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Abstract In this paper, using derivation theory, we present some results concerning
the automatic order boundedness of band preserving operators on Archimedean semi-
prime f -algebras. Finally, inspired by the proof of Bernau and Huijsmans (Math Proc
Camb Philos Soc 107:287–308, 1990), we give necessary and sufficient conditions for
Archimedean lattice-ordered algebras to be commutative.
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1 Introduction

Wickstead [19] raised the problem of automatic order boundedness of all band preserv-
ing linear operators. The answer depends on the vector lattice in which the operators
in question acts. There are many results that deals with this subject, see [1,4,10–13].
Abramovich et al. [1] were the first to announce an example of an order unbounded
band preserving operator. Later, Bernau [4], McPolin and Wickstead [12] and De
Pagter [13] proved, by using algebraic and technical tools, that if T is a band pre-
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serving linear operator on an Archimedean vector lattice A and if for every positive
sequence (xn) in A which converges to zero relatively uniformly, infn{|T (xn)|} = 0,
then T is order bounded. Recently, Toumi and Toumi [18] focus their attention on the
case of Dedekind σ -complete vector lattices. They proved that if A is a Dedekind
σ -complete vector lattice and if T : A → A is a band preserving operator, there
are some special topological circumstances that may conspire to force T to be order
bounded. In fact, they proved that if the universal completion Au of A is equipped with
a Hausdorff f -compatible topology τ , then any continuous band preserving operator
T : (A, (r.u)top) → (Au, τ ) is automatically order bounded. The spirit of Sect. 3 is
to give some results concerning the Wickstead Problem for the case of Archimedean
semiprime f -algebras by focusing on the commutativity of the ordered algebra of
all band preserving operators. More precisely, we prove that if A an Archimedean
semiprime f -algebra, then the collection B(A) of all band preserving operators on A
are automatically order bounded if and only any derivation on B(A) is null.

Vector lattices and different classes of algebras often involved in the functional
analysis and their intrinsic study is related to operator theory. Many treatises have
been devoted to the subject in question in the previous years. Birkhoff and Pierce
[7], introduced the notion of f -algebra. Do not also forget to mention the work of
Birkhoff [6] which was the precursor of the theory of almost f -algebra. Kudláček
[16] introduced the notion of d-algebra. Other studies have been interested to the study
of these lattice-ordered algebras. For more information about this field, we refer the
reader to [5,8,9]. As Bernau and Huijsmans [5] showed that any Archimedean almost
f -algebra is commutative, it is just natural to ask the following question: if A is an
Archimedean lattice-ordered algebra , are there necessary and sufficient conditions
for A to be commutative? Consequently and inspired by the method of Bernau and
Huijsmans [5], Sect. 4 is devoted to give a positive answer to this question. In particular
we prove that some behavior of inner derivations on A is proper necessary and sufficient
condition. More precisely, we show that any Archimedean lattice-ordered algebra in
which all inner derivations are orthogonally null, is commutative. In particular, any
Archimedean almost f -algebra is commutative.

2 Preliminaries

In the next lines, we recall the definitions and some basic facts about lattice-ordered
algebras. In a vector lattice A, two elements x and y are said to be disjoint ( in symbols
x⊥y) whenever |x | ∧ |y| = 0 holds. If D is a non-empty subset of the vector lattice
A, then the disjoint complement Dd ( D⊥) is defined by

Dd = {a ∈ A : a⊥b for all b ∈ D}.

We write Ddd for
(
Dd

)d
. A lattice subspace B of A is a vector subspace of A such

that the supremum and infimum of the set {x, y} for all x, y ∈ B is in B.
A (real) algebra A which is simultaneously a vector lattice such that the partial

ordering and the multiplication on A are compatible, that is a, b ∈ A+ implies ab ∈ A
is called a lattice-ordered algebra ( briefly �-algebra). In an �-algebra A we denote
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the collection of all nilpotent elements of A by N (A). An �-algebra A is said to be
semiprime if N (A) = {0}. An �-algebra A is called an f -algebra if A verifies the
property that a ∧ b = 0 and c ≥ 0 imply ac ∧ b = ca ∧ b = 0. An �-algebra A is
called an almost f -algebra whenever it follows from a ∧ b = 0 that ab = ba = 0.
An �-algebra A is called an d-algebra if A verifies the property that a ∧ b = 0 and
c ≥ 0 imply ac ∧ bc = ca ∧ cb = 0.

