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Abstract We recall the definition and properties of an algebra cone in an ordered
Banach algebra (OBA) and continue to develop spectral theory for the positive ele-
ments. An element a of a Banach algebra is called ergodic if the sequence of sums
∑n−1

k=0
ak

n converges. If a and b are positive elements in an OBA such that 0 ≤ a ≤ b
and if b is ergodic, an interesting problem is that of finding conditions under which a
is also ergodic. We will show that in a semisimple OBA that has certain natural prop-
erties, the condition we need is that the spectral radius of b is a Riesz point (relative
to some inessential ideal). We will also show that the results obtained for OBAs can
be extended to the more general setting of commutatively ordered Banach algebras
(COBAs) when adjustments corresponding to the COBA structure are made.
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1 Introduction

In [3,4,6–12,14,16], spectral theory for positive elements in ordered Banach alge-
bras (OBAs) was developed. The results in these papers were extended to the more
general setting of commutatively ordered Banach algebras (COBAs) in [13]. Some
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of the results in [3,7,14,16] were related to the following problem: if a and b are
positive elements in an OBA such that 0 ≤ a ≤ b, under what conditions are cer-
tain properties of b inherited by a? This is a classical problem for positive operators
on Banach lattices; a survey of some of the results for the problem is given in [18,
Chapter 18]. An element a of a Banach algebra is said to be ergodic if the sequence

of sums
∑n−1

k=0
ak

n converges. In this paper we will obtain results giving conditions
under which a dominated positive element in an OBA or COBA is ergodic, given that
the dominating element is ergodic. A corresponding problem for uniformly ergodic
operators on Banach lattices was studied in [15].

In Sect. 2 we provide some preliminary notation and definitions and in Sect. 3
we review some of the main concepts about OBAs and COBAs. In Sect. 4 the main
aim is to establish the ergodic theorem (Theorem 4.10), which will serve as a crucial
tool in proving the main results in Sect. 5. This result is a Banach algebra version of
part of Dunford’s result in [5, Theorem 3.16]. To prove Theorem 4.10 several Banach
algebra results, which are of interest in themselves, will be obtained. A number of
these results are Banach algebra versions of results in [5] (see Theorems 2.19, 2.20,
2.21, 3.6). While these are typically operator theoretic results, we will obtain ours by
purely algebraic means. In Sect. 5 we show that under conditions similar to those of
[15, Theorem 4.5], a dominated positive element in an OBA or COBA is ergodic if the
dominating element is ergodic. The main results are Theorems 5.1, 5.2 and especially
Theorem 5.5.

2 Preliminaries

Throughout A will be a complex Banach algebra with unit 1. The spectrum and spectral
radius of an element a in A will be denoted by σ(a) and r(a), respectively. The set
of isolated points of σ(a) will be denoted by iso σ(a). For any α ∈ iso σ(a), we
will denote by p(a, α) the spectral idempotent corresponding to a and α. A point
α ∈ σ(a) is said to be a pole of order k of the resolvent function λ �→ R(λ, a) =
(λ1 − a)−1, λ ∈ C \ σ(a), if α ∈ iso σ(a) and k is the smallest natural number such
that (α1 − a)k p(a, α) = 0.

In this paper all the ideals will be assumed to be two-sided. Let F be an ideal in A.
A point α ∈ iso σ(a) is said to be a Riesz point relative to F if the corresponding
spectral projection p(a, α) belongs to F . An ideal I in A is called inessential whenever
the spectrum in A of every element in I is either finite or a sequence converging to
zero. We will need the following characterization of Riesz points in a semisimple
Banach algebra:

Lemma 2.1 ([10], Lemma 2.1) Let A be a semisimple Banach algebra, I an inessential
ideal of A, and a ∈ A. Then a point α in σ(a) is a Riesz point of σ(a) relative to I if
and only if α is a pole of the resolvent of a and p(a, α) ∈ I .

A point α ∈ σ(a) is called an eigenvalue of a if there exists a 0 �= u ∈ A such that
au = αu or ua = αu. Then u is said to be an eigenvector corresponding to α.

For part of the material in Sect. 3 we will need to recall the following. Let E be
a complex Banach lattice and denote by L(E) the space of bounded linear operators
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on E . An operator T : E → E is regular if it can be written as a linear combination
over C of positive operators. The space of all regular operators on E is denoted by
Lr (E) and it is a subspace of L(E). When Lr (E) is provided with the r -norm

||T ||r = inf{||S|| : S ∈ L(E), |T x | ≤ S|x | for all x ∈ E},

it becomes a Banach algebra which contains the unit of L(E) ([17, IV §1] and [1]).
We denote by Kr (E) the closure in Lr (E) of the ideal of finite rank operators on E .
This is a closed, inessential ideal.

