ε) ∈ S and
∃ρ̄ = ρ̄(u, ε) > 0 such that

εu + αF(x1) + (1 − α)F(x2) ⊆ ρ̄F(x̄3) + C.

Since û ∈ intC , one can find ε0 > 0 and u0 ∈ intC such that

û − ε0u = u0.

From (iii), ∃x3 = x3(u, ε0) ∈ S and ρ = ρ(u, ε0) > 0 such that

ε0u + αF(x1) + (1 − α)F(x2) ⊆ ρF(x3) + C.

Hence

û + αF(x1) + (1 − α)F(x2) = [ε0u + αF(x1) + (1 − α)F(x2)] + u0
⊆ ρF(x3) + C + u0
⊆ ρF(x3) + intC

⊆ ρF(x3) + C.

Thus we complete the proof. �	
Example 3.1 Let us set

S=
{
(x1, x2) ∈ R2 : x1 + x2 = 1

}
, C = R2+ =

{
(x1, x2) ∈ R2 : x1≥0, x2 ≥ 0

}
,

F(x1, x2) = {(x1, x2), (1/2, 1/2)} ,∀(x1, x2) ∈ S.

A direct calculation gives

cone+(F(S)) + intC =
{
(y1, y2) ∈ R2 : y1 + y2 > 0

}
.

Then cone+(F(S)) + intC is convex.
However, F is not generalized C−subconvexlike on S, as is illustrated in the fol-

lowing.
Let z1 = (−1, 2), z2 = (2,−1), λ0 = 1/2, û = (1/8, 1/8). Then

û + λ0F(z1) + (1 − λ0)F(z2) = {(−1/8, 11/8), (11/8,−1/8), (5/8, 5/8)}.

In what follows, we show that

û + λ0F(z1) + (1 − λ0)F(z2) � ρF(z) + C,∀z ∈ S,∀ρ > 0.
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In fact, ∀z = (x1, x2) ∈ {(x1, x2) : x1 + x2 = 1},∀ρ > 0,

(1) If x1 ≥ 0, x2 < 0, then (−1/8, 11/8) /∈ ρF(z) + C ;
(2) If x1 ≥ 0, x2 ≥ 0, then (−1/8, 11/8) /∈ ρF(z) + C ;
(3) If x1 < 0, x2 > 0, then (11/8,−1/8) /∈ ρF(z) + C .

From above discussions, we deduce that ∃û ∈ intC , ∃z1, z2 ∈ S, ∃λ0 = 1/2 such that
∀z ∈ S,∀ρ > 0,

û + λ0F(z1) + (1 − λ0)F(z2) � ρF(z) + C.

From Lemma 3.1, it follows that F is not generalized C−subconvexlike on S.

Remark 3.2 Since the sufficient condition of Proposition 2.1 in Ref. [5]. was applied to
the proof of Proposition 2.2 in Ref. [5]., the proof is erroneous. However, Proposition
2.2 in Ref. [5]. is true. In the following, we give the proposition and new proof.

Proposition 3.2 (See [5, Proposition 2.2]) Suppose that the map F : S → 2Y is
generalized C−subconvexlike on S. Then F is also generalized K−subconvexlike on
S, where K is a convex cone satisfying C ⊆ K.

Proof Since F is generalized C−subconvexlike on S, there exists v ∈ intC , for any
x1, x2 ∈ S, ∀λ ∈ (0, 1), ∀ε > 0, ∃x3 ∈ S and ∃r > 0 such that

εv + λF(x1) + (1 − λ)F(x2) ⊆ r F(x3) + C.

From C ⊆ K , it follows that

εv + λF(x1) + (1 − λ)F(x2) ⊆ r F(x3) + C ⊆ r F(x3) + K .

Then F is generalized K−subconvexlike on S. �	
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