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Abstract In this paper, we present a duality theory for fractional programming prob-
lems in the face of data uncertainty via robust optimization. By employing conjugate
analysis, we establish robust strong duality for an uncertain fractional programming
problem and its uncertain Wolfe dual programming problem by showing strong duality
between the deterministic counterparts: robust counterpart of the primal model and the
optimistic counterpart of its dual problem. We show that our results encompass as spe-
cial cases some programming problems considered in the recent literature. Moreover,
we also show that robust strong duality always holds for linear fractional programming
problems under scenario data uncertainty or constraint-wise interval uncertainty, and
that the optimistic counterpart of the dual is tractable computationally.
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1 Introduction

The study of fractional programming problems is very important since many opti-
mization problems which arise from practical needs turn out to be of fractional type.
Many important results have been established for fractional programming problems
without data uncertainty in the last decades, see [1–8] and the references therein.

As we know, the majority of practical optimization problems are often affected
by data uncertainty due to modelling or prediction errors, see [9–11] and the refer-
ences therein. Then, a great deal of attention has been focused on optimization under
uncertainty. Robust optimization methodology is a powerful approach for examining
and solving optimization problems under data uncertainty. It treats data uncertainty
as deterministic via bounded uncertainty sets and does not limit the data values to
point estimates. Recently, many authors have studied convex optimization problems
with uncertainty data by using robust optimization methodology, see [12–21] and the
references therein.

In this paper, we consider the following fractional programming problem:

min
x∈X

{
f (x)

g(x)
: h(x) ∈ −S

}
, (P)

where X and Y are locally convex vector spaces, S is a nonempty closed convex cone
of Y , f : X → R ∪ {+∞} is a convex function with f ≥ 0, g : X → R ∪ {+∞} is a
concave function with g > 0, and h : X → Y is a S-convex function.

This problem (P) in the face of data uncertainty in the constraints can be captured
by the following fractional programming problem:

min
x∈X

{
f (x)

g(x)
: h(x, v) ∈ −S

}
, (UP)

where Z is a locally convex vector space, h : X × Z → Y , h(·, v) is S-convex and
v ∈ V is the uncertain parameter which belongs to the uncertainty set V ⊆ Z . Robust
optimization associates with the uncertain program (UP) its robust counterpart,

min
x∈X

{
f (x)

g(x)
: h(x, v) ∈ −S, ∀v ∈ V

}
, (RUP)

where the uncertain constraints are enforced for every possible value of the parameters
within their prescribed uncertainty set V .

On the other hand, for each fixed v ∈ V , the uncertain Wolfe dual program of (UP)
is given by

max
λ∈S∗,

(x,r)∈X×R+
{r : ∇ f (x)− r∇g(x)+∇x (λh)(x, v)=0, f (x)− rg(x)+(λh)(x, v)≥0} .

(DP)
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The optimistic counterpart of the uncertain dual (DP) is a deterministic optimization
problem which is given by

max
v∈V,λ∈S∗,
(x,r)∈X×R+

{r : ∇ f (x)−r∇g(x)+∇x (λh)(x, v)=0, f (x)− rg(x)+(λh)(x, v)≥0} ,

(ODP)

where the maximization is also over all the parameters v ∈ V . Robust strong duality
holds between (UP) and (DP) when

min
x∈X

{
f (x)

g(x)
: h(x, v)∈−S, ∀v∈V

}

= max
v∈V,λ∈S∗,
(x,r)∈X×R+

{r : ∇ f (x)−r∇g(x)+∇x (λh)(x, v)=0, f (x)−rg(x)+(λh)(x, v)≥0} .

The significance of this robust duality is that the dual problem can be solved easily for
some classes of robust convex problems. In general, we also assume that the primal
problem (UP) exists a minimizer throughout this paper.

The purpose of this paper is to establish duality results for a fractional program-
ming problem with data uncertainty. We make three key contributions to the study of
fractional programming under uncertainty data. First, we establish robust forms of the
Farkas lemma for a general uncertain conical convex system which provides a new
generalization of the celebrated Farkas lemma for cone convex systems [22–24] to
uncertain cone convex systems. Then, we characterize robust duality for a uncertain
fractional programming problems by showing that strong duality holds between its
robust counterpart and an optimistic counterpart of the uncertain Wolfe dual problem
under robust characteristic cone constraint qualification. For related conditions we
refer the reader to [25–31]. We also prove that robust strong duality always holds for
linear fractional programming problems under scenario data uncertainty or constraint-
wise interval uncertainty. In this case we also see that the optimistic counterpart of the
dual is tractable computationally.