In the following lines, we recall some definitions on derivations. Aderivation on an
algebra A ( or A-derivation) is a linear mapping D from A into A such that

D (ab) = D (a) b + aD (b) for all a, b ∈ A.

We denote the collection of all derivations on A by Der(A). Next we provide an
example of derivations. Let A be an algebra and a ∈ A. The mapping Da from A into
A defined by

Da (b) = [a, b] = ab − ba b ∈ A

is a derivation which called an inner derivation. Let A be a �-algebra, an inner deriva-
tion Da : A −→ A is called orthogonally null if it satisfies the following property:

|a| ∧ |b| = 0 ⇒ Da (b) = 0.

Let A be a vector lattice and let 0 ≤ a ∈ A. An element 0 ≤ e ∈ A is called a
component of a if e ∧ (a − e) = 0.

Definition 1 ([18], Definition 1) A vector lattice A is called a Freudenthal vector lattice
if A satisfies the following property: if 0 ≤ x ≤ e holds in A, then there exist positive
real numbers α1, . . . , αn and components e1, . . . , en of e satisfying x = ∑n

i=1 αi ei .

Let A and B be vector lattices. A bilinear map � from A × A is said to be orthosym-
metric if for all (a, b) ∈ A × A such that a ∧ b = 0 implies � (a, b) = 0, see
[9].

We end this section with some definitions about orthomorphisms. Let A be a vector
lattice. A linear operator T : A → A is called band preserving if T (x) ⊥ y whenever
x ⊥ y in A. A linear mapping T ∈ L(A, B) is called order bounded if T maps
order bounded subsets of A onto order bounded subsets of B. An order bounded
band preserving operator on A is called an orthomorphism. For a vector lattice A we
denote the collection of all orthomorphisms by Orth(A) and the collection of all band
preserving operators by B(A).

3 The Wickstead problem

Let A be an Archimedean semiprime f -algebra and let B(A) be the collection of all
band preserving operators on A furnished with pointwise addition and ordering.

Lemma 1 Under composition, B(A) is an Archimedean ordered algebra.
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If A is a universally complete semiprime f -algebra which is not locally one-
dimensional, then B(A) cannot be a lattice-ordered algebra, see [19]. Consequently a
natural question raised; when B(A) becomes an �-algebra? In order to hit this mark,
we need the following:

Theorem 1 Let A be an Archimedean semiprime f -algebra. Then the following prop-
erties are equivalent:

1. Der(B(A)) = {0} .

2. B(A)) is commutative.
3. Any band preserving operator on A is order bounded.

Proof (1) ⇒ (2) This path is trivial.
(2) ⇒ (3) Since B(A) is commutative. It follows that

yπ (x) = xπ (y)

for all x, y ∈ A and for all π ∈ B(A).

Let π ∈ B(A) and |x | ≤ a in A. Let y ∈ A, then

|y| |π (x)| = |yπ (x)|
= |xπ (y)|
= |x | |π (y)|
≤ a |π (y)| .

But

a |π (y)| = |aπ (y)|
= |yπ (a)|
= |y| |π (a)| .

Consequently

|y| |π (x)| ≤ |y| |π (a)|
for all y ∈ A. In particular, if y = π (x), we have

(π (x))2 ≤ |π (x)| |π (a)|.
According to ([14], Lemma 12.3), we deduce that

|π (x)| ≤ |π (a)|.
Hence π is order bounded.

(3) ⇒ (1) Let D : Orth(A) → Orth(A) be a derivation and let a ∈ A. Let
D̄a : A → A defined by D̄a (x) = D(πa) (x) + D(πx ) (a) where πx : A → A is
defined by πx (a) = ax for all a ∈ A. Let x, y ∈ A+ such that x ∧ y = 0. Since A is
an f -algebra, it follows that xy = 0. Hence
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0 = [
D(πaxy) ◦ πy

]
(z)

= [(
D(πax ) ◦ πy + πax ◦ D(πy)

) ◦ πy
]
(z)

= [
D(πax ) ◦ πy2 + πaxy ◦ D(πy)

]
(z)

= [
D(πax ) ◦ πy2

]
(z)

= D(πax )
(

y2z
)

= y2 D(πax ) (z)

for all z ∈ A. Consequently,

y D(πax ) (z) ∈ N (A)

for all z ∈ A. Since A is semiprime, we deduce that

y D(πax ) (z) = 0

for all z ∈ A. But

D(πax ) (z) = [πa ◦ D (πx ) + D (πa) ◦ πx ] (z)

= aD (πx ) (z) + D (πa) (xz)

= zD (πx ) (a) + zD (πa) (x)

= z D̄a (x).

