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Abstract In the present paper we introduce a new concept of A-distributional conver-
gence in an arbitrary Hausdorff topological space which is equivalent to A-statistical
convergence for a degenerate distribution function. We investigate A-distributional
convergence as a summability method in an arbitrary Hausdorff topological space.
We also study the summability of spliced sequences, in particular, for metric spaces
and give the Bochner integral representation of A-limits of the spliced sequences for
Banach spaces.
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1 Preliminaries

The main motivation of using summability theory has always been to make a non-
convergent sequence to converge to a desirable limit [7,16]. This was the idea behind
Fejer’s theorem showing Cesàro method being effective in making the Fourier series
of a continuous periodic function to converge [22]. The classical summability theory
has been investigated thoroughly mostly in linear spaces. It has also been studied in
some other spaces either by relaxing the linearity condition but keeping the metric
structure or relaxing the metric structure and introducing binary addition operation in
the context of topological groups [4–6,17–20].

Statistical convergence, although a special case of convergence in measure, is one
of the newer methods of summability theory and has been studied for scalar sequences
by several authors [2,3,8,10–12,21]. Recently Khan and Orhan [13] provided a matrix
characterization of A-statistical convergence on a proper class of sequences, thereby
linking this form of summability with the classical form of matrix summability.

Since the classical matrix summability methods cannot be used in arbitrary topo-
logical spaces, several authors have, therefore, restricted the scope by assuming either
the topological space to have a group structure or a linear structure. One can introduce
a summability concept directly into abstract topological spaces through A-statistical
convergence [4,9]. More precisely, let X be a topological space and let A = (ank) be
a nonnegative regular summability matrix such that each row adds up to one. Then a
sequence x = (xk) in X is said to be A-statistically convergent to α ∈ X if for any
open set U that contains α,

lim
n

∑

k:xk �∈U

ank = 0.

As shown in [4] A-statistical convergence is a regular summability method. One
can extend this notion by introducing I -convergence in a straightforward way, by
allowing any ideal I instead of the ideal of the A-density zero sets. One of the aims
of this paper is to explore further properties of statistical convergence as a sum-
mability notion for arbitrary topological spaces, similar to the results of the papers
by Cakalli and Khan [4] and Maio and Kočinac [9]. Throughout the paper we will
assume that X is a Hausdorff topological space with at least two elements, to avoid
trivialities.

The second aim of the paper is to use the classical notion of distributional con-
vergence as a summability method and then provide its relationship with A-statistical
convergence as well as characterize the resulting limits for spliced sequences. To intro-
duce a limit of a sequence we use a distribution on the Borel sigma field, σ(τ), of
subsets of (X, τ ), where τ is its topology. Consider a set function F : σ(τ) → [0, 1]
such that F(X) = 1 and if G1, G2, ... are disjoint sets in σ(τ) then

F

⎛

⎝
∞⋃

j=1

G j

⎞

⎠ =
∞∑

j=1

F
(
G j

)
.
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Such a function is called a probability measure, or a distribution. More precisely,
let A = (ank) be a nonnegative regular summability matrix whose each row adds up
to one. Let F be a probability measure on σ(τ). Then the sequence x = (xk) in X is
said to be A-distributionally convergent to F if for all G ∈ σ(τ) with F(∂G) = 0 we
have

lim
n→∞

∑

k:xk∈G

ank = F(G)

where ∂G is the boundary of G.

2 A-distributional and A-statistical convergences

In this section we observe that A-statistical convergence is a very special case of
A-distributional convergence in a Hausdorff topological space by giving a characteri-
zation for A-statistical convergence. For this purpose we recall the following theorem
(see [1], Theorem 2.1).

Theorem A Let X be a topological space, let A = (ank) be a nonnegative regular
summability matrix such that each row adds up to one, let F be a distribution function
and let x = (xk) be a sequence in X. Then the following statements are equivalent:

i) x is A-distributionally convergent to F,

ii) lim supn
∑

k:xk∈V ank ≤ F(V ) for all closed subsets V,

iii) lim infn
∑

k:xk∈U ank ≥ F(U ) for all open subsets U.

The following proposition gives the characterization of A-statistical convergence.
For the sake of completeness we give its straightforward proof.