3 Ordered Banach algebras

In [16, Sect. 3] an algebra cone C of a Banach algebra A was defined and it was shown
that C induces an ordering on A which is compatible with the algebraic structure of A.
Such a Banach algebra is called an ordered Banach algebra (OBA). In [13, Sect. 3], we
defined an algebra c-cone, which is more general than an algebra cone, and showed
that a Banach algebra can be ordered by an algebra c-cone, and is then called a
commutatively ordered Banach algebra (COBA). We now recall those definitions and
the additional properties that algebra cones and algebra c-cones may have.

A nonempty subset C of a Banach algebra A is called a cone if C satisfies the
following:

(i) C + C ⊆ C ,
(ii) λC ⊆ C for all λ ≥ 0.

If C also satisfies the property C ∩ −C = {0}, then it is called a proper cone. We say
that C is closed if it is a closed subset of A.

Every cone C in a Banach algebra A induces an ordering ≤ defined by a ≤ b if and
only if b − a ∈ C , for a, b ∈ A. This ordering is reflexive and transitive. In addition,
C is proper if and only if the ordering is antisymmetric. In view of the fact that C
induces an ordering on A, we find that C = {a ∈ A : a ≥ 0}. Therefore the elements
of C are called positive.

A cone C in a Banach algebra A is called an algebra cone if it satisfies the following:

(i) ab ∈ C for all a, b ∈ C ,
(ii) 1 ∈ C , where 1 is the unit of A.

Following [13], we call a cone C that satisfies the weaker conditions ab ∈ C for all
a, b ∈ C such that ab = ba and 1 ∈ C an algebra c-cone. Obviously, every algebra
cone is an algebra c-cone.

A Banach algebra ordered by an algebra cone (algebra c-cone) is called an ordered
Banach algebra (OBA) (commutatively ordered Banach algebra (COBA)). Clearly,
every OBA is a COBA. We will denote by (A, C) a Banach algebra A ordered by an
algebra cone (algebra c-cone) C .

The following result, which can easily be established by induction, plays an
important role in Sect. 5:
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Proposition 3.1 Let (A, C) be an OBA and let a, b ∈ A. If 0 ≤ a ≤ b, then 0 ≤ an ≤
bn for any n ∈ N.

In order to obtain the COBA analogue of Proposition 3.1, the additional assumption
ab = ba is required. As the following counter example shows, this condition cannot
be dropped.

Example 3.2 ([13], Example 3.13) Let A = M2(C) and C = {a ∈ A : a = a∗ and
σ(a) ⊆ [0,∞)}, where a∗ denotes the complex conjugate transpose of a. Then C is a

closed algebra c-cone of A. If a =
(

1 −1
−1 1

)

, b =
(

2 −1
−1 1

)

∈ A, then 0 ≤ a ≤ b

but a2 ≤ b2 does not hold.

The following result, which can be deduced from the proof of [14, Theorem 3.2],
will also be a useful tool.

Proposition 3.3 Let A be an OBA with a closed algebra cone C and let 0 �= a ∈ C
such that r(a) > 0. If r(a) is a simple pole of the resolvent of a, then p = p(a, r(a)) ∈
C, ap = pa = r(a)p and apa = r(a)2 p.

The result in Proposition 3.3 also holds in a COBA and has the same proof.
An algebra cone or algebra c-cone C is said to be inverse-closed if it has the property

that if a ∈ C and a is invertible, then a−1 ∈ C . We will need the following result,
which is a COBA analogue of [4, Proposition 4.2] and has the same proof:

Proposition 3.4 Let (A, C) be a COBA with C closed and inverse-closed. If a ∈ C,
then 0 ≤ a ≤ r(a)1.

Suppose that (A, C) is an OBA or COBA. We say that C is normal if there exists
a scalar α > 0 such that 0 ≤ a ≤ b relative to C implies that ||a|| ≤ α||b||. If C has
the weaker property that there exists a scalar α > 0 such that 0 ≤ a ≤ b and ab = ba
imply that ||a|| ≤ α||b||, then C is said to be c-normal. Clearly, every normal algebra
cone or c-cone is c-normal. Also, it can easily be shown that a normal or c-normal
algebra cone or c-cone is necessarily proper.

