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Abstract In this paper, we obtain an extension of the classical Korovkin theorem
for a sequence of positive linear operators on a modular space using a statistical
A -summation process. Also, we give an example which satisfies this theorem.
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1 Introduction

The Korovkin theorem is the object of study of many mathematicians. In the classi-
cal Korovkin theorem [1,18] the uniform convergence in C ([a, b]), the space of all
continuous real-valued functions defined on the compact interval [a, b], is proved for
a sequence of positive linear operators, assuming the convergence only on the test
functions 1, x, x2. Recently some versions of Korovkin theorems were proved in the
setting of modular spaces, which include as particular cases L p, Orlicz and Musielak-
Orlicz spaces [24]. Also, in [2], some versions of abstract Korovkin-type theorems in
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modular function spaces, with respect to filter convergence for linear positive opera-
tors, by considering several kinds of test functions have studied. Note that for certain
function spaces, as for example L p spaces, in general it is not possible to get the con-
vergence in L p of a sequence of positive linear operators for all the L p functions, but
it is necessary to consider spaces, depending on the form of the operators involved. In
the present paper, we give a modular version of the Korovkin theorem for a sequence
of positive linear operators using a statistical A -summation process, is an extension
of Theorem 2 in [24].

We now recall some basic definitions and notations used in the paper.
Let

B := (blk) (l, k ∈ N := {1, 2, 3, . . .})

be an infinite summability matrix. For a given sequence of real numbers x := {xk},
the B-transform of x , denoted by

Bx := {(Bx)l},

is given by

(Bx)l =
∞∑

k=1

blk xk,

provided the series converges for each l ∈ N. We say that B is regular (see [15]) if

lim Bx = L whenever lim x = L .

Assume that B is a non-negative regular summability matrix. Then the sequence
x = {xk} is called B-statistically convergent to L provided that, for every ε > 0,

lim
l

∑

k: |xk−L|≥ε

blk = 0. (1)

We denote this limit as follows (cf. [11]; see also [7,8,17])

stB − lim x = L .

Actually, this convergence method is based on the concept of B -density. Recall the
B-density of a subset K ⊂ N, denoted by

δB{K },

is given by

δB{K } = lim
l

∞∑

k=1

blkχK (k),
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provided the limit exists, where χK is the characteristic function of K ; or equivalently

δB{K } = lim
l

∑

k∈K

blk .

So, by (1), we easily see that

stB − lim x = L iff δB{k : |xk − L| ≥ ε} = 0 for every ε > 0.

We should note that if we take B = C1 := (clk), the Cesáro matrix defined by

clk :=
⎧
⎨

⎩

1

l
, if 1 ≤ k ≤ l,

0, otherwise,

then B-statistical convergence reduces to the concept of statistical convergence (cf.
[10]; see also [12–14]). In this case, we write

st − lim x = L instead of stC1 − lim x = L .

Further, taking B = I , the identity matrix, B -statistical convergence coincides with
the ordinary convergence, i.e.,

stI − lim x = lim x = L .

Observe that every convergent sequence (in the usual sense) is B -statistically conver-
gent to the same value for any non-negative regular matrix B, but its converse is not
always true. Actually, in [17], Kolk proved that B-statistical convergence is stronger
than convergence when B = (blk) is a non-negative regular summability matrix such
that

lim
l

max
k

{blk} = 0.

The concepts of statistical limit superior and limit inferior have been introduced
by Fridy and Orhan [14]. B -statistical analogs of these concepts have been examined
by Connor and Kline [7], and Demirci [8] as follows. The B-statistical limit superior
of a number sequence x = {xk}, denoted by

stB − lim sup x,

is defined by

stB − lim sup x =
{

sup Bx , if Bx �= φ,

−∞, if Bx = φ,

where Bx := {b ∈ R : δB {k : xk > b} �= 0} and φ denotes the empty set. We note that
by δB{K } �= 0 we mean either δB{K } > 0 or K fails to have B -density. Similarly,
the B-statistical limit inferior of {xk}, denoted by
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stB − lim inf x,

is defined by

stB − lim inf x =
{

inf Cx , if Cx �= φ,

+∞, if Cx = φ,

where Cx := {c ∈ R : δB {k : xk < c} �= 0}. Of course, if we take B = C1, then the
above definitions reduce to the concepts of st − lim sup x and st − lim inf x given in
[14], respectively. As in the ordinary limit superior or inferior, it was proved that

stB − lim inf x ≤ stB − lim sup x

and also that, for any sequence x = {xk} satisfying δB{k : |xk | > M} = 0 for some
M > 0,

stB − lim x = L iff stB − lim inf x = stB − lim sup x = L .