Proposition 1 Let X be a Hausdorff topological space, let A = (ank) be a nonnegative
regular summability matrix such that each row adds up to one and let x = (xk) be
a sequence in X. Then x is A-statistically convergent to α ∈ X if and only if it is
A-distributionally convergent to F : σ(τ) → [0, 1] defined by

F(G) =
{

0, i f α �∈ G
1, i f α ∈ G.

Proof It is easy to see that F is a distribution function. Assume that x is A-statistically
convergent to α and let U be an open set.

Case I: If α ∈ U then F(U ) = 1 and as x is A-statistically convergent to α we get

lim
n→∞

∑

k:xk �∈U

ank = 0
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which implies

lim inf
n

∑

k:xk∈U

ank = 1 = F(U ).

Case II: If α �∈ U then F(U ) = 0. Now we trivially get

lim inf
n

∑

k:xk∈U

ank ≥ 0 = F(U ).

Hence it follows from Theorem A that x is A-distributionally convergent to F .
Conversely assume that x is A-distributionally convergent to F and let U be an open

set that contains α. Then V := U c is a closed set that does not contain α. Therefore we
can write F(V ) = 0. As V is closed we have ∂V ⊆ V which implies α �∈ ∂V . Hence
we get F(∂V ) = 0. Since x is A-distributionally convergent to F and F(∂V ) = 0 we
have

lim
n→∞

∑

k:xk∈V

ank = F(V ) = 0.

Hence x is A-statistically convergent to α. 	


This proposition shows that A-distributional convergence is more general than
A-statistical convergence. Several characterizations of distributional convergence can
be found in [1]. To characterize the limits of A-distributional convergence we need
the concept of splices.

3 Splices

In [15], Osikiewicz investigated which nonnegative regular matrices will sum com-
plex spliced sequences and to what value. In this section we are concerned with the
A-distributional convergence of a spliced sequence in an arbitrary Hausdorff topolog-
ical space. The next three definitions are given in [15].

Definition 1 Let M be a fixed positive integer. An M-partition of N consists of infinite
sets Ki = {ϑi ( j)} for i = 1, 2, ..., M such that

⋃M
i=1 Ki = N and Ki ∩ K j = ∅ for

all i �= j, where N is the set of all positive integers. An ∞-partition on N consists
of a countably infinite number of infinite sets Ki = {ϑi ( j)} for i ∈ N such that⋃∞

i=1 Ki = N and Ki ∩ K j = ∅ for all i �= j.

Definition 2 Let {Ki : i = 1, 2, ..., M} be a fixed M-partition of N, let x (i) =
(

x (i)
j

)

be a sequence in X with lim j→∞ x j = αi , i = 1, 2, ..., M. If k ∈ Ki , then k = ϑi ( j)
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for some j . Define x = (xk) by xk = xϑi ( j) = x (i)
j . Then x is called an M-splice over

{Ki : i = 1, 2, ..., M} with limit points α1, α2, ..., αM .

Definition 3 Let {Ki : i ∈ N} be a fixed ∞-partition of N, let x (i) =
(

x (i)
j

)
be a

sequence in X with lim j→∞ x j = αi , i ∈ N. If k ∈ Ki , then k = ϑi ( j) for some j .

Define x = (xk) by xk = xϑi ( j) = x (i)
j . Then x is called an ∞-splice over {Ki : i ∈ N}

with limit points α1, α2, ..., αM , ...

Theorem 1 Let X be a Hausdorff topological space, let A = (ank) be a non-
negative regular summability matrix such that each row adds up to one and let
{Ki = {ϑi ( j)} : i = 1, 2, ..., M} be an M-partition of N. Then the following state-
ments are equivalent:

i) δA(Ki ) exists for all i = 1, 2, ..., M.

ii) There exist p1, p2, ..., pM ∈ [0, 1] such that
∑M

i=1 pi = 1 and any M-
spliced sequence over {Ki : i = 1, 2, ..., M} with limit points α1, α2, ..., αM is
A-distributionally convergent to the distribution F : σ(τ) → [0, 1] where

F(G) =
∑

1≤i≤M
αi ∈G

pi , for all G ∈ σ(τ).

iii) There exist p1, p2, ..., pM ∈ [0, 1] such that
∑M

i=1 pi = 1 and the M-
splice of x (1), x (2), ..., x (M) over {Ki : i = 1, 2, ..., M} where x (i) = (αi , αi , ...)

being a constant sequence, is A-distributionally convergent to the distribution
F : σ(τ) → [0, 1] and

F(G) =
∑

1≤i≤M
αi ∈G

pi , f or all G ∈ σ(τ).

