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Abstract We characterize the uniform convergence of pointwise monotonic nets of
bounded real functions defined on arbitrary sets, without any particular structure. The
resulting condition trivially holds for the classical Dini theorem. Our vector-valued
Dini-type theorem characterizes the uniform convergence of pointwisemonotonic nets
of functions with relatively compact range in Hausdorff topological ordered vector
spaces. As a consequence, for such nets of continuous functions on a compact space,
we get the equivalence between the pointwise and the uniform convergence. When
the codomain is locally convex, we also get the equivalence between the uniform
convergence and the weak-pointwise convergence; this also merges the Dini-Weston
theorem on the convergence of monotonic nets fromHausdorff locally convex ordered
spaces. Most of our results are free of any structural requirements on the common
domain and put compactness in the right place: the range of the functions.
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1 Introduction

Uniform convergence (denoted here by
u−→) of a sequence of functions is important

because several properties (such as continuity and integrability), if shared by all mem-
bers of the sequence, are transferred under suitable assumptions to the limit function.

The pointwise convergence (
p−→) is easier to test, but also much weaker than the

corresponding uniform convergence. In a particular setting the two convergences may
coincide, as in the classical Dini theorem:

Theorem 1 (Dini) Let FN = ( fn)n∈N be a monotonic sequence of real continuous
functions on a compact topological space S. Then for any continuous map f : S → R,
we have the equivalence

fn
u−→ f ⇐⇒ fn

p−→ f.

There are many generalizations of the above theorem. Various authors considered:
real functions with compact supports (Światkowski [15]), sequences of continuous
functions satisfying generalized Alexandrov conditions (Gal [6]), topological spaces
with the weak or strong Dini property (Kundu and Raha in [8]), Dini classes of upper
semicontinuous real functions on compact metric spaces (Beer [2]), functions tak-
ing values in non-uniform spaces (Kupka [9] and Toma [18]), almost periodic or
almost automorphic functions (Amerio [1], Bochner [3], Helmberg [7], Meisters [11],
and Žikov [20]). So far such generalizations required some structure on the common
domain of the functions. Nonetheless, the definitions of both convergences (pointwise
and uniform) require no structure on the common domain S, and in particular no
continuity of the functions.

In this paper we characterize (Theorem 4) the uniform convergence of pointwise
monotonic nets (indexed by directed preordered sets (�,�) instead of N) of bounded
real functions defined on an arbitrary set, without any particular structure. The result-
ing condition trivially holds in the setting of the classical Dini theorem.

Our vector-valued generalization (Theorem 9) characterizes the uniform conver-
gence of pointwise monotonic nets of functions with relatively compact range in a
Hausdorff topological ordered vector space. For such nets of continuous functions
on a compact space, we get the equivalence between the pointwise and the uniform
convergence (Corollary 15). Furthermore, when the target space is locally convex,
we get (Corollary 12) the equivalence between two convergences: the uniform (the
codomain is equipped with its original topology) and the weak-pointwise (pointwise
convergence, when the codomain is equipped with its weak topology). This equiva-
lence yields both Theorem 1 and the following abstract Dini theorem (see Cristescu
[4], Chapter VI, Section 1.5, Prop. 2):

Theorem 2 (Dini-Weston) If (xδ)δ∈� is a decreasing net of positive elements from a
Hausdorff locally convex ordered space X, then

lim
δ∈�

xδ = 0 ⇐⇒ xδ −→ 0 weakly.
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Most of our results (excepting a few corollaries) are free of any requirements on the
common domain and put compactness in the right place: the range of the functions.

Since potential readers may not be very familiar with various notions and results on
general topological ordered vector spaces,1 whenever possible we included footnotes
with details and brief explanations. For some few other needed facts on this topic, we
refer the reader to [4,10,14,19].

2 “Distillation” of Dini’s theorem: the scalar case

We find it interesting to present first the construction which led us in five steps of suc-
cessive restatements, generalizations, and relaxations, from Dini’s classical theorem
to our general result. Nonetheless, the reader may jump directly to Theorem 4 and its
direct proof, after understanding the notations (1) and (2), together with Definition 3.