If 0 ≤ a ≤ b relative to C implies that r(a) ≤ r(b) then we say that the spectral
radius is monotone w.r.t. C . If we have the weaker property that 0 ≤ a ≤ b relative
to C and ab = ba imply that r(a) ≤ r(b), then we say that the spectral radius is
c-monotone w.r.t. C . Obviously, monotonicity implies c-monotonicity.

It is well known that if C is a normal algebra cone in a Banach algebra A, then
the spectral radius in (A, C) is monotone (see [16, Theorem 4.1]). Similarly, if C is a
c-normal algebra c-cone in a Banach algebra A, then the spectral radius is c-monotone
in (A, C) (see [13, Theorem 4.2]).

If (A, C) is an OBA, F a closed ideal in A and π : A → A/F the canonical
homomorphism, then (A/F, πC) is an OBA. However, if (A, C) is a COBA, πC
is in general only a cone and not an algebra c-cone. Therefore although A/F can
be ordered by πC in the usual way, the structure (A/F, πC) is not a COBA. The
cone πC however does have the property that it contains the unit of A/F as well as
all powers of elements of πC . Such a cone is called an algebra c′-cone. A Banach
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algebra ordered by an algebra c′-cone is called a C ′OBA. Obviously, every COBA is
a C ′OBA.

We will say that the spectral radius in an OBA or C ′OBA (A/F, πC) is monotone
if 0 ≤ a ≤ b in A relative to C implies that r(a + F, A/F) ≤ r(b + F, A/F). If
we have the weaker property that 0 ≤ a ≤ b relative to C and ab = ba imply that
r(a + F, A/F) ≤ r(b + F, A/F), we will say that the spectral radius in (A/F, πC)

is c-monotone.
The following are examples of an OBA, COBA and C ′OBA.

Example 3.5 ([10], Example 3.2) Let E be a Dedekind complete Banach lattice, C =
{x ∈ E : x ≥ 0} and K = {T ∈ L(E) : T C ⊆ C}. Then (Lr (E), K ) is an OBA
with a closed, normal algebra cone and (Lr (E)/Kr (E), π K ) is an OBA such that the
spectral radius in (Lr (E)/Kr (E), π K ) is monotone.

Example 3.6 ([13], Examples 3.2 and 3.17) Let A be a C∗-algebra and C = {a ∈
A : a = a∗ and σ(a) ⊆ [0,∞)}. Then C is a closed, normal algebra c-cone of A.
Therefore (A, C) is a COBA. Suppose that F is a closed ideal in A and for each a + F
in A/F , define (a + F)∗ = a∗ + F . Then πC is a normal algebra c′-cone in A/F .
Therefore (A/F, πC) is a C ′OBA.

If A in Example 3.6 is commutative, then (A, C) is an OBA.
For more examples of OBAs and COBAs see [3,7–11,13,16].
We will need the following result, which follows immediately from [10,

Theorem 4.4].

Corollary 3.7 Let (A, C) be an OBA with C closed and the spectral radius in (A, C)

monotone. Let I be a closed inessential ideal of A such that the spectral radius in
(A/I, πC) is monotone. Suppose that a, b ∈ A with 0 ≤ a ≤ b and r(a) = r(b). If
r(b) is a Riesz point of σ(b), then r(a) is a Riesz point of σ(a).

If (A, C) is a COBA, we can establish the analogue of Corollary 3.7 with the
weaker property of c-monotonicity in (A, C) and in the C ′OBA (A/I, πC), provided
that ab = ba is also assumed. If we replace c-monotonicity with monotonicity in the
C ′OBA (A/I, πC), then the condition ab = ba can be dropped.

4 The ergodic theorem

Let ( fn) be the sequence of functions defined by fn(λ) = ∑n−1
k=0

λk

n (λ ∈ C). If a is an
element of a Banach algebra, then the terms of the sequence ( fn(a)) are called ergodic
sums of a, and a is said to be ergodic if its sequence of ergodic sums converges.

The aim of this section is to establish the ergodic theorem (Theorem 4.10), which
will be useful in the proofs of results in the next section. This result is a generalization
of part of a result of Dunford ([5, Theorem 3.16]) to Banach algebras. The results from
Theorem 4.1 through Proposition 4.9, some of which are Banach algebra versions of
results in [5], lead to Theorem 4.10. The proofs of Dunford’s results rely partly on
operator theory, while our proofs are completely algebraic.
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We start with the following theorem, which gives conditions under which a Banach
algebra element obtained through the holomorphic functional calculus will be the zero
element.