Then

yz D̄a (x) = 0.

for all z ∈ A. Hence

y D̄a (x) ∈ N (A).

Since A is semiprime, we deduce that

y D̄a (x) = 0.

Hence

∣∣D̄a (x)
∣∣ ∧ y = 0.

Therefore D̄a is band preserving operator. Then D̄a is an orthomorphism on A. It
follows that

D̄a(bc) = bD̄a(c)

= cD̄a(b)
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for all b, c ∈ A. Then, it follows that

a [D(πc) (b) − D(πb) (c)] = 0

for all a, b, c ∈ A. Hence

D(πc) (b) − D(πb) (c) ∈ N (A)

for all b, c ∈ A. Since A is semiprime, we deduce that

D(πc) (b) − D(πb) (c) = 0

for all b, c ∈ A. Therefore

D(πbc) (x) = x D̄b (c)

= 2x D(πb) (c)

for all b, c ∈ A. In particular

D(πbcd) (x) = 2x D(πbc) (d)

= 4xd D(πb) (c)

= 2x D(πb) (cd)

= 2xd D(πb) (c)

for all b, c, d ∈ A. Then

xd D(πb) (c) = 0

for all x, b, c, d ∈ A. Consequently

D(πb) (c) ∈ N (A)

for all b, c ∈ A. Since A is semiprime, we deduce that

D(πb) (c) = 0

for all b, c ∈ A. Hence

D(πb) = 0

for all b ∈ A.
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Now taking π ∈ Orth(A) and let x, y ∈ A, then

D(πy ◦ π)(x) = D(ππ(y))(x)

= 0

= πy ◦ D(π)(x) + D(πy) ◦ π(x)

= πy ◦ D(π)(x).

Hence y D(π)(x) = 0 for all y ∈ A. Consequently D(π)(x) ∈ N (A) for all x ∈ A.

Since A is semiprime, we deduce that

D(π)(x) = 0

for all x ∈ A. Then

D(π) = 0

and the proof is complete. 
�
Corollary 1 Let A be an Archimedean f -algebra with e as a unit element. Then the
following properties are equivalent:

1. Der(B(A)) = {0} ;
2. Any band preserving operator on A is order bounded;
3. B(A) is commutative;
4. The mapping ϕ : B(A) �→ A, defined by ϕ(π) = π(e) for all π ∈ B(A), is
injective.
Moreover, if A is universally complete then these properties are equivalent to:
5. A is locally one dimensional.

Proof The equivalences (1) ⇔ (2) ⇔ (3) ⇔ (4) are due to the previous theorem.
Since, for the class of universally complete vector lattices, Abramovich et al. [2] and
McPolin and Wickstead [12] showed that all band preserving operators on vector
lattice A are automatically bounded if and only if A is locally one-dimensional, we
deduce that (2) ⇔ (5) and are done. 
�

In the case of Freudenthal vector lattice the situation improves considerably.

Corollary 2 Let A be a Freudenthal vector lattice. Then any band preserving operator
on A is order bounded.

Proof First of all, we note that the universally completion Au of the vector lattice A can
be seen as a unital f -algebra, see for example ([18], Lemma 1). Then its multiplication
will be denoted by juxtaposition.
Let π ∈ B (A) and let � : A × A → Au defined by � (x, y) = xπ (y). It is not hard
to prove that � is orthosymmetric and hence it is symmetric ([18], Proposition 1).

It follows that

� (x, y) = � (y, x)

for all x, y ∈ A. This implies that
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xπ (y) = yπ (x)

for all x, y ∈ A and for all π ∈ B (A) .

If |x | ≤ a in A, then

|y| |π (x)| = |yπ (x)|
= |xπ (y)|
= |x | |π (y)|
≤ a |π (y)| .