Our next five-step discussion starts from Theorem 1; the intermediate k-th result
obtained from it after the first k steps (k ≤ 4) will be referred to as “Lemma k”. Since
these four lemmas are only intermediate results, we will not state them explicitly,
but the reader is encouraged to do this according to the descriptions given within the
corresponding steps. After finding the right setting of our general result, we will state
it (Theorem 4 below) and we will prove it directly.

Step 1 (considering nets instead of sequences). Dini’s theorem still holds (with
almost the same proof; see also [13]) for monotonic nets of continuous functions.
Hence inTheorem1we can replace the sequence FN by amonotonic net F� = ( fδ)δ∈�

of functions from C(S,R) (we thus get Lemma 1, for monotonic nets of continuous
functions on a compact space). Here (�,�) is a directed preordered set. We can view
this net as a map2

F� : S → R
�, F�(s) := ( fδ(s))δ∈�. (1)

Since all components fδ of F� are continuous, we have

F� ∈ C(S,R)� = C(S,R�),

where R� is equipped with the product topology. Thus, F�(S) is a compact subset of
R

�.
Step 2 (monotonicity relaxation).Themonotonicity condition fromLemma 1 can be

weakened by using the following notion (see also Mong [12] for the case of sequences
of functions):

Definition 3 (Pointwise monotonicity) The net F� is called pointwise monotonic, if
and only if

F�(s) = ( fδ(s))δ∈� is a monotonic net, for every s ∈ S.

1 All results of the paper hold in the particular case when the codomain of the functions is a normed lattice.
2 The map F� below and pointwise monotonicity from Definition 3 may be considered for an arbitrary set
S.
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Indeed, assume that F� is only pointwise monotonic and fδ
p−→ f . Hence (| fδ −

f |)δ∈� is a decreasing net of functions fromC(S,R). NowLemma 1 yields the needed
equivalence. We thus get the slightly more general Lemma 2 (stated in this paper as
Corollary 6), for pointwise monotonic nets of continuous functions on a compact
space.

Step 3 (considering f ≡ 0 and the vector subspace c0(�)of R�).Since inLemma2
we may replace the pointwise monotonic net F� by the translated net ( fδ − f )δ∈�,
there is no loss of generality in restating this lemma with f ≡ 0. With the standard
notation

c0(�) :=
{
(rδ)δ∈� ∈ R

�
∣∣∣ lim

δ∈�
rδ = 0

}
, (2)

the pointwise convergence fδ
p−→ 0 means that F�(s) = ( fδ(s))δ∈� ∈ c0(�) for

every s ∈ S, which is equivalent to the inclusion F�(S) ⊂ c0(�). We thus get from
Lemma 2 the equivalent Lemma 3, for f ≡ 0 and with the pointwise convergence

fδ
p−→ 0 replaced by the inclusion F�(S) ⊂ c0(�).

Step 4 (compactness relaxation). So far, in Lemmas 1–3 the common domain S of
the continuous functions was a compact space. Our next idea is to apply Lemma 3
to a suitable compactification. Let us consider a completely regular space S and a
pointwise monotonic net F� = ( fδ)δ∈� of functions from C(S,R). Then S is dense
in its Stone-Čech compactification βS (see Dugundji [5], Chapter XI, Section 8).3 For
the uniform convergence, we have the obvious equivalence

fδ
u−→ 0 ⇐⇒ lim

δ∈�

(
sup
s∈S

| fδ(s)|
)

= 0. (3)

The above supremum must be finite at least starting from some δ0 ∈ � (for δ 
 δ0),
since otherwise the uniform convergence is impossible. Therefore, we will assume
that all functions fδ are bounded. Consequently, F� ∈ C(S,R�) extends uniquely to
a map

βF� = (β fδ)δ∈� ∈ C(βS,R�).

Hence βF� is a pointwisemonotonic net, since the original net F� has this property on
the dense subset S of βS. By (3) and the equality sups∈S | fδ(s)| = maxs∈βS |β fδ(s)|
for every δ ∈ �, we get the equivalence

fδ
u−→ 0 ⇐⇒ β fδ

u−→ 0.