We now focus on modular spaces.
Let I = [a, b] be a bounded interval of the real line R provided with the Lebesgue

measure. Then, by X (I ) we denote the space of all real-valued measurable functions
on I provided with equality a.e. As usual, let C (I ) denote the space of all continuous
real-valued functions, and C∞ (I ) denote the space of all infinitely differentiable
functions on I . In this case, we say that a functional ρ : X (I ) → [0,+∞] is a
modular on X (I ) provided that the following conditions hold:

(i) ρ ( f ) = 0 if and only if f = 0 a.e. in I ,
(ii) ρ (− f ) = ρ ( f ) for every f ∈ X (I ),

(iii) ρ (α f + βg) ≤ ρ ( f ) + ρ (g) for every f, g ∈ X (I ) and for any α, β ≥ 0 with
α + β = 1.

A modular ρ is said to be N-quasi convex if there exists a constant N ≥ 1 such that

ρ (α f + βg) ≤ Nαρ (N f ) + Nβρ (Ng)

holds for every f, g ∈ X (I ), α, β ≥ 0 with α + β = 1. In particular, if N = 1, then
ρ is called convex.

A modular ρ is said to be N -quasi semiconvex if there exists a constant N ≥ 1 such
that

ρ(a f ) ≤ Naρ(N f )

holds for every f ∈ X (I ) and a ∈ (0, 1].
It is clear that every N -quasi semiconvex modular is N -quasi convex. We should

recall that the above two concepts were introduced and discussed in details by Bardaro
et. al. [4].

We now consider some appropriate vector subspaces of X (I ) by means of a modular
ρ as follows:
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Lρ (I ) :=
{

f ∈ X (I ) : lim
λ→0+ρ (λ f ) = 0

}

and

Eρ (I ) := {
f ∈ Lρ (I ) : ρ (λ f ) < +∞ for all λ > 0

}
.

Here, Lρ (I ) is called the modular space generated by ρ; and Eρ (I ) is called the
space of the finite elements of Lρ (I ) . Observe that if ρ is N -quasi semiconvex, then
the space

{ f ∈ X (I ) : ρ (λ f ) < +∞ for some λ > 0}

coincides with Lρ (I ). The notions about modulars are introduced in [23] and widely
discussed in [4] (see also [19,22]).

With the help of the notions of modular convergence and strong convergence, some
approximation theorems have recently been introduced by Bardaro and Mantellini [5].

Now we recall the convergence methods in modular spaces.
• Let { fn} be a function sequence whose terms belong to Lρ (I ) . Then, { fn} is

modularly convergent to a function f ∈ Lρ (I ) iff

lim
n

ρ (λ0 ( fn − f )) = 0 for some λ0 > 0. (2)

• Also, { fn} is F-norm convergent (or, strongly convergent) to f iff

lim
n

ρ (λ ( fn − f )) = 0 for every λ > 0. (3)

It is known from [22] that (2) and (3) are equivalent if and only if the modular ρ satisfies
the Δ2-condition, i.e. there exists a constant M > 0 such that ρ (2 f ) ≤ Mρ ( f ) for
every f ∈ X (I ).

In this paper, we will need the following assumptions on a modular ρ:

• if ρ( f ) ≤ ρ(g) for | f | ≤ |g| , then ρ is monotone,
• ρ is finite if χA ∈ Lρ (I ) whenever A is measurable subset of I such that μ (A) < ∞,

• if ρ is finite and, for every ε > 0, λ > 0, there exists a δ > 0 such that ρ (λχB) < ε

for any measurable subset B ⊂ I with μ (B) < δ, then ρ is absolutely finite,
• if χI ∈ Eρ (I ) , then ρ is strongly finite
• ρ is absolutely continuous provided that there exists an α > 0 such that, for every

f ∈ X (I ) with ρ ( f ) < +∞, the following condition holds: for every ε > 0 there
is δ > 0 such that ρ (α f χB) < ε whenever B is any measurable subset of I with
μ (B) < δ.