But

a |π (y)| = |aπ (y)|
= |yπ (a)|
= |y| |π (a)| .

Consequently

|y| |π (x)| ≤ |y| |π (a)|

for all y ∈ A. In particular, if y = π (x), we have

(π (x))2 ≤ |π (x)| |π (a)| .

According to ([14], Lemma 12.3), we deduce that

|π (x)| ≤ |π (a)| .

Hence π is order bounded. 
�

4 Commutativity of Archimedean lattice-ordered algebras

Birkhoff and Pierce [7] showed, that if A an f -algebra and a, b ∈ A+, then for all
n ∈ N

∗

n |ab − ba| ≤ a2 + b2,

and

n |(ab) c − a (bc)| ≤ ab (a + b + ab) + a(a + a2 + ba)

+ cb (c + b + cb) + c(c + c2 + bc)

from which the commutativity and the associativity in the Archimedean case follow.
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Scheffold [15] proved that any normed almost f -algebra is commutative. Basly
and Triki [3] showed that the norm condition was superfluous. Both the proof of
Scheffold and the proof of Basly and Triki make use of the axiom of choice. Bernau
and Huijsmans [5] gave a constructive proof. Buskes and Van Rooij [9] gave another
proof. Similarly Toumi [17] showed the same result by using orthosymmetric bilinear
maps.

Contrary to Archimedean almost f -algebras, Archimedean d-algebras need not
to be commutative. Bernau and Huijsmans [5] found many links between different
classes of lattice-ordered algebras. Notably, they proved the following result:

Theorem 2 ([5], Theorem 4.3) Any Archimedean d-algebra in which positive dis-
joint elements commute is an almost f -algebra. In particular, any commutative
Archimedean d-algebra is an almost f -algebra.

Motivated by the previous theorem, we notice that any Archimedean d-algebra in
which positive disjoint elements commute is commutative. Hence, a natural question
is raised: What we can say about the commutativity of an Archimedean �-algebra in
which disjoint elements commute?

This section, by adapting the proof of Bernau and Huijsmans [5], is devoted to give
a positive answer to this question by making use of derivations. But in order to make
this paper self-contained, we reproduce full proofs.

In order to hit our mark, we make use of the following results.

Proposition 1 Let A be an Archimedean lattice-ordered algebra in which all inner
derivations are orthogonally null. Then we have

Da (b) = Da−a∧b (a ∧ b) + Da∧b (b − a ∧ b)

= −Da∧b (a − a ∧ b) + Da∧b (b − a ∧ b)

for all a, b ∈ A.

Proof Let a, b ∈ A. It follows from

(a − a ∧ b) ∧ (b − a ∧ b) = 0

that

D(a−a∧b) (b − a ∧ b) = (a − a ∧ b) (b − a ∧ b) − (b − a ∧ b) (a − a ∧ b)

= 0.

Therefore

ab − ba = a (a ∧ b) − (a ∧ b) a + (a ∧ b) b − b (a ∧ b)

= Da (a ∧ b) + Da∧b (b)

= −Da∧b (a) + Da∧b (b) .

But Da∧b (a) = Da∧b (a − a ∧ b) and Da∧b (b) = Da∧b (b − a ∧ b), the result fol-
lows. 
�
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Lemma 2 Let A be an Archimedean lattice-ordered algebra in which all inner deriva-
tions are orthogonally null. Then

∣∣Da∧b (a − a ∧ b) − Da∧b∧θ−1(a−a∧b) (a − a ∧ (1 + θ) b)
∣∣ ≤ θb2.

for all a, b ∈ A+ and for all θ > 0.

Proof Let a, b ∈ A and let θ > 0. It follows

a ∧ b ≤ a ∧ (1 + θ) b ≤ a ∧ b + a ∧ θb

Then

0 ≤ a ∧ (1 + θ) b − a ∧ b ≤ θb.

Multiplying on the right by a ∧ b we obtain:

0 ≤ (a ∧ (1 + θ) b) (a ∧ b) − (a ∧ b)2 ≤ θb (a ∧ b) ≤ θb2

0 ≤ (a ∧ (1 + θ) b) (a ∧ b) − (a ∧ b)2 + a (a ∧ b) − a (a ∧ b) ≤ θb2

0 ≤ (a − a ∧ b) (a ∧ b) − (a − a ∧ (1 + θ) b) (a ∧ b) ≤ θb2.