Proof i �⇒ i i : Assume that δA(Ki ) exists for all i = 1, 2, ..., M. Let pi = δA(Ki )

for i = 1, 2, ..., M. Since {Ki : i = 1, 2, ..., M} is an M-partition of N we get

1 =
M∑

i=1

δA(Ki ) =
M∑

i=1

pi .

Now let x be any M-splice of x (1), x (1), ..., x (M) over {Ki : i = 1, 2, ..., M} with some
limit points α1, α2, ..., αM and let V be a closed set.

Case I: If αi �∈ V for all i = 1, 2, ..., M then F(V ) = 0 and we get
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∑

k:xk∈V

ank =
M∑

i=1

∑

k:xk∈V
k∈Ki

ank

=
M∑

i=1

∑

j :x (i)
j ∈V

an,ϑi ( j)

=
M∑

i=1

∑

j :x (i)
j �∈V c

an,ϑi ( j).

As x (i) is convergent to αi , the sum
∑

j :x (i)
j �∈V c an,ϑi ( j) is a finite sum for all i =

1, 2, ..., M and since A is regular, limn an,ϑi ( j) = 0 for all j. Hence the right hand
side of the last equality goes to zero as n → ∞. Therefore we have

lim sup
n

∑

k:xk∈V

ank = F(V ) = 0.

Case II: If αm(1), αm(2), ..., αm(S) ∈ V and αl(1), αl(2), ..., αl(R) �∈ V where

{m(t)}S
t=1 ∪ {l(t)}R

t=1 = {1, 2, ..., M} , f or some S, R

then F(V ) = ∑S
t=1 δA(Km(t)) and we get

∑

k:xk∈V

ank =
S∑

t=1

∑

k:xk∈V
k∈Km(t)

ank +
R∑

t=1

∑

k:xk∈V
k∈Kl(t)

ank

=
S∑

t=1

∑

k:xk∈V
k∈Km(t)

ank +
R∑

t=1

∑

j :x (l(t))
j ∈V

an,ϑl(t)( j)

≤
S∑

t=1

∑

k∈Km(t)

ank +
R∑

t=1

∑

j :x (l(t))
j �∈V c

an,ϑl(t)( j).

The first part of the right hand side of the last inequality tends to
∑S

t=1 δA(Km(t)) as
n → ∞ and similar to Case I, the sum

∑
j :x (l(t))

j �∈V c an,ϑl(t)( j) is a finite sum for all

t = 1, 2, ..., R and since A is regular, limn an,ϑl(t)( j) = 0 for all j. Hence the second
term of the right hand side of the last inequality goes to zero as n → ∞. Therefore
we have

lim sup
n

∑

k:xk∈V

ank ≤
S∑

t=1

δA
(
Km(t)

) = F(V ).
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Case III: If αi ∈ V for all i = 1, 2, ..., M then F(V ) = 1 and we trivially have

lim sup
n

∑

k:xk∈V

ank ≤ 1 = F(V ).

Thus, in all cases we get for any closed set V that

lim sup
n

∑

k:xk∈V

ank ≤ F(V ).

Hence from Theorem A we have that x is A-distributionally convergent to F.

i i �⇒ i i i : As x (i) = (αi , αi , ...) is convergent for all i = 1, 2, ..., M the proof
follows immediately.
i i i �⇒ i : Assume that x is the M-splice of the sequences x (1), x (2), ..., x (M) over
{K1, K2, ..., KM } where for i = 1, 2, ...M, x (i) = (x (i)

k ) is defined by x (i)
k = αi for

all k ∈ N. Then from the hypothesis x is A-distributionally convergent to F. As X is a
Hausdorff topological space, for a fixed i there exists an open set Ui such that αi ∈ U
and α j �∈ U for all j �= i. Since F(Ui ) = pi we also get from Theorem A that

lim inf
n

∑

k:xk∈Ui

ank ≥ pi

which implies

lim inf
n

∑

k∈Ki

ank ≥ pi . (3.1)

Now let Vi = {αi }. Since X is a Hausdorff topological space Vi is closed and as
αi ∈ Vi and α j �∈ Vi for all j �= i then F(V ) = pi . Here we use that X has at least
two distinct points, and that αi ’s are distinct. Hence by Theorem A we get

lim sup
n

∑

k:xk∈Vi

ank ≤ pi

which implies

lim sup
n

∑

k∈Ki

ank ≤ pi . (3.2)

Thus we get from (3.1) and (3.2) that

pi ≤ lim inf
n

∑

k∈Ki

ank ≤ lim sup
n

∑

k∈Ki

ank ≤ pi

which implies δA(Ki ) exists and is equal to pi . 	
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It is a well known fact that a density introduced by a regular summability matrix does
not have sigma additivity property. The next result deals with the sigma additivity of
densities of an infinite partition. Its proof will need the result of the last theorem.