Observe now that (see [5]) if a modular ρ is monotone and finite, then we have
C(I ) ⊂ Lρ (I ) . In a similar manner, if ρ is monotone and strongly finite, then C(I ) ⊂
Eρ (I ). Also, if ρ is monotone, absolutely finite and absolutely continuous, then
C∞ (I ) = Lρ (I ) . Some important relations between the above properties may be
found in [3,4,21,23].
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2 Korovkin type theorems

Let A := {An}n≥1, An =
(

a(n)
k j

)

k, j∈ be a sequence of infinite non-negative real

matrices. For a sequence of real numbers, x = {
x j
}

j∈, the double sequence

A x := {
(Ax)n

k : k, n ∈}

defined by (Ax)n
k := ∑∞

j=1 a(n)
k j x j is called the A -transform of x whenever the series

converges for all k and n. A sequence x is said to be A -summable to L if

lim
k

∞∑

j=1

a(n)
k j x j = L

uniformly in n ([6,26]).
If An = B for some matrix B, then A -summability is the ordinary matrix sum-

mability by B. If, a(n)
k j = 1

k+1 , for n ≤ j ≤ k + n, (n = 1, 2, . . .), and a(n)
k j = 0

otherwise, then A -summability reduces to almost convergence [20].
Let ρ be a monotone and finite modular on X (I ), and let B = (blk) be a non-

negative regular summability matrix. Assume that D is a set satisfying C∞ (I ) ⊂ D ⊂
Lρ (I ) . We can construct such a subset D when ρ is monotone and finite (see [5]).
Here, D is domain of the operator T. We will assume that T := {Tj } is a sequence of
positive linear operators from D into X (I ) and for all k, n ∈, f ∈ D the series

AT

k,n ( f ) :=
∞∑

j=1

a(n)
k j Tj f,

is absolutely convergent almost everywhere with respect to Lebesgue measure. Also,
assume that there exists a subset XT ⊂ D with C∞ (I ) ⊂ XT and a constant P > 0
such that,

stB − lim sup
k

ρ
(
λ
(

AT

k,n ( f )
))

≤ Pρ (λ f ) , uniformly in n (4)

holds for every f ∈ XT, λ > 0.

A sequence T := {Tj } of positive linear operators of D into X (I ) is called an A -
summation process on D if

{
Tj ( f )

}
is A -summable to f (with respect to modular

ρ) for every f ∈ D , i.e.,

lim
k

ρ

⎡

⎣λ

⎛

⎝
∞∑

j=1

a(n)
k j Tj f − f

⎞

⎠

⎤

⎦ = 0, uniformly in n. (5)



Korovkin type approximation theorem on modular spaces 675

A different definition is given by, (see [16])

lim
k

∞∑

j=1

a(n)
k j ρ

[
λ
(
Tj f − f

)] = 0, uniformly in n (6)

for all f ∈ D where it is assumed that supn,k
∑∞

j=1a(n)
k j < ∞ holds.

In this paper, we establish a theorem of the Korovkin type with respect to the
convergence behavior (5) for a sequence of positive linear operators of D into X (I ) .

So the results of type (5 ) are extensions of type (6). Also, the following theorem is an
extension of Theorem 2 in [24]. Some results concerning summation processes in the
space L p [a, b] of Lebesgue integrable functions on a compact interval may be found
[24,25].

Throughout the paper we use the test functions ei defined by

ei (x) = xi (i = 0, 1, 2, . . .).

Also, we denote the value of Tj f at a point x ∈ I by Tj ( f (y) ; x) or, briefly, Tj ( f ; x).

Theorem 1 Let A = {An}n≥1 be a sequence of infinite non-negative real matrices
and let ρ be a monotone, strongly finite, absolutely continuous and N-quasi semiconvex
modular on X (I ), also B = (blk) be a non-negative regular summability matrix. Let
T := {Tj } be a sequence of positive linear operators from D into X (I ) satisfying (4)
for each f ∈ D. Suppose that

stB − lim
k

ρ

⎛

⎝λ

⎛

⎝
∞∑

j=1

a(n)
k j Tj ei − ei

⎞

⎠

⎞

⎠ = 0, uniformly in n (7)

for every λ > 0 and i = 0, 1, 2. Now let f be any function belonging to Lρ (I ) such
that f − g ∈ XT for every g ∈ C∞ (I ) . Then, we have

stB − lim
k

ρ

⎛

⎝λ0

⎛

⎝
∞∑

j=1

a(n)
k j Tj f − f

⎞

⎠

⎞

⎠ = 0, uniformly in n (8)

for some λ0 > 0.

Proof We first claim that

stB − lim
k

ρ

⎛

⎝η

⎛

⎝
∞∑

j=1

a(n)
k j Tj g − g

⎞

⎠

⎞

⎠ = 0 uniformly in n (9)

for every g ∈ C(I ) ∩ D and every η > 0. To see this assume that g belongs to
C (I )∩ D. By the continuity of g on I , given ε > 0, there exists a number δ > 0 such
that for all x, y ∈ I satisfying |y − x | < δ we have
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|g (y) − g (x)| < ε (10)

Also we get for all x, y ∈ I satisfying |y − x | > δ that

|g (y) − g (x)| ≤ 2M

δ2 (y − x)2 (11)

where M := supx∈I |g(x)| .Combining ( 10) and (11) we have for x, y ∈ I that

|g (y) − g (x)| < ε + 2M

δ2 (y − x)2 .