Similarly we have:

0 ≤ (a ∧ b) (a − a ∧ b) − (a ∧ b) (a − a ∧ (1 + θ) b) ≤ θb2.

Hence

−θb2 ≤ −{(a − a ∧ b) (a ∧ b) − (a − a ∧ (1 + θ) b) (a ∧ b)}
≤ {(a ∧ b) (a − a ∧ b) − (a ∧ b) (a − a ∧ (1 + θ) b)}

− {(a − a ∧ b) (a ∧ b) − (a − a ∧ (1 + θ) b) (a ∧ b)}
≤ {(a ∧ b) (a − a ∧ b) − (a ∧ b) (a − a ∧ (1 + θ) b)}
≤ θb2.

Then
|Da∧b (a − a ∧ b) − Da∧b (a − a ∧ (1 + θ) b)| ≤ θb2 (4.1)

In addition

0 ≤ a ∧ b − a ∧ b ∧ θ−1 (a − a ∧ b)

= θ−1 [θ (a ∧ b) − (θ (a ∧ b)) ∧ (a − a ∧ b)]

= θ−1 [θ (a ∧ b) − (θ (a ∧ b) + a ∧ b − a ∧ b) ∧ (a − a ∧ b)]

= θ−1 [θ (a ∧ b) − ((θ + 1) (a ∧ b) − a ∧ b) ∧ (a − a ∧ b)]

= θ−1 [θ (a ∧ b) − ((θ + 1) (a ∧ b) ∧ a) + a ∧ b]
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= θ−1 [(θ + 1) (a ∧ b) − (θ + 1) (a ∧ b) ∧ a]

= θ−1 [(θ + 1) (a ∧ b) − a ∧ (θ + 1) b]

≤ θ−1 [(θ + 1) b − a ∧ (θ + 1) b] .

It follows from

[a − a ∧ (θ + 1) b] ∧ [(θ + 1) b − a ∧ (θ + 1) b] = 0

that

[a ∧ b − a ∧ b ∧ θ−1 (a − a ∧ b)]⊥ [a − a ∧ (θ + 1) b] .

Hence

[a ∧ b − a ∧ b ∧ θ−1 (a − a ∧ b)] [a − a ∧ (θ + 1) b]

= [a − a ∧ (θ + 1) b] [a ∧ b − a ∧ b ∧ θ−1 (a − a ∧ b)].

This gives

Da∧b (a − a ∧ (1 + θ) b) = Da∧b∧θ−1(a−a∧b) (a − a ∧ (1 + θ) b) . (4.2)

By replacing (4.2) in (4.1), the desired result is obtained. 
�
To be more clear, we introduce the following notation.

Definition 2 ([5], Definition 2.5) Let A be an Archimedean lattice- ordered algebra.
For a, b ∈ A+ and θ > 0

Define:

{
f0 (a, b, θ) = a ∧ b ∧ θ−1 (a − a ∧ b)

and f1 (a, b, θ) = a − a ∧ (1 + θ) b
Note that

0 ≤ f0 (a, b, θ) + f1 (a, b, θ) ≤ a (4.3)

With this notation, the inequality of Lemma 2 read as follows:

Corollary 3 Let A be an Archimedean lattice-ordered algebra in which all inner
derivations are orthogonally null. If a, b ∈ A+ and θ > 0, then

∣
∣Da∧b (a − a ∧ b) − D f0(a,b,θ) ( f1 (a, b, θ))

∣
∣ ≤ θb2.

Lemma 3 Let A be an Archimedean lattice-ordered algebra in which all inner deriva-
tions are orthogonally null. If a, b ∈ A+ and θ > 0, then

∣∣Da (b) + D f0(a,b,θ) ( f1 (a, b, θ)) − D f0(b,a,θ) ( f1 (b, a, θ))
∣∣ ≤ θ(a2 + b2).
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Proof Since

Da (b) = −Da∧b (a − a ∧ b) + Da∧b (b − a ∧ b),

and by using the previous corollary it follows that

∣∣Da (b) + D f0(a,b,θ) ( f1 (a, b, θ)) − D f0(b,a,θ) ( f1 (b, a, θ))
∣∣

≤ ∣∣Da∧b (a − a ∧ b) − D f0(a,b,θ) ( f1 (a, b, θ))
∣∣

+ ∣∣Da∧b (b − a ∧ b) − D f0(b,a,θ) ( f1 (b, a, θ))
∣∣

≤ θ(a2 + b2).