Theorem 2 Let X be a Hausdorff topological space, let A = (ank) be a non-
negative regular summability matrix such that each row adds up to one and let
{Ki = {ϑi ( j)} : i ∈ N} be an ∞-partition of N. Then δA(Ki ) exists for all i ∈ N

and
∑∞

i=1 δA(Ki ) = 1 if and only if there exist pi ∈ [0, 1] for i ∈ N such that∑∞
i=1 pi = 1 and any ∞-splice sequence over {Ki : i ∈ N} with limit points α1, α2, ...

is A-distributionally convergent to the distribution F : σ(τ) → [0, 1] where

F(G) =
∑

αi ∈G

pi , f or all G ∈ σ(τ).

Proof Assume that δA(Ki ) exists for all i ∈ N. Take pi = δA(Ki ) for i ∈ N so that

1 =
∞∑

i=1

δA(Ki ) =
∞∑

i=1

pi .

Now let x be any ∞-splice of x (1), x (2), ... over {Ki : i ∈ N} with limit points α1, α2, ...

and let V be a closed set.

Case I: If αi �∈ V for all i ∈ N then F(V ) = 0 and we get

∑

k:xk∈V

ank =
∞∑

i=1

∑

k:xk∈V
k∈Ki

ank

=
∞∑

i=1

∑

j :x (i)
j �∈V c

an,ϑi ( j).

Let fn(i) := ∑
j :x (i)

j �∈V c an,ϑi ( j) and gn(i) := ∑
k∈Ki

ank . Then for any i ∈ N

g(i) := lim
n

gn(i) = lim
n

∑

k∈Ki

ank = δA(Ki ).

If μ represents the counting measure over N, we have as in [15]

lim
n

∫

N

gn(i)dμ = lim
n

∞∑

i=1

∑

k∈Ki

ank = lim
n

∞∑

k=1

ank

= 1 =
∞∑

k=1

δA(Ki ) =
∞∑

k=1

g(i) =
∫

N

g(i)dμ. (3.3)
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And for any n ∈ N

| fn(i)| =
∑

j :x (i)
j �∈V c

an,ϑi ( j) =
∑

k:xk �∈V c

k∈Ki

ank ≤
∑

k∈Ki

ank = gn(i). (3.4)

Then (3.3) and (3.4) and the Lebesgue Dominated Convergence Theorem yield

lim
n

∑

k:xk∈V

ank = lim
n

∞∑

i=1

∑

j :x (i)
j �∈V c

an,ϑi ( j)

=
∞∑

i=1

lim
n

∑

j :x (i)
j �∈V c

an,ϑi ( j). (3.5)

Since x (i) is convergent to αi the sum
∑

j :x (i)
j �∈V c an,ϑi ( j) consists of finitely many

terms, and since A is regular, lim
n

an,ϑi ( j) = 0 for all j . Hence from (3.5) we get

lim
n

∑

k:xk∈V

ank = 0

which implies

lim sup
n

∑

k:xk∈V

ank = 0 = F(V ).

Case II: If αm(1), αm(2), ... ∈ V and αl(1), αl(2), ... �∈ V where

{m(t)}∞t=1 ∪ {l(t)}∞t=1 = N

then F(V ) = ∑∞
t=1 δA(Km(t)) and we get

∑

k:xk∈V

ank =
∞∑

t=1

∑

k:xk∈V
k∈Km(t)

ank +
∞∑

t=1

∑

k:xk∈V
k∈Kl(t)

ank

=
∞∑

t=1

∑

k:xk∈V
k∈Km(t)

ank +
∞∑

t=1

∑

j :x (l(t))
j ∈V

an,ϑl(t)( j)

≤
∞∑

t=1

∑

k∈Km(t)

ank +
∞∑

t=1

∑

j :x (l(t))
j �∈V c

an,ϑl(t)( j). (3.6)
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Let fn(t) := ∑
k∈Km(t)

ank and gn(t) := ∑
k∈Kt

ank . Then for any t ∈ N,

g(t) := lim
n

gn(t) = lim
n

∑

k∈Kt

ank = δA(Kt ).