Since Tj is a positive linear operator, we get

∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj (g; x) − g (x)

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj (g (y) ; x) −

∞∑

j=1

a(n)
k j Tj (g (x) ; x) +

∞∑

j=1

a(n)
k j Tj (g (x) ; x) − g (x)

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj (g (y) − g (x) ; x) + g (x)

⎛

⎝
∞∑

j=1

a(n)
k j Tj (1; x) − 1

⎞

⎠

∣∣∣∣∣∣

≤
∞∑

j=1

a(n)
k j Tj (|g (y) − g (x)| ; x) + |g (x)|

∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj (1; x) − 1

∣∣∣∣∣∣

≤
∞∑

j=1

a(n)
k j Tj

(
ε + 2M

δ2 (y − x)2 ; x

)
+ |g (x)|

∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj (1; x) − 1

∣∣∣∣∣∣

≤ ε + ε

∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj (1; x) − 1

∣∣∣∣∣∣
+ 2M

δ2

∞∑

j=1

a(n)
k j Tj

(
(y − x)2 ; x

)

+M

∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj (1; x) − 1

∣∣∣∣∣∣

= ε + (ε + M)

∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj (1; x) − 1

∣∣∣∣∣∣
+ 2M

δ2

⎡

⎣

⎛

⎝
∞∑

j=1

a(n)
k j Tj

(
y2; x

)
− x2

⎞

⎠
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−2x

⎛

⎝
∞∑

j=1

a(n)
k j Tj (y; x) − x

⎞

⎠ + x2

⎛

⎝
∞∑

j=1

a(n)
k j Tj (1; x) − 1

⎞

⎠

⎤

⎦

≤ ε +
(

ε + M + 2Mc2

δ2

) ∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj (1; x) − 1

∣∣∣∣∣∣
+ 4Mc

δ2

∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj (y; x) − x

∣∣∣∣∣∣

+2M

δ2

∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj

(
y2; x

)
− x2

∣∣∣∣∣∣

where c := max {|a| , |b|}. So, the last inequality gives, for any η > 0 that

η

∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj (g; x) − g (x)

∣∣∣∣∣∣
≤
⎧
⎨

⎩ηε+ηK

∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj (1; x) − 1

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj (y; x)−x

∣∣∣∣∣∣
+
∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj

(
y2; x

)
−x2

∣∣∣∣∣∣

⎫
⎬

⎭

where K := max
{
ε + M + 2Mc2

δ2 , 4Mc
δ2 , 2M

δ2

}
. Applying the modular ρ in both-sides

of the above inequality, since ρ is monotone, we have

ρ

⎛

⎝η

⎛

⎝
∞∑

j=1

a(n)
k j Tj g − g

⎞

⎠

⎞

⎠ ≤ ρ

⎛

⎝ηε + ηK

∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj e0 − e0

∣∣∣∣∣∣

+ ηK

∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj e1 − e1

∣∣∣∣∣∣

+ ηK

∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj e2 − e2

∣∣∣∣∣∣

⎞

⎠ .

So, we may write that

ρ

⎛

⎝η

⎛

⎝
∞∑

j=1

a(n)
k j Tj g − g

⎞

⎠

⎞

⎠

≤ ρ(4ηε) + ρ

⎛

⎝4ηK

⎛

⎝
∞∑

j=1

a(n)
k j Tj e0 − e0

⎞

⎠

⎞

⎠

+ρ

⎛

⎝4ηK

⎛

⎝
∞∑

j=1

a(n)
k j Tj e1 − e1

⎞

⎠

⎞

⎠ + ρ

⎛

⎝4ηK

⎛

⎝
∞∑

j=1

a(n)
k j Tj e2 − e2

⎞

⎠

⎞

⎠ .
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Since ρ is N -quasi semiconvex and strongly finite, we have, assuming
0 < ε ≤ 1

ρ

⎛

⎝η

⎛

⎝
∞∑

j=1

a(n)
k j Tj g − g

⎞

⎠

⎞

⎠

≤ Nερ (4ηN ) + ρ

⎛

⎝4ηK

⎛

⎝
∞∑

j=1

a(n)
k j Tj e0 − e0

⎞

⎠

⎞

⎠

+ρ

⎛

⎝4ηK

⎛

⎝
∞∑

j=1

a(n)
k j Tj e1 − e1

⎞

⎠

⎞

⎠ + ρ

⎛

⎝4ηK

⎛

⎝
∞∑

j=1

a(n)
k j Tj e2 − e2

⎞

⎠

⎞

⎠ .