The paper is organized as follows. In Sect. 2, we recall some notions and give
some preliminary results. In Sect. 3, we first present a robust Farkas lemma for a
uncertain cone convex system. We also introduce a robust characteristic cone constraint
qualification. By using the robust Farkas lemma and the robust characteristic cone,
we completely characterize robust duality for an uncertain fractional programming
problem and its uncertain Wolfe dual programming problem. In Sect. 4, we show
that robust strong duality always holds for linear fractional programming problems
under scenario data uncertainty or constraint-wise interval uncertainty, and that the
optimistic counterpart of the dual is tractable computationally.

2 Mathematical preliminaries

Throughout this paper, let X and Y be two separated locally convex vector spaces
with their topological dual spaces X∗ and Y ∗, endowed with the weak∗ topologies
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w(X∗, X) and w(Y ∗,Y ), respectively. Let S ⊆ Y be a nonempty convex cone which
defined the partial order of Y , namely, for any y1, y2 ∈ Y, y1 ≤S y2 ⇐⇒ y2 − y1 ∈ S.
Let 〈x∗, x〉 = x∗(x) be the value of a functional x∗ ∈ X∗ at x ∈ X . The dual cone of S
is defined by S∗ = {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0,∀y ∈ Y }. Let D be a nonempty subset of
X . The closure (resp. interior, convex hull) of D is denoted by clD(resp. int D, coD).
If D ⊆ X∗, then the weak∗ closure of D is denoted by clw

∗
D. The indicator function

δD : X → R ∪ {+∞} of X is defined by

δD(x) =
{

0, if x ∈ D,
+∞, if x �∈ D.

The support function σD : X∗ → R ∪ {+∞} of D is defined by

σD(x
∗) = sup

x∈D
〈x∗, x〉.

Let f : X → R ∪ {+∞} be an extend real valued function. The effective domain and
the epigraph are defined by

dom f = {x ∈ X : f (x) < +∞}

and

epi f = {(x, r) ∈ X × R : f (x) ≤ r},

respectively. We say that f is proper, if dom f �= ∅. Moreover, if epi f is closed, we
say that f is lower semicontinuous. A function f : X → R ∪ {+∞} is said to be
convex, if for any μ ∈ [0, 1] and x, y ∈ X ,

f (μx + (1 − μ)y) ≤ μ f (x)+ (1 − μ) f (y).

Moreover, we say that f is concave, if − f is convex. As usual, the conjugate function
f ∗ : X∗ → R ∪ {+∞} of f is defined by

f ∗(x∗) = sup
x∈X

{〈x∗, x〉 − f (x)}.

Clearly, f ∗ is a proper lower semicontinuous convex function and for any α > 0,

αepi f ∗ = epi(α f )∗.

For details, see [30,32].
There are notions given for functions with extended real values that can also be

formulated for functions having their ranges in infinite dimensional spaces. So, we
attach a greatest element +∞ with respect to “≤S” and let Y • = Y ∪ {+∞}. The
following operations are defined on Y •:

y + (+∞) = (+∞)+ y = +∞ and t (+∞) = +∞, for any y ∈ Y and t ≥ 0.
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Let h : X → Y • be an extend vector valued function. The domain and the S-epigraph
of h are defined by

dom h = {x ∈ X : h(x) ∈ Y }

and

epiSh = {(x, y) ∈ X × Y : y ∈ h(x)+ S},

respectively. We say that h is proper, if dom h �= ∅. We say that h is S-convex, if for
any x, y ∈ X and μ ∈ [0, 1],

h(μx + (1 − μ)y) ≤S μh(x)+ (1 − μ)h(y).

Moreover, let λ ∈ S∗. The function (λh) : X → R ∪ {+∞} is defined by

(λh)(x) =
{ 〈λ, h(x)〉, if x ∈ domh,

+∞, otherwise.

It is easy to see that h is S-convex if and only if (λh)(·) : X → R ∪ {+∞} is a convex
function for each λ ∈ S∗.

In this paper, we endow X∗ × R with the product topology of w(X∗, X) and the
usual Euclidean topology. Now, we give the following important results concerning
epigraphs of conjugate functions.

Lemma 2.1 [25,29,31] Let f1, f2 : X → R∪{+∞} be proper convex functions such
that dom f1 ∩ dom f2 �= ∅.
(i) If f1 and f2 are lower semicontinuous, then,

epi( f1 + f2)
∗ = cl(epi f ∗

1 + epi f ∗
2 ).

(ii) If one of f1 and f2 is continuous at some x̄ ∈ dom f1 ∩ dom f2, then,

epi( f1 + f2)
∗ = epi f ∗

1 + epi f ∗
2 .