If μ represents the counting measure, as in Case I we have

lim
n

∫

N

gn(t)dμ =
∫

N

g(t)dμ.

Since

| fn(t)| =
∑

k∈Km(t)

ank ≤
∑

k∈Km(t)

ank +
∑

k∈Kl(t)

ank =
∑

k∈Kt

ank = gn(t)

we have from the Lebesgue Dominated Convergence Theorem that

lim
n

∞∑

t=1

∑

k∈Km(t)

ank =
∞∑

t=1

lim
n

∑

k∈Km(t)

ank

=
∞∑

t=1

δA(Km(t)).

Also as in Case I using the Lebesgue Dominated Convergence Theorem, convergence
of x (i) and the regularity of A it is easy to see that the second part of the right hand
side of inequality (3.6) goes to zero as n → ∞. Therefore we have

lim sup
n

∑

k:xk∈V

ank ≤
∞∑

t=1

δA
(
Km(t)

) = F(V ).

Case III: If αi ∈ V for all i ∈ N then F(V ) = 1 and as in Theorem 1 we have that

lim sup
n

∑

k:xk∈V

ank ≤ F(V ).

Thus we get for any closed subset V that

lim sup
n

∑

k:xk∈V

ank ≤ F(V ).

Hence from Theorem A we have that x is A-distributionally convergent to F.
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To prove sufficiency let M be a fixed positive integer, let αi ∈ X , i = 1, 2, ..., M, let
x (i) be a convergent sequence to αi , i = 1, 2, ..., M − 1 and let x (i) = (αM , αM , ...) ,

i = M, M + 1..., where αM is distinct from αi , i < M . Then from the hypotheses the
sequence x that is the ∞-splice of x (1), x (2), ... over {Ki : i ∈ N} is A-distributionally
convergent to the distribution FM : σ(τ) → [0, 1] where for all G ∈ σ(τ)

FM (G) =
∑

αi ∈G

pi .

On the other hand we have

∑

αi ∈G

pi =

⎧
⎪⎨

⎪⎩

∑
1≤i≤M−1

αi ∈G

pi , αM �∈ G,

∑
1≤i≤M−1

αi ∈G

pi + ∑∞
i=M pi , αM ∈ G

=
∑

1≤i≤M−1
αi ∈G

pi + I{αM ∈G} p∗
M .

where p∗
M = 1 − ∑M−1

i=1 pi . Now define a finite partition of N as

⎧
⎨

⎩K1, K2, ..., KM−1, K =
∞⋃

j=M

K j

⎫
⎬

⎭ .

Then the M-splice of x (1), x (2), ..., x (M) over {K1, K2, ..., KM−1, K } is again the
sequence x . Since x is A-distributionally convergent to FM , from Theorem 1 we have
for all i = 1, 2, ..., M − 1 that δA(Ki ) exists and is equal to pi . As M is arbitrary
δA(Ki ) exists for all i ∈ N and

∑∞
i=1 δA(Ki ) = 1. 	


4 Summability in metric spaces

In this section we will give some summability results in metric spaces, and in particular
Banach spaces. Due to the concept of a distance, we can introduce the classical matrix
summability structure applied to the distances. The resulting type of convergence is
called the strong summability.

Definition 4 Let (X, d) be a metric space and let A = (ank) be a nonnegative sum-
mability matrix. Then a sequence x = (xk) in X is said to be A-uniformly integrable
if

lim
c→∞ sup

n

∑

k:d(xk ,α)≥c

d(xk, α)ank = 0

for some α ∈ X . Note that we can replace the statement “for some α ∈ X” with “for
any α ∈ X ”.
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Definition 5 Let (X, d) be a metric space and let A = (ank) be a nonnegative sum-
mability matrix. Then a sequence x = (xk) in X is said to be A-strongly convergent
to α ∈ X if

lim
n

∞∑

k=1

d(xk, α)ank = 0.

Definition 6 Let (X, ‖.‖) be a normed space, let A = (ank) be an infinite matrix and
let x = (xk) be a sequence in X . If Ax := {

(Ax)n
}

exists and is convergent to L
then we say that x is A − summable to L where f or all n = 1, 2, ...