For a given r > 0, choose an ε ∈ (0, 1] such that Nερ (4ηN ) < r. Now define the
following sets:

Sη :=
⎧
⎨

⎩k : ρ

⎛

⎝η

⎛

⎝
∞∑

j=1

a(n)
k j Tj g − g

⎞

⎠

⎞

⎠ ≥ r

⎫
⎬

⎭ ,

Sη,i :=
⎧
⎨

⎩k : ρ

⎛

⎝4ηK

⎛

⎝
∞∑

j=1

a(n)
k j Tj ei − ei

⎞

⎠

⎞

⎠ ≥ r − Nερ (4ηN )

3

⎫
⎬

⎭ ,

where i = 0, 1, 2. Then, it is easy to see that Sη ⊆ ⋃2
i=0 Sη,i . So we can write, for all

l ∈ N, that ∑

k∈Sη

blk ≤
∑

k∈Sη,0

blk +
∑

k∈Sη,1

blk +
∑

k∈Sη,2

blk . (12)

Taking limit as l → ∞ in (12) and using the hypothesis (7), we get

lim
l

∑

k∈Sη

blk = 0,

which proves our claim (9). Observe that (9) also holds for every
g ∈ C∞(I ) because of C∞(I ) ⊂ C(I ) ∩ D. Now let f ∈ Lρ (I ) satisfying

f − g ∈ XT for every g ∈ C∞ (I ). Since μ (I ) < ∞ and ρ is strongly finite and
absolutely continuous, we can see that ρ is also absolutely finite on X (I ) (see [3]).
Using these properties of the modular ρ, it is known from [4,21] that the space C∞(I )
is modularly dense in Lρ (I ) , i.e., there exists a sequence {gk} ⊂ C∞ (I ) such that

lim
k

ρ
[
3λ∗

0 (gk − f )
] = 0 for some λ∗

0 > 0.

This means that, for every ε > 0, there is a positive number k0 = k0(ε) so that

ρ
[
3λ∗

0 (gk − f )
]

< ε for every k ≥ k0. (13)
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On the other hand, by the linearity and positivity of the operators Tj , we may write
that

λ∗
0

∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj ( f ; x) − f (x)

∣∣∣∣∣∣
≤ λ∗

0

∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj ( f − gk0; x)

∣∣∣∣∣∣

+λ∗
0

∣∣∣∣∣∣

∞∑

j=1

a(n)
k j Tj (gk0; x) − gk0(x)

∣∣∣∣∣∣

+λ∗
0

∣∣gk0(x) − f (x)
∣∣

holds for every x ∈ I and n ∈ N. Applying the modular ρ in the last inequality and
using the monotonicity of ρ, we have

ρ

⎛

⎝λ∗
0

⎛

⎝
∞∑

j=1

a(n)
k j Tj f − f

⎞

⎠

⎞

⎠ ≤ ρ

⎛

⎝3λ∗
0

⎛

⎝
∞∑

j=1

a(n)
k j Tj

(
f − gk0

)
⎞

⎠

⎞

⎠

+ρ

⎛

⎝3λ∗
0

⎛

⎝
∞∑

j=1

a(n)
k j Tj gk0 − gk0

⎞

⎠

⎞

⎠

+ρ
(
3λ∗

0

(
gk0 − f

))
. (14)

Then, it follows from (13) and (14) that

ρ

⎛

⎝λ∗
0

⎛

⎝
∞∑

j=1

a(n)
k j Tj f − f

⎞

⎠

⎞

⎠ ≤ ε + ρ

⎛

⎝3λ∗
0

∞∑

j=1

a(n)
k j Tj

(
f − gk0

)
⎞

⎠

+ρ

⎛

⎝3λ∗
0

⎛

⎝
∞∑

j=1

a(n)
k j Tj gk0 − gk0

⎞

⎠

⎞

⎠ . (15)

So, taking B-statistical limit superior as k → ∞ in the both-sides of (15) and also
using the facts that gk0 ∈ C∞(I ) and f − gk0 ∈ XT, we obtained from (4) that

stB − lim sup
k

ρ

⎛

⎝λ∗
0

⎛

⎝
∞∑

j=1

a(n)
k j Tj f − f

⎞

⎠

⎞

⎠

≤ ε + Pρ
(
3λ∗

0( f − gk0)
)