Lemma 2.2 [23] Let I be an arbitrary index set and let fi , i ∈ I , be proper lower
semicontinuous convex functions on X. Suppose that there exists x0 ∈ X such that
supi∈I fi (x0) < ∞. Then,

epi(sup
i∈I

fi )
∗ = clw

∗
(

co
⋃
i∈I

epi f ∗
i

)
,

where supi∈I fi : X → R ∪ {+∞} is defined by (supi∈I fi )(x) = supi∈I fi (x) for all
x ∈ X.
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3 Robust strong duality: complete characterizations

In this section, we present a robust Farkas lemma for a uncertain cone convex system.
We also introduce a robust characteristic cone constraint qualification. By using the
robust Farkas lemma and the robust characteristic cone constraint qualification, we
completely characterize the robust duality between (UP) and (DP) by characterizing
strong duality between their robust counterpart (RUP) and the optimistic counterpart
(ODP).

Now, we present a robust Farkas lemma, which provides a new generalization
of the celebrated Farkas lemma for cone convex systems to uncertain cone convex
systems. Related theorems of the Farkas lemmas for convex systems can be found in
[14,21,23,24,30].

Theorem 3.1 (Robust Farkas Lemma) Let f : X → R be a convex function and let
h : X × Z → Y be a continuous function such that for any v ∈ Z, h(·, v) is a S-convex
function. Let V ⊆ Z and let A := {x ∈ X : h(x, v) ∈ −S,∀v ∈ V} �= ∅. Then, the
following statements are equivalent:

(i) h(x, v) ∈ −S, v ∈ V, x ∈ X (i.e., x ∈ A) �⇒ f (x) ≥ 0.
(ii) (0, 0) ∈ epi f ∗ + clw

∗ (
co

⋃
v∈V,λ∈S∗ epi ((λh)(·, v))∗).

Proof By using the method of Lemma 2.8 in [28], we can easily get

δA(x) = sup
v∈V,λ∈S∗

(λh)(x, v).

By lemma 2.2, we get

epiδ∗A = epi

(
sup

v∈V,λ∈S∗
(λh)(·, v)

)∗
= clw

∗
⎛
⎝co

⋃
v∈V,λ∈S∗

epi ((λh)(·, v))∗
⎞
⎠ .

Thus,

(ii) ⇐⇒ (0, 0) ∈ epi f ∗ + epiδ∗A
⇐⇒ (0, 0) ∈ epi( f + δA)

∗

⇐⇒ ( f + δA)(x) ≥ 0, for anyx ∈ X

⇐⇒ f (x) ≥ 0, for anyx ∈ A

⇐⇒ (i).

This completes the proof. �

Remark 3.1 A special case of Theorem 3.1, where V is a singleton, can be found in
[24,30]. In this case, the set

⋃
v∈V,λ∈S∗ epi((λh)(·, v))∗ is convex. Then, the convex

hull in Theorem 3.1 (ii) is superfluous. On the other hand, slightly modifying example
2.1 in [14], we can obtain that

⋃
v∈V,λ∈S∗ epi((λh)(·, v))∗ is, in general, not necessarily

convex.
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Note that for a system of cone convex functions h(·, v), v ∈ V , it is easy to see that
the set

⋃
v∈V,λ∈S∗

epi((λh)(·, v))∗

is a cone, called robust characteristic cone.
Now, we give some characterizations of the robust characteristic cone which will

play an important role in characterizing robust duality later in this paper.

Proposition 3.1 Let h : X × Z → Y be a continuous function such that for any
v ∈ Z, h(·, v) is a S-convex function and let V ⊆ Z. Then,

⋃
v∈V,λ∈S∗

epi((λh)(·, v))∗

is a cone

Proof Obviously, (0, 0) ∈ ⋃
v∈V,λ∈S∗ epi((λh)(·, v))∗. Let (x∗, r) ∈ ⋃

v∈V,λ∈S∗
epi((λh)(·, v))∗ and α > 0. Then, there exist v̄ ∈ V and λ̄ ∈ S∗ such that
(x∗, r) ∈ epi((λ̄h)(·, v̄))∗. Then, ((λ̄h)(·, v̄))∗(x∗) ≤ r, which means that

sup
x∈X

{〈x∗, x〉 − (λ̄h)(x, v̄)} ≤ r.

So,

sup
x∈X

{〈αx∗, x〉 − (αλ̄h)(x, v̄)} ≤ αr.