Theorem 4.1 Let A be a Banach algebra and let a ∈ A. Suppose that f is a complex
valued function analytic on a neighbourhood � of σ(a) such that

(i) for every pole λ of the resolvent of a of order k, f ( j)(λ) = 0 ( j = 0, 1, . . . , k −1)
and

(ii) σ(a) contains at least one pole λ1 of the resolvent of a, and there exists a neigh-
bourhood U of σ(a)\{λ1, λ2, . . . , λn} for some n ≥ 1, where λ1, λ2, . . . , λn are
poles of the resolvent of a, such that f (λ) = 0 for all λ ∈ U.

Then f (a) = 0.

Proof If � is a smooth contour surrounding σ(a), then f (a) = 1
2π i

∫
�

f (λ)(λ1 −
a)−1dλ. We may take � to be the union of �1 and C1, C2, . . . , Cn , where �1 is a
smooth contour contained in U and surrounding σ(a)\{λ1, λ2, . . . , λn}, and Ci is a
small circle centered at the pole λi of the resolvent of a and separating λi from the
rest of σ(a). Therefore

f (a) = 1

2π i

∫

�1

f (λ)(λ1 − a)−1dλ +
n∑

i=1

1

2π i

∫

Ci

f (λ)(λ1 − a)−1dλ.

From assumption (ii) we have that 1
2π i

∫
�1

f (λ)(λ1 − a)−1dλ = 0. Now, since

f ( j)(λi ) = 0 for i = 1, 2, . . . , n and for j = 0, 1, . . . , ki − 1 (with ki the order
of the pole λi ) by assumption (i), there exist analytic functions gi (i = 1, 2, . . . , n)
on � such that f (λ) = (λ − λi )

ki gi (λ) on a neighbourhood of λi including Ci .
Since λi is a pole of order ki of the resolvent of a, this resolvent has a Laurent series
expansion (λ1 − a)−1 = a−ki

(λ−λi )
ki

+ a−ki +1

(λ−λi )
ki −1 + · · · + a0 + a1(λ − λi ) + · · · , so that

f (λ)(λ1 − a)−1 = (λ − λi )
ki gi (λ)(λ1 − a)−1 = gi (λ)[a−ki + a−ki +1(λ − λi ) +

· · · + a0(λ − λi )
ki + a1(λ − λi )

ki +1 + · · · ], on a deleted neighbourhood of λi which
includes Ci . Since gi is analytic on a neighbourhood of σ(a), it has no singularities
on or inside Ci , and so f (λ)(λ1 − a)−1 has no singularities on or inside Ci . It follows
from Cauchy’s theorem that 1

2π i

∫
Ci

f (λ)(λ1 − a)−1dλ = 0 for i = 1, 2, . . . , n.
Hence f (a) = 0. �

The following result is an immediate consequence of Theorem 4.1.

Corollary 4.2 Let A be a Banach algebra and let a ∈ A. Suppose that f, g are
complex valued functions analytic on a neighbourhood of σ(a) such that

(i) for every pole λ of the resolvent of a of order k, f ( j)(λ) = g( j)(λ) ( j =
0, 1, . . . , k − 1) and

(ii) σ(a) contains at least one pole λ1 of the resolvent of a, and there exists a neigh-
bourhood U of σ(a)\{λ1, λ2, . . . , λn} for some n ≥ 1, where λ1, λ2, . . . , λn are
poles of the resolvent of a, such that f (λ) = g(λ) for all λ ∈ U.

Then f (a) = g(a).
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The following theorem is a very important application of Corollary 4.2, and forms
the basis for the rest of our work.

Theorem 4.3 Let A be a Banach algebra and let a ∈ A. Suppose that f is a complex
valued function analytic on a neighbourhood of σ(a). If α is a pole of order k of
the resolvent of a, then f (a) = f (a)(1 − p) + ∑k−1

n=0
(a−α1)n

n! f (n)(α)p, where p =
p(a, α).