+stB − lim sup
k

ρ

⎛

⎝3λ∗
0

⎛

⎝
∞∑

j=1

a(n)
k j Tj gk0 − gk0

⎞

⎠

⎞

⎠ ,

which gives



680 S. Orhan, K. Demirci

stB − lim sup
k

ρ

⎛

⎝λ∗
0

⎛

⎝
∞∑

j=1

a(n)
k j Tj f − f

⎞

⎠

⎞

⎠

≤ ε(P + 1) + stB − lim sup
k

ρ

⎛

⎝3λ∗
0

⎛

⎝
∞∑

j=1

a(n)
k j Tj gk0 − gk0

⎞

⎠

⎞

⎠ . (16)

By (9), since

stB − lim
k

ρ

⎛

⎝3λ∗
0

⎛

⎝
∞∑

j=1

a(n)
k j Tj gk0 − gk0

⎞

⎠

⎞

⎠ = 0, uniformly in n,

we get

stB − lim sup
k

ρ

⎛

⎝3λ∗
0

⎛

⎝
∞∑

j=1

a(n)
k j Tj gk0 − gk0

⎞

⎠

⎞

⎠ = 0, uniformly in n. (17)

Combining (16) with (17), we conclude that

stB − lim sup
k

ρ

⎛

⎝λ∗
0

⎛

⎝
∞∑

j=1

a(n)
k j Tj f − f

⎞

⎠

⎞

⎠ ≤ ε(P + 1).

Since ε > 0 was arbitrary, we find

stB − lim sup
k

ρ

⎛

⎝λ∗
0

⎛

⎝
∞∑

j=1

a(n)
k j Tj f − f

⎞

⎠

⎞

⎠ = 0 uniformly in n.

Furthermore, since ρ
(
λ∗

0

(∑∞
j=1a(n)

k j Tj f − f
))

is non-negative for all k, n ∈ N, we

can easily show that

stB − lim
k

ρ

⎛

⎝λ∗
0

⎛

⎝
∞∑

j=1

a(n)
k j Tj f − f

⎞

⎠

⎞

⎠ = 0, uniformly in n

which completes the proof.

If the modular ρ satisfies the Δ2-condition, then one can get the following result
from Theorem 1 at once.

Theorem 2 Let A = {An}n≥1 be a sequence of infinite non-negative real matrices,
B = (blk) be a non-negative regular summability matrix and T := {Tj }, ρ be the
same as in Theorem 1. If ρ satisfies the Δ2-condition, then the following statements
are equivalent:
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(a) stB − lim
k

ρ
(
λ
(∑∞

j=1a(n)
k j Tj ei − ei

))
= 0 uniformly in n for every λ > 0 and

i = 0, 1, 2,

(b) stB − lim
k

ρ
(
λ
(∑∞

j=1a(n)
k j Tj f − f

))
= 0 uniformly in n for every λ > 0

provided that f is any function belonging to Lρ(I ) such that f − g ∈ XT for
every g ∈ C∞ (I ).

If one replaces the matrices B and An (n ≥ 1) by the identity matrix, then the
condition (4) reduces to

st − lim sup
k

ρ
(
λ
(
Tj h

)) ≤ Pρ (λh) (18)

for every h ∈ XT, λ > 0 and for an absolute positive constant P. In this case, the next
results which were obtained by Bardaro and Mantellini [5] immediately follows from
our Theorems 1 and 2.

Corollary 1 [5] Let ρ be a monotone, strongly finite, absolutely continuous and
N-quasi semiconvex modular on X (I ). Let T := {Tj } be a sequence of positive
linear operators from D into X (I ) satisfying (18). If {Tj ei } is strongly convergent to
ei for each i = 0, 1, 2, then {Tj f } is modularly convergent to f provided that f is
any function belonging to Lρ (I ) such that f − g ∈ XT for every g ∈ C∞ (I ).

Corollary 2 [5] T := {Tj } and ρ be the same as in Corollary 1. If ρ satisfies the
Δ2-condition, then the following statements are equivalent:

(a) {Tj ei } is strongly convergent to ei for each i = 0, 1, 2,

(b) {Tj f } is strongly convergent to f provided that f is any function belonging to
Lρ(I ) such that f − g ∈ XT for every g ∈ C∞ (I ).

3 Application

In this section we give an example of positive linear operators which satisfy the con-
ditions of Theorem 1.

Example 1 Take I = [0, 1] and let ϕ : [0,∞) → [0,∞) be a continuous function
for which the following conditions hold:

• ϕ is convex,
• ϕ (0) = 0, ϕ (u) > 0 for u > 0 and limu→∞ ϕ (u) = ∞.