Then,

α(x∗, r) ∈ epi((αλ̄h)(·, v̄))∗ ⊆
⋃

v∈V,λ∈S∗
epi((λh)(·, v))∗.

Thus,
⋃
v∈V,λ∈S∗ epi((λh)(·, v))∗ is a cone and the proof is complete. �

Proposition 3.2 Let h : X × Z → Y be a continuous function such that for any
λ ∈ S∗, v ∈ V ⊆ Z, (λ, v) �→ (λh)(x, v) is a concave function for any x ∈ X and let
V be a compact convex set. Then,

⋃
v∈V,λ∈S∗

epi((λh)(·, v))∗

is convex.
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Proof Let (x∗
i , ri ) ∈ ⋃

v∈V,λ∈S∗ epi((λh)(·, v))∗, i = 1, 2, and t > 0. Then, there
exist vi ∈ V and λi ∈ S∗ such that (x∗

i , ri ) ∈ epi((λi h)(·, vi ))
∗, i = 1, 2. So, for any

x ∈ X∗, we have

〈x∗
1 , x〉 − (λ1h)(x, v1) ≤ r1 and 〈x∗

2 , x〉 − (λ2h)(x, v2) ≤ r2.

Since (λ, v) �→ (λh)(x, v) is a concave function for any x ∈ X , we have

〈t x∗
1 + (1 − t)x∗

2 , x〉 − ((tλ1 + (1 − t)λ2)h) (x, tv1 + (1 − t)v2)

≤ 〈t x∗
1 + (1 − t)x∗

2 , x〉 − (t (λ1h)(x, v1)+ (1 − t)(λ2h)(x, v2))

≤ tr1 + (1 − t)r2.

Then,

t (x∗
1 , r1)+ (1 − t)(x∗

2 , r2) ∈ epi (((tλ1 + (1 − t)λ2)h)(·, tv1 + (1 − t)v2))
∗

⊆
⋃

v∈V,λ∈S∗
epi((λh)(·, v))∗.

Thus,
⋃
v∈V,λ∈S∗ epi((λh)(·, v))∗ is a convex set and the proof is complete. �

Proposition 3.3 Let h : X × Z → Y be a continuous function such that for any
v ∈ Z, h(·, v) is a S-convex function and let V ⊆ Z be a compact set. Suppose that
intS �= ∅ and there exists x0 ∈ X such that h(x0, v) ∈ −intS, for any v ∈ V. Then,

⋃
v∈V,λ∈S∗

epi((λh)(·, v))∗

is weak∗ closed.

Proof Let

(x∗
n , rn) ∈

⋃
v∈V,λ∈S∗

epi((λh)(·, v))∗

with (x∗
n , rn) → (x∗, r). So, we only need to prove that

(x∗, r) ∈
⋃

v∈V,λ∈S∗
epi((λh)(·, v))∗.

As (x∗
n , rn) ∈ ⋃

v∈V,λ∈S∗ epi((λh)(·, v))∗, there exist vn ∈ V and λn ∈ S∗ such that
(x∗

n , rn) ∈ epi((λnh)(·, vn))
∗. Then,

((λnh)(·, vn))
∗(x∗

n ) ≤ rn .

Since intS �= ∅, there exists a weak∗ compact convex base B ⊆ S∗ with 0 �∈ B and
S∗ = coneB. Since λn ∈ S∗, there exist tn > 0 and bn ∈ B such that λn = tnbn . Since
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B is compact, we may assume, without loss of generality, that bn → b. Moreover,
since V is compact, we get vn → v ∈ V.

Now, we first show that {tn} is bounded. Otherwise, assume that tn → +∞. As
λn = tnbn and ((λnh)(·, vn))

∗(x∗
n ) ≤ rn , we have

tn ((bnh)(·, vn))
∗
(

x∗
n

tn

)
= ((tnbnh)(·, vn))

∗(x∗
n )

= ((λnh)(·, vn))
∗(x∗

n )

≤ rn .

This follows that

((bnh)(·, vn))
∗
(

x∗
n

tn

)
≤ rn

tn
. (1)

Since bnh → bh, x∗
n

tn
→ 0 and rn

tn
→ 0, we have ((bh)(·, v))∗ (0) ≤ 0. By the

definition of the conjugate function, we get

inf
x∈X

{(bh)(x, v)} ≥ 0,

which means that for any x ∈ X ,

(bh)(x, v) ≥ 0.

However, since h(x0, v) ∈ −intS and b �= 0, we get (bh)(x0, v) < 0 and we have a
contradiction.