(Ax)n :=
∑

k

xkank .

We also say that Ax is the A-transformation of x and L is the A-limit of x .

Recently Khan and Orhan [14] have given a characterization for A-strong conver-
gence of sequences by proving that a sequence is A-strongly convergent if and only
if it is A-statistically convergent and A-uniformly integrable. The same result also
holds in a metric space. In particular, this result and Proposition 1 give the following
corollary in normed spaces immediately.

Corollary 1 Let (X, ‖.‖) be a normed space, let A = (ank) be a nonnegative regular
summability matrix such that each row adds up to one, let x = (xk) be a sequence in
X and let α ∈ X. Then the following statements are equivalent:

i) x is A-uniformly integrable and A-distributionally convergent to the distribution
F : σ(τ) → [0, 1] where F is defined by

F(G) =
{

0, i f α �∈ G
1, i f α ∈ G.

ii) x is A-statistically convergent to α and A-uniformly integrable.
iii) x is A-strongly convergent to α.

Furthermore any one of these three statements implies Ax exists and converges to α.
Our next result characterizes the limit L of A-transformation for some

A-distributionally convergent sequences over Banach spaces. In the following {Ki =
{ϑi ( j)} : i = 1, 2, ..., } will stand for an ∞-partition of N, for which the A-densities
δA(Ki ) exist for all i and

∑∞
i=1 δA(Ki ) = 1. Consider a normed linear space (X, ‖·‖)

and let x be any bounded ∞-spliced sequence in X over the partition. It is not difficult
to show that

lim
n→∞

∞∑

k=1

xk ank =
∞∑

i=1

αi δA(Ki ),
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where α1, α2, . . . are the respective limit points of the ∞-spliced sequence. The fol-
lowing result shows that, when X is a Banach space, the limit is naturally linked to
A-distributional convergence via Bochner integrals.

Proposition 2 Let (X, ‖·‖) be a Banach space, let A = (ank) be a nonneg-
ative regular summability matrix such that each row adds up to one and let
{Ki = {ϑi ( j)} : i ∈ N} be an ∞-partition of N. If δA(Ki ) exists for all i ∈ N

and
∑∞

i=1 δA(Ki ) = 1 then for any bounded ∞-spliced sequence x = (xk) over
{Ki : i ∈ N}

lim
n→∞

∞∑

k=1

xkank =
∫

X

td F (4.1)

where F is a distribution defined by

F(G) =
∑

αi ∈G

δA(Ki ), G ∈ σ(τ).

and the integral in (4.1) is the Bochner integral.

Proof Let f : X → X be the identity and let s : X → X be defined by

s(t) =
{

αi , t = αi , i ∈ N

θ, otherwise.

We will show that
∫

X s d F exists and equals (4.1). Observe that f = s almost
everywhere with respect to F . Thus we have

∫

X

td F =
∫

X

s(t)d F. (4.2)

Consider a sequence of simple functions (sm),

sm(t) =
{

αi , t = αi , i = 1, 2, ..., m
θ, otherwise.

It is easy to see that for all m

‖sm(t) − s(t)‖ =
{ ‖αi‖ , t = αi , i > m

0, otherwise.

Thus for all t ∈ X, limm→∞ ‖sm(t) − s(t)‖ = 0. On the other hand since the
spliced sequence is bounded there exists an H > 0 such that

sup
t∈X

‖sm(t) − s(t)‖ ≤ sup
i>m

‖αi‖ < H.
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Then from the Bounded Convergence Theorem we have

lim
m→∞

∫

X

‖sm(t) − s(t)‖ d F =
∫

X

lim
m→∞ ‖sm(t) − s(t)‖ d F = 0

which implies

∫

X

s(t)d F = lim
m→∞

∫

X

sm(t)d F

= lim
m→∞

∫

X

(
m∑

i=1

I{αi }(t)αi

)
d F

= lim
m→∞

m∑

i=1

F ({αi }) αi

= lim
m→∞

m∑

i=1

δA(Ki )αi

=
∞∑

i=1

δA(Ki )αi . (4.3)

Hence from (4.2) and (4.3) we get that

lim
n→∞

∞∑

k=1

xkank =
∫

X

td F.

	

One can relax the assumption of boundedness of the ∞-spliced sequence a bit by

introducing A-uniform integrability.
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