Since βS is compact, by applying Lemma 3 to the extended net βF�, it follows that
the last above uniform convergence is equivalent to the inclusion βF�(βS) ⊂ c0(�).
As S is a dense subset of its compactification βS and βF� is a continuous extension
of F�, in the product space R� we have

3 Recall: for every Hausdorff compact space K , any f ∈ C(S, K ) extends uniquely to β f ∈ C(βS, K ).
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βF�(βS) = βF�(S) ⊂ βF�(S) = F�(S) ⊂ βF�(βS),

and so βF�(βS) = F�(S), where the closure is taken in R
�. Hence the uniform

convergence fδ
u−→ 0 is equivalent to the inclusion

F�(S) ⊂ c0(�) in R�. (4)

We thus get Lemma 4, for pointwise monotonic nets of bounded real continuous
functions on a completely regular space (inLemma3we replace the inclusion F�(S) ⊂
c0(�) by (4)).

Step 5 (removing the topology of S).Consider an arbitrary set S (without topological
structure) and a pointwise monotonic net F� = ( fδ)δ∈� : S → R

�. We can assume
that F� is an injective map. Indeed, if F� is not injective, we can consider the F�-
equivalence class ŝ := {t ∈ S | F�(t) = F�(s)} of every s ∈ S and the quotient set
Ŝ = {̂s | s ∈ S}. Then the map

F̂� = ( f̂δ)δ∈� : Ŝ → R
�, F̂�(̂s) := F�(s),

is well-defined and injective. The net F̂� is pointwise monotonic, since F� has this
property. We clearly have the equivalence

fδ
u−→ 0 ⇐⇒ f̂δ

u−→ 0.

Therefore, we next assume that F� is injective. Then the F�-initial topology on S,
that is,

τ :=
{
F−1

� (D) ⊂ S | D is open in R�
}

,

turns F� into a homeomorphism between S and the completely regular space F�(S) ⊂
R

�. Hence (S, τ ) is completely regular. By Lemma 4, we conclude that the uniform
convergence fδ

u−→ 0 is equivalent to the inclusion (4). We finally get our first
general result, stated below as Theorem 4. The direct proof will show precisely where
the compactness is needed and where it comes from.

Let us note that producing compactness and continuity in this way (by using
bounded real functions on an arbitrary set, as in the above Steps 5 and 4) may be
done in various other settings (for instance, for proving Stone-Weierstrass-type results
similar to those from Timofte [17]).

Theorem 4 (Generalized Dini theorem) If F� = ( fδ)δ∈� is a pointwise monotonic
net of bounded functions fδ : S → R on an arbitrary set S (without topological
structure), then4

fδ
u−→ 0 ⇐⇒ F�(S) ⊂ c0(�) in R�.

4 For comments on how such equivalences lead to Dini-type results in a more general setting, see Remark 8.
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Proof “⇒”. Assume fδ
u−→ 0. Let us fix r� := (rδ)δ∈� ∈ F�(S). In order to show

that r� ∈ c0(�), consider an arbitrary ε > 0. We have r� = limλ∈� F�(sλ) in
R

� for some net (sλ)λ∈� from S, where � is another directed preordered set. This
convergence in the product space R� means

rδ = lim
λ∈�

fδ(sλ) for every δ ∈ �.

Since fδ
u−→ 0, there exists δε ∈ �, such that | fδ(s)| ≤ ε for all s ∈ S and δ 
 δε.

Now for every fixed δ 
 δε, a passage to the limit yields

|rδ| =
∣∣∣∣limλ∈�

fδ(sλ)

∣∣∣∣ = lim
λ∈�

| fδ(sλ)| ≤ ε.

Hence limδ∈� rδ = 0, that is, r� ∈ c0(�).We thus have proved the inclusion F�(S) ⊂
c0(�).

“⇐”. Assume F�(S) ⊂ c0(�), and hence fδ
p−→ 0. In order to show that fδ

u−→ 0,
let us fix ε > 0. By Tychonoff’s theorem and the obvious inclusions

F�(S) ⊂
∏
δ∈�

fδ(S) ⊂
∏
δ∈�

fδ(S),

we get the compactness of F�(S) inR�. For every δ ∈ �, the subset π−1
δ (]−ε, ε[) ⊂

R
� is open, where πδ : R� → R denotes the standard projection on the δ-component

of the product space. Since

F�(S) ⊂ c0(�) ⊂
⋃
δ∈�

π−1
δ (] − ε, ε[) ,

there is a finite subset �0 ⊂ �, such that

F�(S) ⊂
⋃

δ∈�0

π−1
δ (] − ε, ε[). (5)

As � is a directed set, its finite subset �0 has an upper bound δε ∈ �. We claim that

fδ(S) ⊂] − ε, ε[, for every δ 
 δε.