Now, {tn} is bounded and we assume that tn → t . We consider two cases:

(i) t > 0. As h is continuous, vn → v, bnh → bh, x∗
n

tn
→ x∗

t and rn
tn

→ r
t , it follows

from (1) that

((bh)(·, v))∗
(

x∗

t

)
≤ r

t
,

which means that
(

x∗
t ,

r
t

)
∈ epi ((bh)(·, v))∗ and then

(
x∗, r

) ∈ epi ((tbh)(·, v))∗ ⊆
⋃

v∈V,λ∈S∗
epi((λh)(·, v))∗.

(ii) t = 0. Then, λn → 0 and λnh → 0. It follows from ((λnh)(·, vn))
∗(x∗

n ) ≤ rn

that

(0(·, v))∗(x∗) ≤ r.



18 X.-K. Sun, Y. Chai

Moreover, since

(0(·, v))∗(x∗) =
{

0, if x∗ = 0,
+∞, otherwise,

we get x∗ = 0 and r ≥ 0. Thus,

(0, r) ∈ epi(0(·, v))∗ ⊆
⋃

v∈V,λ∈S∗
epi((λh)(·, v))∗.

Hence, the cone
⋃
v∈V,λ∈S∗ epi((λh)(·, v))∗ is weak∗ closed and the proof is complete.

�

In the following theorem, we show that the closedness and convexity of the robust
characteristic cone

⋃
v∈V,λ∈S∗ epi((λh)(·, v))∗ is a complete characterization of robust

duality in the sense that this condition holds if and only if robust strong duality holds
between (UP) and (DP).

Theorem 3.2 (Robust Strong Duality: Complete Characterization) Let h : X × Z →
Y be a continuous function such that for any v ∈ Z, h(·, v) is a differentiable S-convex
function and let V ⊆ Z. Then, the following statements are equivalent:

(i)
⋃
v∈V,λ∈S∗ epi((λh)(·, v))∗ is convex and weak∗ closed.

(ii) For each differentiable convex function f : X → R with f ≥ 0, and differentiable
concave function g : X → R with g > 0,

min
x∈X

{
f (x)

g(x)
: h(x, v) ∈ −S, ∀v ∈ V

}

= max
v∈V,λ∈s∗,
(x,r)∈X×R+

{r : ∇ f (x)−r∇g(x)+∇x (λh)(x, v)=0, f (x)−rg(x)+(λh)(x, v)≥0} .

Proof (i) ⇒ (ii): Let x0 ∈ argmin
{

f (x)
g(x) : h(x, v) ∈ −S,∀v ∈ V

}
. Then,

h(x, v) ∈ −S, v ∈ V, x ∈ X �⇒ f (x)

g(x)
≥ f (x0)

g(x0)
.

For any x ∈ X , set

φ(x) := f (x)− f (x0)

g(x0)
g(x).

Then,

h(x, v) ∈ −S, v ∈ V, x ∈ X �⇒ φ(x) ≥ φ(x0) = 0.
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By Theorem 3.1, we get

(0, 0) ∈ epiφ∗ + clw
∗
⎛
⎝co

⋃
v∈V,λ∈S∗

epi ((λh)(·, v))∗
⎞
⎠ .

As
⋃
v∈V,λ∈S∗ epi((λh)(·, v))∗ is convex and weak∗ closed, we get

(0, 0) ∈ epiφ∗ +
⋃

v∈V,λ∈S∗
epi ((λh)(·, v))∗ .

Then, there exist (x∗
1 , r1) ∈ epiφ∗ and (x∗

2 , r2) ∈ ⋃
v∈V,λ∈S∗ epi ((λh)(·, v))∗ such

that

(x∗
1 , r1)+ (x∗

2 , r2) = (0, 0).

So, there exist v̄ ∈ V and λ̄ ∈ S∗ such that (x∗
2 , r2) ∈ epi

(
(λ̄h)(·, v̄))∗

and

(x∗
1 , r1)+ (x∗

2 , r2) = (0, 0).

This gives us that for each x ∈ X ,

−φ(x)− (λ̄h)(x, v̄) = 〈x∗
1 , x〉 − φ(x)+ 〈x∗

2 , x〉 − (λ̄h)(x, v̄)

≤ φ∗(x∗
1 )+ ((λ̄h)(·, v̄))∗(x∗

2 )

≤ r1 + r2

= 0

= −φ(x0).