�
We can now give the approximating terms.

Definition 3 ([5], Definition 2.9) Let A be an Archimedean lattice-ordered algebra.
For a, b ∈ A+ and η = (η1, η2, η3 . . .) a sequence of positive real numbers. For
k ∈ N

∗, we define

Bk = {(ε1, ε2, . . . εk) such that εi ∈ {0, 1} ∀1 ≤ i ≤ k}.

For all ε ∈ Bk , we defined by induction elements a (ε) = a (η, a, b; ε) of A+ by
a (0) = a, a (1) = b and for ε = (ε1, ε2, . . . εk) ∈ Bk and i = 0, 1.

a ((ε, i)) = a ((ε1, ε2, . . . εk, i))

= fi (a ((ε1, . . . εk)) , a ((ε1, . . . εk−1, 1 − εk)) , ηk).

For example

a ((1, 0)) = f0 (a (1) , a (0) , η1) = a ∧ b ∧ η−1
1 (b − a ∧ b)

In the following lemma we collect some properties of these elements.

Lemma 4 ([5], Lemma 2.10) Let A be an Archimedean lattice-ordered algebra.

1. If ε = (ε1, ε2, . . . εk) ∈ Bk and 1 ≤ r ≤ k, then a ((ε1, . . . εk)) ≤ a ((ε1, . . . εr )) .

2. If ε, ε′ ∈ Bk , ε �= ε′ and i, j ∈ {0, 1}, then a ((ε, i)) ∧ a
((

ε′, j
)) = 0.

3. If ε ∈ Bk, then a ((ε, 0)) ≤ 1
k+1 (a (0) + a (1)) and a ((ε, 1)) ≤ a (0) + a (1) .

Definition 4 ([5], Definition 2.13) Let A be an Archimedean lattice- ordered algebra
and let a, b ∈ A+. For k = 1, 2, . . ., let

Ck =
∑

ε∈Bk

(−1)|ε|+k Da((ε,0)) (a ((ε, 1))) .
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where |ε| = ε1 + ε2 + . . . + εk for all ε = (ε1, ε2, . . . εk) ∈ Bk .

For example,

C1 =
∑

ε∈B1

(−1)|ε|+1 Da((ε,0)) (a ((ε, 1)))

= −Da((0,0)) (a ((0, 1))) + Da((1,0)) (a ((1, 1)))

= −D f0(a,b,η1) ( f1 (a, b, η1)) + D f0(b,a,η1) ( f1 (b, a, η1))

So from Lemma 3,

|Da (b) − C1| ≤ η1(a
2 + b2).

Put C0 = Da (b), then |C0 − C1| ≤ η1(a2 + b2).

In the following lemma, we extend this result.

Lemma 5 Let A be an Archimedean lattice-ordered algebra in which all inner deriva-
tions are orthogonally null. If a, b ∈ A+ , then

|Ck − Ck+1| ≤ ηk+1(a
2 + b2) for all k ∈ N.

Proof Note that the property is true for k = 0. Then put k ≥ 1.

We have

Ck+1 =
∑

ε̃∈Bk+1

(−1)|ε̃|+k+1 Da((ε̃,0)) (a ((ε̃, 1)))

= −
∑

ε∈Bk

(−1)|ε|+k Da((ε,0,0)) (a ((ε, 0, 1)))

+
∑

ε∈Bk

(−1)|ε|+k Da((ε,1,0)) (a ((ε, 1, 1))) .

Then

Ck − Ck+1 =
∑

ε∈Bk

(−1)|ε|+k {Da((ε,0)) (a ((ε, 1)))

+ Da((ε,0,0)) (a ((ε, 0, 1))) − Da((ε,1,0)) (a ((ε, 1, 1)))}.