In order to prove this, let us fix δ 
 δε and s ∈ S. According to (5), for some δ0 ∈ �0
we have F�(s) ∈ π−1

δ0
(] − ε, ε[), that is, fδ0(s) ∈ ] − ε, ε[. Since F� is pointwise

monotonic and δ 
 δε 
 δ0, it follows that | fδ(s)| ≤ | fδ0(s)| < ε. Our claim is

proved. We thus conclude that fδ
u−→ 0. ��

Remark 5 Theorem 4 requires no explicit compactness, however, the boundedness
of the functions (necessary for uniform convergence) yields compactness: that of all
closures fδ(S) ⊂ R.

Dini’s classical convergence theorem now follows as an immediate corollary.
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Corollary 6 (Dini’s theorem for nets) Let us consider a pointwise monotonic net
( fδ)δ∈� of real continuous functions on a compact space S. Then for any continuous
map f : S → R, we have

fδ
u−→ f ⇐⇒ fδ

p−→ f.

Proof Set G� := ( fδ − f )δ∈� ∈ C(S,R�). As S is compact, G�(S) is a closed
subset of R�. Since all functions fδ − f ∈ C(S,R) are bounded, by Theorem 4 we
get the equivalences

fδ − f
u−→ 0 ⇐⇒ G�(S) ⊂ c0(�) ⇐⇒ G�(S) ⊂ c0(�) ⇐⇒ fδ − f

p−→ 0.

��

3 Dini-type results for nets of vector-valued functions

Setting 1 Throughout this section, X is aHausdorff topological ordered vector space5

and

F� = ( fδ)δ∈� : S → X�

is a net of bounded6 functions fδ : S → X defined on an arbitrary set S.

Pointwise monotonicity is considered as in Definition 3 (all ( fδ(s))δ∈� are
monotonic nets in X ). With the natural notation7

c0(�, X) :=
{
(xδ)δ∈� ∈ X�

∣∣∣ lim
δ∈�

xδ = 0
}
,

the pointwise convergence fδ
p−→ 0 is equivalent to the inclusion F�(S) ⊂ c0(�, X).

Even without any kind of monotonicity of the net, the uniform convergence implies a
property similar to (4):

Proposition 7 If fδ
u−→ 0, then F�(S) ⊂ c0(�, X), where the closure is taken in

X�.

Proof The proof is similar to that of the corresponding part of the implication “⇒”
from Theorem 4. Indeed, for fixed x� := (xδ)δ∈� = limλ∈� F�(sλ) ∈ F�(S), instead
of ε > 0 we fix an arbitrary closed neighborhood W ⊂ X of the origin in X . Since
fδ

u−→ 0, there exists δW ∈ �, such that fδ(S) ⊂ W for every δ 
 δW . AsW is closed,

5 Topological ordered vector space: a real vector space, endowed with a linear (partial) ordering and a
linear locally full topology (with a local base consisting of full neighborhoods of the origin).
6 A subset A ⊂ X is bounded

def⇐⇒ every neighborhood W of 0 ∈ X absorbs A (εA ⊂ W for some
ε > 0).
7 We always consider the limits in the topological sense (not as order limits).
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for every fixed δ 
 δW , a passage to the limit yields xδ = limλ∈� fδ(sλ) ∈ W = W .
We thus conclude that x� ∈ c0(�, X). ��
Remark 8 Our Dini-type results for vector-valued functions will point out various
settings under which the uniform convergence fδ

u−→ 0 is equivalent to the inclusion
F�(S) ⊂ c0(�, X) (or to a very similar one). If in addition F�(S) is compact (or just
closed in X�), this inclusion simplifies to F�(S) ⊂ c0(�, X), and is equivalent to the

convergence fδ
p−→ 0. In such cases, by using translated nets of the form ( fδ − f )δ∈�,

we may get the equivalence between the convergences fδ
p−→ f and fδ

u−→ f . In the
particular case of a net of continuous functions on a compact space S, the inclusion

F�(S) ⊂ c0(�, X) is equivalent to the pointwise convergence fδ
p−→ 0.