Proof Since α is an isolated point in σ(a), we can take two open sets U0 and U1 such
that σ(a)\{α} ⊆ U0, {α} ⊆ U1, U0 ∩ U1 = ∅ and f is analytic on U = U0 ∪ U1.
Let χ : U → C be the function defined by χ(λ) = 0 if λ ∈ U0 and χ(λ) = 1 if
λ ∈ U1. Then χ is analytic on U and p = χ(a). Now let g : U → C be the function
defined by g(λ) = f (λ)(1 − χ(λ)) + ∑k−1

n=0
(λ−α)n

n! f (n)(α)χ(λ). We show that f
and g satisfy conditions (i) and (ii) of Corollary 4.2. If λ ∈ U0 then χ(λ) = 0 and so
g(λ) = f (λ). Hence f and g satisfy condition (ii) of Corollary 4.2. Since g(λ) = f (λ)

for all λ ∈ U0, we have that g( j)(λi ) = f ( j)(λi ) ( j = 0, 1, . . . , ki − 1) for every
pole λi ∈ U0 of order ki of the resolvent of a. We show that g( j)(α) = f ( j)(α) for
j = 0, 1, . . . , k − 1. We restrict the functions f and g to the set U1. For j = 0, it is
clear that f (α) = g(α). For j = 1, we have that

g′(λ) = f ′(α) + 2(λ − α)

2! f ′′(α) + 3(λ − α)2

3! f ′′′(α) + · · ·

+ (k − 1)(λ − α)k−2

(k − 1)! f (k−1)(α).

Therefore g′(α) = f ′(α). Next,

g′′(λ) = f ′′(α) + (λ − α) f ′′′(α) + 3 · 4(λ − α)2

4! f (4)(α) + · · ·

+ (k − 2)(k − 1)(λ − α)k−3

(k − 1)! f (k−1)(α).

Hence g′′(α) = f ′′(α). Continuing in this way, we obtain

g(k−1)(λ)= 1 · 2 · · · (k−1)

(k−1)! f (k−1)(α)= f (k−1)(α),

and so g(k−1)(α)= f (k−1)(α). Therefore condition (i) of Corollary 4.2 is satisfied and
so the result follows. �

The following three corollaries are consequences of Theorem 4.3.

Corollary 4.4 Let A be a Banach algebra and let a ∈ A. Let ( fn) be a sequence of
complex valued functions analytic on a neighbourhood of σ(a). Suppose that α �= 0
is a pole of order k of the resolvent of a such that fn(α) → 1 and f ( j)

n (α) → 0
( j = 1, 2, . . . , k − 1) as n → ∞. If (α1 − a) fn(a) → 0 as n → ∞ then fn(a) → p
as n → ∞, where p = p(a, α).
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Proof Since α is an isolated point in σ(a), we can take two open sets U0 and U1 such
that σ(a)\{α} ⊆ U0, {α} ⊆ U1, U0 ∩ U1 = ∅ and fn is analytic on U = U0 ∪ U1 for
all n ∈ N. By [2, Theorem 3.3.4], we have that σ((1 − p)a) = (σ (a) ∩ U0) ∪ {0}.
Since α �= 0, it follows that α /∈ σ((1 − p)a), so that b = α1 − (1 − p)a is invertible.
Then

fn(a)(1 − p) = fn(a)(1 − p)(α1 − (1 − p)a)b−1 = fn(a)(1 − p)(α1 − a)b−1

= fn(a)(α1 − a)(1 − p)b−1,

since (1 − p)p = 0. From the assumption (α1 − a) fn(a) → 0 as n → ∞, it
follows that fn(a)(1 − p) → 0 as n → ∞. Also, from Theorem 4.3, we get that

fn(a) = fn(a)(1 − p) + ∑k−1
j=0

(a−α1) j

j ! f ( j)
n (α)p. Together with the assumptions

fn(α) → 1 and f ( j)
n (α) → 0 ( j = 1, 2, . . . , k − 1) as n → ∞, it follows that

fn(a) → p as n → ∞. �
In the case where α in Corollary 4.4 is a simple pole, we get the following result.

Corollary 4.5 Let A be a Banach algebra and a ∈ A. Let ( fn) be a sequence of
complex valued functions analytic on a neighbourhood of σ(a). Suppose that α �= 0 is
a simple pole of the resolvent of a such that fn(α) → 1 as n → ∞. Then fn(a) → p
as n → ∞ if and only if (α1 − a) fn(a) → 0 as n → ∞, where p = p(a, α).