In particular, letting x = x0, we get (λ̄h)(x0, v̄) ≥ 0. Moreover, by λ̄ ∈ S∗ and
h(x0, v̄) ∈ −S, we get (λ̄h)(x0, v̄) ≤ 0. Then, (λ̄h)(x0, v̄) = 0. Thus,

φ(x)+ (λ̄h)(x, v̄) ≥ φ(x0)+ (λ̄h)(x0, v̄),

which means that x0 is a global minimizer of the differentiable convex function φ +
(λ̄h)(·, v̄). By [33, Corollary 25.5.1], x0 is a global minimizer of the continuously
differentiable convex function φ + (λ̄h)(·, v̄), which in turn gives

�φ(x0)+ �x (λ̄h)(x0, v̄) = 0.

Then,

� f (x0)− f (x0)

g(x0)
� g(x0)+ �x (λ̄h)(x0, v̄) = 0.
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Let

ϕ := f − f (x0)

g(x0)
g + (λ̄h)(·, v̄).

Since f is convex with f ≥ 0, g is concave with g > 0, and h(·, v) is S-convex, we
get f (x0)

g(x0)
≥ 0 and ϕ is a convex function. Together with ϕ(x0) = 0 and �ϕ(x0) = 0,

we get

f (x)− f (x0)

g(x0)
g(x)+ (λ̄h)(x, v̄) = ϕ(x) ≥ ϕ(x0) = 0,

for any x ∈ X . Thus,

min
x∈X

{
f (x)

g(x)
: h(x, v) ∈ −S, ∀v ∈ V

}

≤ max
v∈V,λ∈s∗,
(x,r)∈X×R+

{r : ∇ f (x)− r∇g(x)+ ∇x (λh)(x, v) = 0, f (x)− rg(x)+ (λh)(x, v) ≥ 0} .

Now, we prove that

min
x∈X

{
f (x)

g(x)
: h(x, v) ∈ −S, ∀v ∈ V

}

≥ max
v∈V,λ∈s∗,
(x,r)∈X×R+

{r : ∇ f (x)− r∇g(x)+ ∇x (λh)(x, v) = 0, f (x)− rg(x)+ (λh)(x, v) ≥ 0} .

In fact, let ψ := f − rg + (λh)(·, v) for any v ∈ V , λ ∈ S∗ and r ∈ R+. It is easy to
see that ψ is a convex function. Then, for any v ∈ V , λ ∈ S∗ and (x, r) ∈ X × R+
with

∇ f (x)− r∇g(x)+ ∇x (λh)(x, v) = 0

and

f (x)− rg(x)+ (λh)(x, v) ≥ 0,

we have x is a minimizer of ψ(·). Thus,

0 ≤ ψ(x) ≤ ψ(x0)

= f (x0)− rg(x0)+ (λh)(x0, v)

≤ f (x0)− rg(x0),

which follows that

r ≤ f (x0)

g(x0)
.
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(ii) ⇒ (i): Let

(x∗, r) ∈ clw
∗
⎛
⎝co

⋃
v∈V,λ∈S∗

epi ((λh)(·, v))∗
⎞
⎠ .

Since, for any v ∈ V and λ ∈ S∗, (λh)(·, v) ≤ δA, and so,

⋃
v∈V,λ∈S∗

epi ((λh)(·, v))∗ ⊆ epiδ∗A.

Moreover, since epiδ∗A is weak∗ closed and convex, we have

clw
∗
⎛
⎝co

⋃
v∈V,λ∈S∗

epi ((λh)(·, v))∗
⎞
⎠ ⊆ epiδ∗A.

Hence, (x∗, r) ∈ epiδ∗A, and so 〈x∗, x〉 ≤ r for any x ∈ A. Let f (x) = −〈x∗, x〉 + r
and g(x) = 1. By (ii), there exist v̄ ∈ V , λ̄ ∈ S∗ and x̄ ∈ X such that

−〈x∗, x̄〉 + r + (λ̄h)(x̄, v̄) ≥ 0 and − x∗ + �x (λ̄h)(x̄, v̄) = 0.

Set η(x) := −〈x∗, x〉 + r + (λ̄h)(x, v̄). Obviously, η(x) is a convex function. This
together with η(x̄) ≥ 0 and �η(x̄) = 0 gives η(x) ≥ 0 for any x ∈ X, and hence,

(0, 0) ∈ epiη∗ = ({−x∗} × [−r,+∞)
) + epi

(
(λ̄h)(·, v̄))∗

= (−x∗,−r)+ epi
(
(λ̄h)(·, v̄))∗

,

which means that

(x∗, r) ∈
⋃

v∈V,λ∈S∗
epi ((λh)(·, v))∗ .

Then,

clw
∗
⎛
⎝co

⋃
v∈V,λ∈S∗

epi ((λh)(·, v))∗
⎞
⎠ =

⋃
v∈V,λ∈S∗

epi ((λh)(·, v))∗ .