3.1 Dini-type results for nets of functions with relatively compact range

According to Remarks 5 and 8, it is natural to consider the vector space

K(S, X) := { f : S → X | f (S) is compact in X},

endowed with the uniform convergence topology8 and the pointwise ordering induced
by the cone

K(S, X)+ := { f ∈ K(S, X) | f (S) ⊂ X+}.

Here X+ denotes the positive cone9 of the ordered vector space X .
Our next Dini-type theorem shifts the traditional compactness requirement from the

common domain to the range of the functions (for a similar shift of the compactness
related to a uniform density result, see Timofte [16], Th.1, p.293).

Theorem 9 If F� is a decreasing net from K(S, X)+, then

fδ
u−→ 0 ⇐⇒ F�(S) ⊂ c0(�, X) in X�.

If in addition the positive cone X+ is closed or X is locally convex, the above equiv-
alence also holds for pointwise monotonic nets F� from K(S, X).

Proof According to Proposition 7, in all (three) cases we only need to prove the

implication “⇐”. Assume F�(S) ⊂ c0(�, X), which yields in particular fδ
p−→ 0.

In order to show that fδ
u−→ 0, we next consider three cases.

8 fδ
u−→ f

def⇐⇒ for every neighborhood W of 0 ∈ X , there is δW ∈ �, such that ( fδ − f )(S) ⊂ W for
δ 
 δ0.
9 The positive cone X+ := {x ∈ X | x ≥ 0} has the properties: X+ + X+ ⊂ X+, R+ · X+ ⊂ X+,
X+ ∩ (−X+) = {0}.
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Case 1. Assume F� is a decreasing net fromK(S, X)+. In order to prove that fδ
u−→ 0,

let us fix a full10 neighborhood W of the origin in X . By Tychonoff’s theorem, the
subsets F�(S) ⊂ ∏

δ∈� fδ(S) are compact in the product space X�. For every δ ∈ �,

the subset π−1
δ (

o
W ) ⊂ X� is open, where πδ : X� → X denotes the standard

projection on the δ-component. It is easily seen that

F�(S) ⊂ c0(�, X) ⊂
⋃
δ∈�

π−1
δ (

o
W ).

As in the proof of the implication “⇐” from Theorem 4, it follows that fδ
u−→ 0.

Indeed, we first get a finite subcover F�(S) ⊂ ⋃
δ∈�0

π−1
δ (

o
W ), then we choose an

upper bound δW ∈ � of the finite subset�0 ⊂ �, andwe finally show that fδ(S) ⊂ W

for δ 
 δW (for fixed s ∈ S, we will use thatW is a full set in this way11: if fδ0(s) ∈ o
W

and δ 
 δW 
 δ0 ∈ �0, then fδ(s) ∈ [0, fδ0(s)]o ⊂ W ). We thus conclude that the
needed equivalence holds for decreasing nets from K(S, X)+.

Case 2. Assume X+ is closed and F� is a pointwise monotonic net from K(S, X). Let
us first note that since the positive cone X+ is closed, any decreasing (respectively,
increasing) net from c0(�, X) is necessarily contained in X+ (respectively, in −X+).
Indeed, if such a net (xδ)δ∈� is decreasing, then for every δ0 ∈ � we have xδ0 =
limδ
δ0(xδ0 − xδ) ∈ X+ = X+. Let us consider the sets

S↓ := {s ∈ S | F�(s) is decreasing}, S↑ := {s ∈ S | F�(s) is increasing}. (6)

Since F� is pointwise monotonic, we have S = S↓ ∪ S↑. Hence the needed uniform
convergence is equivalent to that of the following two decreasing nets of functions,
defined by

F�|S↓ = (
fδ|S↓

)
δ∈�

, −F�|S↑ = (− fδ|S↑
)
δ∈�

. (7)

As X+ is closed, these are nets from K(S↓, X)+, and respectively K(S↑, X)+. Since

F�(S↓) ⊂ F�(S) ⊂ c0(�, X), F�(S↑) ⊂ F�(S) ⊂ c0(�, X),

the uniform convergence of both nets from (7) follows by the conclusion from the first
case.