From Lemma 3,

|Ck − Ck+1| ≤
∑

ε∈Bk

∣∣
∣∣

Da((ε,0)) (a ((ε, 1))) + Da((ε,0,0)) (a ((ε, 0, 1)))

−Da((ε,1,0)) (a ((ε, 1, 1)))

∣∣
∣∣

≤ ηk+1

∑

ε∈Bk

{a ((ε, 0))2 + a ((ε, 1))2}
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≤ ηk+1

∑

ε∈Bk

{a ((ε, 0)) + a ((ε, 1))}2 ≤ ηk+1

∑

ε∈Bk

a (ε)2

But from the inequality 4.3

∑

ε∈Bk

a (ε)2 =
∑

λ∈Bk−1

{a ((λ, 0)) + a ((λ, 1))}2 ≤
∑

λ∈Bk−1

a (λ)2 .

By repeating this argument, we find

∑

ε∈Bk

a (ε)2 ≤
∑

λ∈B1

a (λ)2 = a (0)2 + a (1)2 .

Hence

|Ck − Ck+1| ≤ ηk+1(a (0)2 + a (1)2) = ηk+1(a
2 + b2)

and the proof is complete. 
�
All the preparations have been made for the principal result in the section.

Theorem 3 Let A be an Archimedean �-algebra. Then the following properties are
equivalent:

1. A is commutative.
2. For all a ∈ A, ker Da is a lattice subspace of A.

3. Any inner derivation is orthogonally null.

Proof The implication (1) ⇒ (2) is trivial.
(2) ⇒ (3) Let a ∈ A. Then a ∈ ker Da . Since ker Da a lattice subspace of A, then

a+ ∈ ker Da .

Then

a+a = aa+

It follows from

a+2 − a+a− = a+2 − a−a+

that

a+a− = a−a+

for all a ∈ A. Then if a ∧ b = 0, we find
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ab = (a − b)+ (a − b)−

= (a − b)− (a − b)+

= ba.

(3) ⇒ (1) Let a, b ∈ A+, θ > 0 and let η = {ηk}k≥1 a sequence of positive real
numbers such that

∑
k≥1ηk < θ .

Define a (ε) and Ck for ε ∈ Bk (k = 1, 2 . . .) as above and taking C0 = Da (b).
From Lemma 5,

|Da (b) − Ck | =
∣∣∣∣
∣

k∑

r=1

(Cr−1 − Cr )

∣∣∣∣
∣

(4.4)

≤
k∑

r=1

|Cr−1 − Cr | (4.5)

≤
k∑

r=1

ηr (a
2 + b2)

≤ θ(a2 + b2). (4.6)

It follows from

Ck =
∑

ε∈Bk

± Da((ε,0)) (a ((ε, 1)))

that

|Ck | ≤
∑

ε∈Bk

∣∣Da((ε,0)) (a ((ε, 1)))
∣∣

≤
∑

ε∈Bk

{a ((ε, 0)) a ((ε, 1)) + a ((ε, 1)) a ((ε, 0))}

According to Lemma 4(iii),

|Ck | ≤ 1

k + 1

∑

ε∈Bk

{(a (0) + a (1)) a ((ε, 1)) + a ((ε, 1)) (a (0) + a (1))}.

According to Lemma 4(ii) and (iii),

∑

ε∈Bk

a ((ε, 1)) =
∨

ε∈Bk

a ((ε, 1))

≤ a (0) + a (1).
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Thus

|Ck | ≤ 1

k + 1

⎧
⎨

⎩
((a (0) + a (1)))

∑

ε∈Bk

a ((ε, 1)) +
∑

ε∈Bk

a ((ε, 1)) (a (0) + a (1))

⎫
⎬

⎭

≤ 2

k + 1
(a + b)2 . (4.7)

From (4.4) and (4.7) we have

|Da (b)| = |Da (b) − Ck + Ck |
≤ |Da (b) − Ck | + |Ck |
≤ θ(a2 + b2) + 2

k + 1
(a + b)2 for k = 1, 2 . . .

Since A is Archimedean, we obtain

|Da (b)| ≤ θ(a2 + b2).

But this holds for all θ > 0, then as well since A is Archimedean, we have |Da (b)| = 0,

i.e., ab = ba. This holds for all a, b ∈ A+ and hence for all a, b ∈ A and the
commutativity is proved. 
�
Corollary 4 ([5], Theorem 2.15) Any Archimedean almost f -algebra is commutative.
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16. Kudláček, V.: O nĕkterych typech l-okruhu (on some types of �-rings). Sborni Vysokého Učeni Techn.
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