Proof Suppose that fn(a) → p as n → ∞. Then (α1 − a) fn(a) → (α1 − a)p as
n → ∞. Since α is a simple pole of the resolvent of a, we have that (α1 − a)p = 0.
Hence (α1 − a) fn(a) → 0 as n → ∞. The converse follows from Corollary 4.4. �

In Corollary 4.4 we made the assumption that α is a pole of arbitrary order k. The
following result shows that the other conditions then force α to be a simple pole.

Corollary 4.6 Let A be a Banach algebra, a ∈ A and suppose that α is a pole of
order at most k ≥ 1 of the resolvent of a. Suppose that ( fn) is a sequence of complex
valued functions analytic on a neighbourhood of σ(a). If (a − α1) fn(a) → 0 and
fn(α) → 1 as n → ∞, then α is a simple pole of the resolvent of a.

Proof Let p = p(a, α). By Theorem 4.3 we may write

fn(a) = fn(a)(1 − p) +
k−1∑

j=0

(a − α1) j

j ! f ( j)
n (α)p. (∗)

For k = 1, the result is trivial. For k = 2 we have from (∗) that fn(a) = fn(a)(1 −
p) + fn(α)p + f ′

n(α)(a − α1)p. Therefore

(a − α1) fn(a) = (a − α1) fn(a)(1 − p) + (a − α1) fn(α)p + (a − α1)2 f ′
n(α)p.

(∗∗)

Since k = 2, we have that α is a pole of order at most 2 of the resolvent of a. Therefore
(a − α1)2 f ′

n(α)p = 0. Using the assumptions (a − α1) fn(a) → 0 and fn(α) → 1
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as n → ∞, it then follows from (∗∗) that (a − α1)p = 0. Hence α is a simple pole
of the resolvent of a. For any k > 2, the general procedure is as follows: In the first
step multiply both sides of (∗) by (a − α1)k−1. Since α is a pole of order at most k,
this makes all but the first two terms of the expression on the right hand side of (∗)
zero. On the resulting equation, we take limits as n → ∞ and use the assumptions
(a − α1) fn(a) → 0 and fn(α) → 1 as n → ∞ to obtain that (a − α1)k−1 p = 0. In
the second step multiply both sides of (∗) by (a − α1)k−2. Using arguments similar
to the first step and the fact that (a − α1)k−1 p = 0, we get that (a − α1)k−2 p = 0.
After k − 1 steps it follows that (a − α1)p = 0. �

In the following proposition we establish that if σ(a) contains only one element,
then a stronger form of the reverse implication in Corollary 4.5 holds. This result is
not used further; it is included for the sake of interest.

Proposition 4.7 Let A be a Banach algebra and a ∈ A. Suppose that σ(a) = {α} and
α is a simple pole of the resolvent of a. If ( fn) is a sequence of complex valued functions
analytic on a neighbourhood of σ(a) and if fn(α) → 1, then fn(a) → p(a, α).

Proof Let � be a small circle centred at α. Then fn(a) = 1
2π i

∫
�

fn(λ)(λ1 − a)−1dλ.
Since α is a simple pole of the resolvent of a, we obtain the Laurent series expansion
(λ1−a)−1 = a−1

λ−α
+a0 +a1(λ−α)+a2(λ−α)2 +· · · (a j ∈ A, j = −1, 0, 1, 2, . . .)

on a deleted neighbourhood N0 of α which contains �. Let S(λ) be the sum of the
power series a0 + a1(λ − α) + a2(λ − α)2 + · · · . Then S is analytic on N0 and then
(λ1 − a)−1 = S(λ) + a−1

λ−α
. Clearly, fn S is analytic on N0. Since � is contained in

N0, it follows that

fn(a) = 1

2π i

∫

�

fn(λ)S(λ)dλ + a−1

2π i

∫

�

fn(λ)

λ − α
dλ = fn(α)a−1.

Since a−1 = p(a, α) and fn(α) → 1, it follows that fn(a) → p(a, α). �
In the rest of this section, we will consider only sequences of analytic functions of

the form fn(λ) = ∑n−1
k=0

λk

n (λ ∈ C), as they are of particular interest for the problem
at hand. Note that fn(1) = 1 for all n ∈ N. The next proposition shows that if we
take this sequence of functions and α = 1 in Corollary 4.5, then we obtain a stronger
form of the forward implication in Corollary 4.5. To prove this result we will use the
following lemma.

Lemma 4.8 Let A be a Banach algebra and a ∈ A. Then (1 − a)
∑n−1

k=0
ak

n → 0 if

and only if an

n → 0.