Case3.Assume X is locally convex and F� is a pointwisemonotonic net fromK(S, X).
As X is Hausdorff, the closure X+ is a cone defining on X a linear ordering, which
is weaker than the original. This new ordering turns X into a locally convex ordered
space with a closed positive cone. The net F� remains pointwise monotonic with
respect to the weaker ordering. Therefore, we can assume that the original positive

10 A ⊂ X is full
def⇐⇒ A contains all order intervals [a, b]o := {x ∈ X | a ≤ x ≤ b} with endpoints

a, b ∈ A.
11 This is what we get if we follow closely the proof of Theorem 4, with

o
W and δW instead of ]− ε, ε[ and

δε .
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cone X+ is closed. Now the uniform convergence fδ
u−→ 0 follows by the conclusion

from the second case. ��
If X is a Hausdorff locally convex ordered space,12 considerations similar to the

above apply to its weak topology σ = σ(X, X∗). The space endowed with the weak
topology will be denoted by Xσ . We have the obvious inclusions

K(S, X) ⊂ K(S, Xσ ), c0(�, X) ⊂ c0(�, Xσ ). (8)

Furthermore, let us note that with the above notation, the Dini-Weston theorem may
be restated as: “Every monotonic net from c0(�, Xσ ) belongs to c0(�, X)”.

Theorem 10 If X is a Hausdorff locally convex ordered space and F� is a pointwise
monotonic net from K(S, X), then

fδ
u−→ 0 ⇐⇒ F�(S) ⊂ c0(�, Xσ ) in X�

(where the closure F�(S) is considered in X�, and not in (Xσ )�).

Proof “⇒”. If fδ
u−→ 0, then by Proposition 7 and the second inclusion from (8) we

get

F�(S) ⊂ c0(�, X) ⊂ c0(�, Xσ ).

“⇐”. Assume F�(S) ⊂ c0(�, Xσ ). As in the proof of Theorem 9 (Case 3), we can
assume that X has a closed positive cone (otherwise, we replace the linear ordering
of X by the weaker defined by the cone X+). For the sets S↓ and S↑ defined as in (6),
we have S = S↓ ∪ S↑, and so

F�(S↓) ∪ F�(S↑) = F�(S↓) ∪ F�(S↑) = F�(S↓ ∪ S↑) = F�(S) ⊂ c0(�, Xσ ).

We claim that F�(S) ⊂ c0(�, X). Let us fix x� := (xδ)δ∈� ∈ F�(S↓). Then x� =
limλ∈� F�(sλ) in X�, for some net (sλ)λ∈� from S↓. Hence x� is a decreasing net in
X , since every F�(sλ) is decreasing and the positive cone X+ is closed. Indeed, since
a passage to the limit preserves non-strict inequalities in X (because X+ is closed),
for arbitrary δ � δ′ in �, we have

xδ = lim
λ∈�

fδ(sλ) ≥ lim
λ∈�

fδ′(sλ) = xδ′ .

As x� ∈ c0(�, Xσ ) is monotonic, by the Dini-Weston theorem it follows that x� ∈
c0(�, X). We thus get the inclusion F�(S↓) ⊂ c0(�, X). In the same way we deduce
that F�(S↑) ⊂ c0(�, X), and hence that F�(S) ⊂ c0(�, X). By Theorem 9, we

conclude that fδ
u−→ 0. ��

12 That is, X has a locally convex and locally full topology.
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Remark 11 On any locally convex ordered space X we may consider either its orig-
inal topology, or its weak topology. For both possible choices, we may consider two
convergences (of a net F� as in Setting 1): the uniform and the pointwise. We thus
get four convergences:

(a) the uniform and the pointwise (when X is equipped with its original topology),
(b) the weak-uniform and the weak-pointwise (when X is equipped with its weak

topology); we denote these convergences by
wu−→ and respectively

wp−→.

Among these convergences, the strongest is the uniform and the weakest is the weak-
pointwise. All four convergences coincide for nets as in the following corollary:

Corollary 12 Let us consider a Hausdorff locally convex ordered space X, a compact
space S, and a pointwise monotonic net ( fδ)δ∈� from C(S, X). Then for every map
f ∈ C(S, X), we have the equivalence

fδ
u−→ f ⇐⇒ fδ

wp−→ f.