Then, (i) holds and the proof is complete. �

In the special case when V is a singleton, we obtain the following Wolfe duality
established in [1–3].

Corollary 3.1 Let h : X → Y be a differentiable S-convex function. Then, the fol-
lowing statements are equivalent:
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(i)
⋃
v∈V,λ∈S∗ epi(λh)∗ is weak∗ closed.

(ii) For each differentiable convex function f : X → R with f ≥ 0,and differentiable
concave function g : X → R with g > 0,

min
x∈X

{
f (x)

g(x)
: h(x) ∈ −S

}

= max
λ∈s∗,

(x,r)∈X×R+

{r : ∇ f (x)−r∇g(x)+∇(λh)(x)=0, f (x)−rg(x)+(λh)(x)≥0} .

Proof By using Lemma 6.1 in [22], we have
⋃
λ∈S∗ epi(λh)∗ is convex. Then, the

conclusion follows from Theorem 3.2 by letting V = {v}. �

The following theorem shows that the non-negativity of f can be dropped whenever
g is an affine function.

Theorem 3.3 Let h : X × Z → Y be a continuous function such that for any v ∈ Z,
h(·, v) is a differentiable S-convex function and let V ⊆ Z. Then, the following
statements are equivalent:

(i)
⋃
v∈V,λ∈S∗ epi((λh)(·, v))∗ is convex and weak∗ closed.

(ii) For each differentiable convex function f : X → R, and affine function g : X →
R such that g is positive over the feasible set,

min
x∈X

{
f (x)

g(x)
: h(x, v) ∈ −S, ∀v ∈ V

}

= max
v∈V,λ∈s∗,
(x,r)∈X×R+

{r : ∇ f (x)−r∇g(x)+∇x (λh)(x, v)=0, f (x)−rg(x)+(λh)(x, v)≥0} .

Proof The proof follows the same line of arguments as the proof of Theorem 3.2,
except that, in the case of affine g, the function ϕ := f − f (x0)

g(x0)
g + (λ̄h)(·, v̄) is convex

without the non-negativity of f (x0). �

Similarly, we can get the following result.

Corollary 3.2 Let h : X → Y be a differentiable S-convex function. Then, the fol-
lowing statements are equivalent:

(i)
⋃
v∈V,λ∈S∗ epi(λh)∗ is weak∗ closed.

(ii) For each differentiable convex function f : X → R, and affine function g : X →
R such that g is positive over the feasible set,

min
x∈X

{
f (x)

g(x)
: h(x) ∈ −S

}

= max
λ∈s∗,

(x,r)∈X×R+

{r : ∇ f (x)− r∇g(x)+∇(λh)(x) = 0, f (x)− rg(x)+ (λh)(x)≥0} .

As a direct corollary of Theorem 3.3, we obtain robust duality for convex program-
ming problems under uncertainty. Related results can be found in [14,16,20].
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Theorem 3.4 Let h : X × Z → Y be a continuous function such that for any v ∈ Z,
h(·, v) is a differentiable S-convex function and let V ⊆ Z. Then, the following
statements are equivalent:

(i)
⋃
v∈V,λ∈S∗ epi((λh)(·, v))∗ is convex and weak∗ closed.

(ii) For each differentiable convex function f : X → R,

min
x∈X

{ f (x) : h(x, v) ∈ −S, ∀v ∈ V}
= max
v∈V,λ∈s∗,

x∈X

{ f (x)+ (λh)(x, v) : ∇ f (x)+ ∇x (λh)(x, v) = 0} .

Proof Let g(x) = 1, for each x ∈ X . Then, the conclusion will follow from
Theorem 3.3. �

4 Tractable linear fractional programming under uncertainty

In this section, we focus on some classes of uncertain fractional programming prob-
lems. We show that the robust counterpart of linear fractional programming under com-
ponentwise scenario uncertainty or interval uncertainty is computationally tractable
by establishing that the robust conjugate duality always holds and the optimistic coun-
terpart of its Wolfe dual is a linear programming problem.