Proof We have that (1 − a)
∑n−1

k=0
ak

n = ∑n−1
k=0

ak

n − ∑n−1
k=0

ak+1

n = 1
n − an

n . Now,
1
n − an

n → 0 if and only if an

n → 0. �
Proposition 4.9 Let A be a Banach algebra and a ∈ A. If ( fn(a)) converges, where

fn(a) = ∑n−1
k=0

ak

n , then (1 − a) fn(a) → 0.
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Proof Suppose that ( fn(a)) converges, say fn(a) → b. We have that (n+1) fn+1(a)−
n fn(a) = an , and so an

n = 1
n ((n + 1) fn+1(a) − n fn(a)) = n+1

n fn+1(a) − fn(a) →
b − b = 0. It follows from Lemma 4.8 that (1 − a) fn(a) → 0. �

The following theorem, which we will call the ergodic theorem, is our key result
corresponding to part of [5, Theorem 3.16].

Theorem 4.10 Let A be a Banach algebra and a ∈ A. Suppose that 1 ∈ iso σ(a).

Let ( fn) be the sequence of functions fn(λ) = ∑n−1
k=0

λk

n (λ ∈ C). Then the following
statements are equivalent:

(i) ( fn(a)) converges, i.e. a is ergodic, with fn(a) → p(a, 1).
(ii) (1 − a) fn(a) → 0 as n → ∞ and 1 is a simple pole of the resolvent of a.

Proof (i) ⇒ (ii): Suppose that fn(a) → p(a, 1). Then by Proposition 4.9, we have
that (1 − a) fn(a) → 0. Since (1 − a) fn(a) → (1 − a)p(a, 1), by uniqueness of
limits, (1 − a)p(a, 1) = 0. Therefore 1 is a simple pole of the resolvent of a.

(ii) ⇒ (i): If (1 − a) fn(a) → 0 as n → ∞ and 1 is a simple pole of the resolvent of
a, then since fn(1) = 1, it follows from Corollary 4.5 that ( fn(a)) is convergent, with
fn(a) → p(a, 1). �

5 Domination by ergodic elements

In this section we will obtain results for the problem of domination by ergodic elements.
As stated earlier, a corresponding problem for uniformly ergodic operators on Banach
lattices was studied in [15] and a result was obtained (see [15, Theorem 4.5]). The
proof of this result depends on a theorem by Dunford (see [5, Theorem 3.16]). The
results we will obtain here are OBA and COBA analogues (although not generaliza-
tions in the strict sense) of [15, Theorem 4.5] and these are Theorems 5.1, 5.2 and 5.5.
For a Dedekind complete Banach lattice Theorem 5.5 generalizes [15, Theorem 4.5]
in the special case of the dominated operator being positive. A key result that will be
used to establish these theorems is Theorem 4.10.

If a is an element of a Banach algebra A, then, in this section, fn(a) will always

indicate the element
∑n−1

k=0
ak

n ∈ A.
We start with the following result.

Theorem 5.1 Let (A, C) be an OBA with C closed and normal, and let a, b ∈ A such
that 0 ≤ 1 ≤ a ≤ b. Suppose that r(b) = 1 ∈ iso σ(a) and that 1 is a simple pole of
the resolvent of b. If b is ergodic with fn(b) → p(b, 1) and if p(a, 1) = p(b, 1), then
a is ergodic, with fn(a) → p(a, 1).

Proof Since 1 is a simple pole of the resolvent of b, by Proposition 3.3, it is an
eigenvalue of b with positive corresponding eigenvector p(b, 1). Since p(a, 1) =
p(b, 1), the assumption 0 ≤ 1 ≤ a ≤ b implies that 0 ≤ (a − 1)p(a, 1) ≤ (b −
1)p(b, 1) = 0. From the fact that C is normal, and hence proper, it follows that
(1 − a)p(a, 1) = 0, so that 1 is a simple pole of the resolvent of a. Now since b is
ergodic, Proposition 4.9 and Lemma 4.8 imply that bn

n → 0 as n → ∞. It follows
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from Proposition 3.1 and the normality of C that an

n → 0 as n → ∞. Lemma 4.8 then
implies that (1 − a) fn(a) → 0 as n → ∞. From Theorem 4.10, it follows that a is
ergodic, with fn(a) → p(a, 1). �

The remaining results about domination by ergodic elements will be proved under
conditions similar to those of [15, Theorem 4.5]. We start with Theorem 5.2, which is
the basic result from which the others will be obtained.