Proof Set G� := ( fδ − f )δ∈� ∈ C(S, X�). As S is compact, G�(S) is a closed
subset of X�. Since C(S, X) ⊂ K(S, X), by Theorem 10 we get the equivalences

fδ − f
u−→ 0 ⇐⇒ G�(S) ⊂ c0(�, Xσ ) ⇐⇒ G�(S) ⊂ c0(�, Xσ )

⇐⇒ fδ − f
wp−→ 0.

��
Let us note that the above result merges both classical convergence theorems of

Dini (X = R) and Dini-Weston (S = {s0}), together with Corollary 6 (X = R).

3.2 Dini-type results for nets of bounded functions

So far the statements of our Dini-type results for vector-valued functions involved
compactness in some way. Our next two theorems are ”compactness-free”.

Notation 1 For every function p : X → R and for the net F� as in Setting 1, we may
consider the net pF� := (p ◦ fδ)δ∈� and the associated map

pF� : S → R
�, pF�(s) = (

(p ◦ fδ)(s)
)
δ∈�

.

Theorem 13 Assume X is a Hausdorff locally convex ordered space and F� is point-
wise monotonic. Then for any set P of seminorms defining the topology of X, we have
the equivalence

fδ
u−→ 0 ⇐⇒ pF�(S) ⊂ c0(�) in R�, for every p ∈ P.

Proof “⇒”. Assume fδ
u−→ 0. For every p ∈ P we have p ◦ fδ

u−→ 0, which yields
pF�(S) ⊂ c0(�), by Proposition 7.
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“⇐”. As in the proof of Theorem 9 (Case 3), we can assume that X has a closed
positive cone (otherwise, we replace the linear ordering of X by the weaker defined
by the cone X+). Since X is a locally convex ordered space, there is a setQ consisting
of monotonic seminorms13 defining its topology. We have the obvious equivalence

fδ
u−→ 0 ⇐⇒ q ◦ fδ

u−→ 0, for every q ∈ Q. (9)

In order to show that fδ
u−→ 0, let us fix q ∈ Q. Since pF�(S) ⊂ c0(�) for every

p ∈ P , we have F�(S) ⊂ c0(�, X), and so fδ
p−→ 0. Hence the net ( fδ(s))δ∈�

converges monotonically to 0, for every s ∈ S. As q is a monotonic seminorm,
qF� = (q ◦ fδ)δ∈� is a decreasing net of bounded real functions. According to
Theorem 4, we have the equivalence

q ◦ fδ
u−→ 0 ⇐⇒ qF�(S) ⊂ c0(�) in R�. (10)

In order to prove the above convergence, let us fix r� ∈ qF�(S). We have r� =
limλ∈� qF�(sλ) inR�, for some net (sλ)λ∈� from S (where� is a directed preordered
set). As Q and P define on X the same topology, for the seminorm q ∈ Q we have a
domination

q ≤ p′ := α

k∑
i=1

pi (α ∈ R+, k ∈ N
∗, {p1, . . . , pk} ⊂ P).

For every i ∈ {1, . . . , k}, the net (pi F�(sλ))λ∈� is contained in the compact
pi F�(S) ⊂ R

�. By passing repeatedly (k times) to convergent subnets, we find a
subnet (sλω)ω∈ of (sλ)λ∈�, such that each (pi F�(sλω))ω∈ is convergent. Set

r i� := lim
ω∈

pi F�(sλω) ∈ pi F�(S) ⊂ c0(�) (1 ≤ i ≤ k),

r ′
� := lim

ω∈
p′F�(sλω) = α

k∑
i=1

r i� ∈ c0(�).

As q ≤ p′, in the ordered vector space R� (with componentwise ordering) we have
qF�(s) ≤ p′F�(s) for every s ∈ S, and so

0 ≤ r� = lim
ω∈

qF�(sλω) ≤ lim
ω∈

p′F�(sλω) = r ′
� ∈ c0(�).