Hence, consider the functional ρϕ on X (I ) defined by

ρϕ( f ) :=
1∫

0

ϕ (| f (x)|) dx for f ∈ X (I ). (19)

In this case, ρϕ is a convex modular on X (I ) , which satisfies all assumptions listed
in Sect. 1 (see [5]). Consider the Orlicz space generated by ϕ as follows:

Lρ
ϕ(I ) := {

f ∈ X (I ) : ρϕ (λ f ) < +∞ for some λ > 0
}
.
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Then consider the following classical Bernstein-Kantorovich operator U := {U j } on
the space Lρ

ϕ (I ) (see [5]which is defined by:

U j ( f ; x) :=
j∑

k=0

(
j

k

)
xk (1 − x) j−k ( j + 1)

(k+1)/( j+1)∫

k/( j+1)

f (t) dt for x ∈ I.

Observe that the operators U j map the Orlicz space Lρ
ϕ (I ) into itself. Moreover,

property (18) is satisfied with the choice of XU := Lρ
ϕ(I ). Then, by Corollary 1, we

know that, for any function f ∈ Lρ
ϕ (I ) such that f − g ∈ XU for every g ∈ C∞ (I ),{

U j f
}

is modularly convergent to f.
If ϕ (x) = x p for 1 ≤ p < ∞, x ≥ 0, then Lρ

ϕ(I ) = L p (I ) Moreover we have

ρϕ( f ) = ‖ f ‖p
L p(I ).

Now take B = C1 = (
ck j

)
, the Ces áro matrix of order one. In this case, we know

that C1 -statistical convergence coincides with statistical convergence, and its limit is

denoted by st − limAssume that A := {An}n≥1 =
{(

a(n)
k j

)

k, j∈N

}

n≥1
is a sequence

of infinite matrices defined by a(n)
k j = 1

k+1 if n ≤ j ≤ n + k, (n = 1, 2, . . .) and

a(n)
k j = 0 otherwise. Since, for positive constant C,

∥∥U j ( f ; x)
∥∥

L p
≤ C ‖ f ‖L p

[9],

we can easily see that

st − lim sup
k

∥∥∥∥∥∥

∞∑

j=1

a(n)
k j U j f

∥∥∥∥∥∥

p

L p

≤ C ‖ f ‖p
L p

, uniformly in n.

We now claim that

st − lim
k

∥∥∥∥∥∥

∞∑

j=1

a(n)
k j U j ei − ei

∥∥∥∥∥∥

p

L p

= 0, uniformly in n, i = 0, 1, 2. (20)

Observe that U j (e0; x) = e0, U j (e1; x) = j x
j+1 + 1

2( j+1)
and U j (e2; x) = j( j−1)x2

( j+1)2 +
2 j x

( j+1)2 + 1
3( j+1)2 . So, we can see,

∥∥∥∥∥∥

∞∑

j=1

a(n)
k j U j (e0; x) − e0(x)

∥∥∥∥∥∥
L p

=
∥∥∥∥∥∥

n+k∑

j=n

1

k + 1
U j (e0; x) − e0(x)

∥∥∥∥∥∥
L p

= ‖1 − 1‖
L p

= 0,
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we get

st − lim
k

∥∥∥∥∥∥

∞∑

j=1

a(n)
k j U j e0 − e0

∥∥∥∥∥∥

p

L p

= 0, uniformly in n.

which guarantees that (20) holds true for i = 0. Also, we have

∥∥∥∥∥∥

∞∑

j=1

a(n)
k j U j (e1; x) − e1(x)

∥∥∥∥∥∥
L p

=
∥∥∥∥∥∥

n+k∑

j=n

1

k + 1
U j (e1; x) − e1(x)

∥∥∥∥∥∥
L p

=
∥∥∥∥∥∥

x
1

k + 1

n+k∑

j=n

j

j + 1
+ 1

2 (k + 1)

n+k∑

j=n

1

j + 1
− x

∥∥∥∥∥∥
L p

≤
⎛

⎝ 1

k + 1

n+k∑

j=n

j

j + 1
− 1

⎞

⎠ ‖e1(x)‖
L p

+
⎛

⎝ 1

2 (k + 1)

n+k∑

j=n

1

j + 1

⎞

⎠ ‖e0(x)‖
L p

= 1

(p + 1)
1/p

⎛

⎝− 1

k + 1

n+k∑

j=n

1

j + 1

⎞

⎠

+
⎛

⎝ 1

2 (k + 1)

n+k∑

j=n

1

j + 1

⎞

⎠

=
⎛

⎝ 1

k + 1

n+k∑

j=n

1

j + 1

⎞

⎠
(

1

2
− 1

(p + 1)
1/p

)