Theorem 5.2 Let A be an OBA with a closed, normal algebra cone C and let a, b ∈ A
such that 0 ≤ a ≤ b. Suppose that 1 ∈ iso σ(a) is a pole of the resolvent of a. If b is
ergodic, then a is ergodic.

Proof From Proposition 3.1 we have that 0 ≤ an

n ≤ bn

n for all n ∈ N. Since b is

ergodic, bn

n → 0 as n → ∞ by Proposition 4.9 and Lemma 4.8, and since C is

normal, an

n → 0 as n → ∞. Lemma 4.8 then implies that (1 − a) fn(a) → 0 as
n → ∞. Since 1 is a pole of the resolvent of a, it follows from Corollary 4.6 that 1
is a simple pole of the resolvent of a. From Theorem 4.10 it follows that a is ergodic,
with fn(a) → p(a, 1) as n → ∞. �

To prove our main theorem, the following two lemmas will be required in addition
to the theory we have developed so far.

Lemma 5.3 Let A be a Banach algebra and a ∈ A. If a is ergodic, then r(a) ≤ 1.

Proof Since a is ergodic, ( fn(a)) converges. It follows from Proposition 4.9 that
(1 − a) fn(a) → 0 as n → ∞. Lemma 4.8 then implies that ||an ||

n → 0 as n → ∞.

Therefore there exists a constant c > 0 such that ||an ||
n ≤ c for all n ∈ N, so that

||an|| ≤ cn for all n ∈ N. Hence r(a) = limn→∞ ||an|| 1
n ≤ limn→∞ c

1
n n

1
n = 1. �

Lemma 5.4 Let A be a Banach algebra and a ∈ A. If an

n → 0 as n → ∞ and

1 /∈ σ(a), then
∑n−1

k=0
ak

n converges to 0 as n → ∞.

Proof If an

n → 0 as n → ∞, then by Lemma 4.8 (1 − a)
∑n−1

k=0
ak

n → 0 as n → ∞.
If also 1 /∈ σ(a), then 1 − a is invertible, which yields the result. �
Theorem 5.5 Let (A, C) be a semisimple OBA with C closed and normal, and let
a, b ∈ A such that 0 ≤ a ≤ b. Let I be a closed inessential ideal of A such that the
spectral radius in (A/I, πC) is monotone. If b is ergodic and if r(b) is a Riesz point
of σ(b), then a is ergodic.

Proof Since C is normal, the spectral radius in (A, C) is monotone. This, together with
Lemma 5.3 and the ergodicity of b, implies that r(a) ≤ r(b) ≤ 1. Then we have four
cases: r(a) < r(b) < 1, r(a) < r(b) = 1, r(a) = r(b) < 1 and r(a) = r(b) = 1.
Now from Proposition 3.1, we have that 0 ≤ an

n ≤ bn

n for all n ∈ N. Since b is ergodic,
bn

n → 0 as n → ∞ by Proposition 4.9 and Lemma 4.8, and then, by the normality

of C , an

n → 0 as n → ∞. In the first three cases, we get that 1 /∈ σ(a). Therefore
∑n−1

k=0
ak

n → 0 as n → ∞ by Lemma 5.4, so that a is ergodic. To deal with the last case
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suppose that r(a) = r(b) = 1. Since r(b) is a Riesz point of σ(b), by Corollary 3.7,
we have that r(a) is a Riesz point of σ(a). Lemma 2.1 then implies that r(a) is a pole
of the resolvent of a. From Theorem 5.2, it follows that a is ergodic. �

To obtain COBA versions of Theorems 5.1, 5.2 and 5.5, the additional condition
ab = ba is assumed, since this assumption is needed in the COBA version of Propo-
sition 3.1, and normality can be replaced with c-normality. For the quotient algebra in
Theorem 5.5, we then work with the C ′OBA (A/F, πC). With ab = ba, monotonicity
in (A/F, πC) can be replaced with c-monotonicity. Whether the assumption ab = ba
can be dropped under any circumstances in the COBA case remains an open problem.
Example 3.2 shows that it is essential for our proof.

We end this section with the following observation:

Proposition 5.6 Let A be a COBA with a closed and inverse-closed algebra c-cone
C. If a ∈ C and a is ergodic, then a ≤ 1.

Proposition 5.6 follows from Proposition 3.4 and Lemma 5.3.
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