This forces r� ∈ c0(�). We thus have proved the inclusion qF�(S) ⊂ c0(�), and
hence the convergence q ◦ fδ

u−→ 0, by (10). As q ∈ Q was arbitrarily fixed, by (9)
we conclude that fδ

u−→ 0. ��
A version of the above theorem for metrizable spaces is:

13 The seminorm q : X → R+ is monotonic
def⇐⇒ q(x) ≤ q(y) whenever 0 ≤ x ≤ y.
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Theorem 14 Assume X is a metrizable topological ordered vector space. Let us con-
sider a translation-invariant distance d defining the topology of X, such that the
function q := d(·, 0) is increasing14 on X+. If F� is pointwise monotonic, then

fδ
u−→ 0 ⇐⇒ qF�(S) ⊂ c0(�) in R�. (11)

Proof Both conditions from (11) yield fδ
p−→ 0. Therefore, we assume this point-

wise convergence to hold. As the distance d defines the topology of X , we have the
equivalence

fδ
u−→ 0 ⇐⇒ q ◦ fδ

u−→ 0.

We claim that if (xδ)δ∈� is a decreasing net from X , with the property that limδ∈� xδ =
0, then (q(xδ))δ∈� is a decreasing net. Indeed, for fixed δ2 
 δ1 in � and for arbitrary
δ 
 δ2, we have xδ1 − xδ ≥ xδ2 − xδ ≥ 0. As q is continuous and increasing on X+,
we have

q(xδ1) = lim
δ
δ2

q(xδ1 − xδ) ≥ lim
δ
δ2

q(xδ2 − xδ) = q(xδ2).

Our claim is proved. Since F� is pointwise monotonic, with fδ
p−→ 0, and q(−x) =

q(x) for every x ∈ X (because d is translation-invariant), it follows that qF� =
(q ◦ fδ)δ∈� is a decreasing net of bounded real functions. According to Theorem 4,
we have

q ◦ fδ
u−→ 0 ⇐⇒ qF�(S) ⊂ c0(�).

We thus have proved the claimed equivalence (11). ��
The following consequence is an analog of Corollary 6 in a much more general

setting. This result generalizesDini’s theorem in threeways, by considering nets, point-
wise monotonicity, and Hausdorff topological vector spaces (as codomain), instead of
sequences, monotonicity, and respectively R.

Corollary 15 Assume X is a Hausdorff topological ordered vector space and S is
a compact space. Let us consider a decreasing net ( fδ)δ∈� from C(S, X). Then for
every lower bound f ∈ C(S, X) of the net ( f ≤ fδ pointwise, for every δ ∈ �), we
have the equivalence

fδ
u−→ f ⇐⇒ fδ

p−→ f.

If the positive cone X+ is closed or if X is locally convex or metrizable, the above
equivalence also holds for pointwise monotonic nets ( fδ)δ∈� from C(S, X) and for
arbitrary f ∈ C(S, X).

14 Such a distance always exists for a metrizable topological ordered vector space.
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Proof In all cases we only need to prove the implication “⇐”. Therefore, assume

fδ
p−→ f . Consider the pointwise monotonic net G� = (gδ)δ∈� := ( fδ − f )δ∈�

of functions from C(S, X) ⊂ K(S, X). Since S is compact and G� ∈ C(S, X�), by

gδ
p−→ 0 it follows that

G�(S) = G�(S) ⊂ c0(�, X). (12)

In order to show that gδ
u−→ 0, we next consider three cases.

Case 1. Assume ( fδ)δ∈� is decreasing and f is a lower bound of this net. Then G�

is a decreasing net from K(S, X)+. According to Theorem 9, by (12) it follows that
gδ

u−→ 0.
Case 2. Assume the positive cone X+ is closed or X is locally convex. Again, by (12)
and Theorem 9 (the last part, for pointwise monotonic nets), we deduce that gδ

u−→ 0.
Case 3. Assume X is metrizable. In this case, there is a distance d (and the associated
q := d(·, 0)) with the properties from Theorem 14. We have

gδ
p−→ 0 ⇐⇒ q ◦ gδ

p−→ 0 ⇐⇒ qG�(S) ⊂ c0(�).

Since S is compact and qG� ∈ C(S,R�), it follows that qG�(S) = qG�(S) ⊂
c0(�). According to Theorem 14, this yields gδ

u−→ 0. ��
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