Since st − limk

(
supn

1
k+1

∑n+k
j=n

1
j+1

)
= 0, we have,

st − lim
k

⎛

⎜⎝sup
n

∥∥∥∥∥∥

∞∑

j=1

a(n)
k j U j (e1; x) − e1

∥∥∥∥∥∥
L p

⎞

⎟⎠

≤
(

1

2
− 1

(p + 1)
1/p

)
st − lim

k

⎛

⎝sup
n

1

k + 1

n+k∑

j=n

1

j + 1

⎞

⎠

which gives
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st − lim
k

∥∥∥∥∥∥

∞∑

j=1

a(n)
k j U j e1 − e1

∥∥∥∥∥∥
L p

= 0, uniformly in n.

So, we have

st − lim
k

∥∥∥∥∥∥

∞∑

j=1

a(n)
k j U j e1 − e1

∥∥∥∥∥∥

p

L p

= 0, uniformly in n.

Finally, since
∥∥∥∥∥∥

∞∑

j=1

a(n)
k j U j (e2; x) − e2 (x)

∥∥∥∥∥∥
L p

=
∥∥∥∥∥∥

n+k∑

j=n

1

k + 1
U j (e2; x) − e2 (x)

∥∥∥∥∥∥
L p

=
∥∥∥∥∥∥

n+k∑

j=n

1

k + 1

(
j ( j − 1) x2

( j + 1)2 + 2 j x

( j + 1)2 + 1

3 ( j + 1)2

)
− x2

∥∥∥∥∥∥
L p

≤
⎛

⎝ 1

k + 1

n+k∑

j=n

j ( j − 1)

( j + 1)2 − 1

⎞

⎠ ‖e2(x)‖
L p

+ 1

k + 1

n+k∑

j=n

2 j

( j + 1)2
‖e1(x)‖

L p

+ 1

k + 1

n+k∑

j=1

1

3 ( j + 1)2
‖e0(x)‖

L p

= 1

(2p + 1)
1/p

⎛

⎝ 1

k + 1

n+k∑

j=n

j ( j − 1)

( j + 1)2 − 1

⎞

⎠

+ 1

(p + 1)
1/p

⎛

⎝ 1

k + 1

n+k∑

j=n

2 j

( j + 1)2

⎞

⎠ + 1

k + 1

n+k∑

j=n

1

3 ( j + 1)2

=
⎛

⎝ 1

k + 1

n+k∑

j=n

j

( j + 1)2

⎞

⎠
(

2

(p + 1)
1/p − 3

(2p + 1)
1/p

)

+
⎛

⎝ 1

k + 1

n+k∑

j=n

1

( j + 1)2

⎞

⎠
(

1

3
− 1

(2p + 1)
1/p

)
,

Since st − limk

(
supn

1
k+1

∑n+k
j=n

j
( j+1)2

)
= 0 and st − limk

(
supn

1
k+1

∑n+k
j=n

1
( j+1)2

)
=

0, we have,
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st − lim
k

⎛

⎜⎝sup
n

∥∥∥∥∥∥

∞∑

j=1

a(n)
k j U j (e2; x) − e2 (x)

∥∥∥∥∥∥
L p

⎞

⎟⎠

≤
(

2

(p + 1)
1/p − 3

(2p + 1)
1/p

)
st − lim

k

⎛

⎝sup
n

1

k + 1

n+k∑

j=n

j

( j + 1)2

⎞

⎠

+
(

1

3
− 1

(2p + 1)
1/p

)
st − lim

k

⎛

⎝sup
n

1

k + 1

n+k∑

j=n

1

( j + 1)2

⎞

⎠

which gives

st − lim
k

⎛

⎜⎝

∥∥∥∥∥∥

∞∑

j=1

a(n)
k j U j e2 − e2

∥∥∥∥∥∥
L p

⎞

⎟⎠ = 0, uniformly in n.

We get

st − lim
k

∥∥∥∥∥∥

∞∑

j=1

a(n)
k j U j e2 − e2

∥∥∥∥∥∥

p

L p

= 0 uniformly in n.

So, our claim (20) holds true for each i = 0, 1, 2.
{
U j

}
satisfies all hypothesis of

Theorem 1 and we immediately see that,

st − lim
k

∥∥∥∥∥∥

∞∑

j=1

a(n)
k j U j f − f

∥∥∥∥∥∥

p

L p

= 0, uniformly in n on [0, 1] for all f ∈ L p(I ).
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