4.1 Componentwise scenario uncertainty

Let Y = Rm and S∗ = Rm+ . Consider the following linear fractional programming
problem under componentwise scenario uncertainty:

min
x∈X

〈a, x〉 + α

〈b, x〉 + β
s.t. 〈ai , x〉 ≤ βi , i = 1, . . . ,m, (ULP)

where a, b ∈ X∗ and α, β ∈ R, the data (ai , βi ) ∈ X∗ × R, i = 1, . . . ,m, are
uncertain and (ai , βi ) belongs to the scenario data uncertainty set Vi ⊆ X∗ × R which
defined by

Vi :=
{(

a(0)i , β
(0)
i

)
+

k∑
l=1

w
(l)
i

(
a(l)i , β

(l)
i

)
:
(
w
(1)
i , . . . , w

(k)
i

)
∈ Zi

}

with Zi := co{vi1, . . . , viq} for some vi1, . . . , viq ∈ Rk .We assume that 〈b, x〉+β >
0 for all feasible point x ∈ X . The robust counterpart of (ULP) is

min
x∈X

〈a, x〉 + α

〈b, x〉 + β
s.t. 〈ai , x〉 ≤ βi , ∀(ai , βi ) ∈ Vi , i = 1, . . . ,m. (RULP)
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We assume that the feasible set of (RULP) is always nonempty. The optimistic coun-
terpart of its Wolfe dual is given by

max
λi ∈R, r∈R+

r (ODLP)

s.t. a − rb +
m∑

i=1

λi ai = 0, λi ≥ 0,

α − rβ −
m∑

i=1

λiβi ≥ 0, (ai , βi ) ∈ Vi , i = 1, . . . ,m.

Note that this dual problem can be rewritten as

max
λi ∈R, r∈R+

r

s.t. a − rb +
m∑

i=1

λi ai = 0, α − rβ −
m∑

i=1

λiβi ≥ 0,

ai = a(0)i +
k∑

l=1

q∑
j=1

μi jv
(l)
i j a(l)i , βi = β

(0)
i +

k∑
l=1

q∑
j=1

μi jv
(l)
i j β

(l)
i ,

λi ≥ 0, i = 1, . . . ,m,
q∑

j=1

μi j = 1 and μi j ≥ 0, j = 1, . . . , q,

where (a(l)i , β
(l)
i ) ∈ X∗ × R, i = 1, . . . ,m, l = 0, 1, . . . , k, and

(
v
(1)
i j , . . . , v

(k)
i j

)
∈

Rk , i = 1, . . . ,m, j = 1, . . . , q. Let λi0 = λi and λi j = λiμi j . Then, this problem
can be simplified to

max
λi j ∈R, r∈R+

r

s.t. a − rb +
m∑

i=1

⎛
⎝λi0a(0)i +

k∑
l=1

q∑
j=1

λi jv
(l)
i j a(l)i

⎞
⎠ = 0,

α − rβ −
m∑

i=1

⎛
⎝λi0β

(0)
i +

k∑
l=1

q∑
j=1

λi jv
(l)
i j β

(l)
i

⎞
⎠ ≥ 0,

λi j ≥ 0, i = 1, . . . ,m, j = 0, 1, . . . , q,

which is a simple inequality constrained linear programming problem.
In the following theorem, we show that the primal worst value equals the dual best

value for uncertain fractional programming without qualifications under component-
wise scenario uncertainty.
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Theorem 4.1 Strong duality between (RULP) and (ODLP) holds.

Proof Let vi = (ai , βi ) ∈ X∗ × R and hi : X × X∗ × R → R be defined by
hi (x, vi ) = 〈ai , x〉 − βi , for any i = 1, . . . ,m. Moreover, let V = �m

i=1Vi ⊆
�m

i=1(X
∗ × R) := Z and let h : X × Z → Rm be defined by h(x, v) =

(h1(x, v1), . . . , hm(x, vm)). Obviously, h is a continuous function and for any v ∈ Z ,
h(·, v) is a differentiable S-convex function. Then, from Theorem 3.3, we only
need to prove that

⋃
vi ∈Vi ,λi ≥0 epi

(∑m
i=1 λi hi (·, vi )

)∗ is convex and weak∗ closed.
Moreover, by using the same methods of [16, Theorem 4.1], we can easily get⋃
vi ∈Vi ,λi ≥0 epi

(∑m
i=1 λi hi (·, vi )

)∗ is convex and weak∗ closed. This completes the
proof. �

4.2 Interval uncertainty

Let Y = Rm and S∗ = Rm+ . Consider the following linear fractional programming
problem under interval uncertainty:

where a, b ∈ X∗ and α, β, βi ∈ R, the data vi ∈ X∗ is uncertain and it belongs to the
interval data uncertainty set [vi , v̄i ] ⊆ X∗, vi , v̄i ∈ X∗ with vi ≤ v̄i , i = 1, . . . ,m.
We also assume that 〈b, x〉+β > 0 for all feasible point x ∈ X . The robust counterpart
of (ULP1) is

We assume that the feasible set of (RULP1) is always nonempty. The optimistic coun-
terpart of its Wolfe dual is defined by

Note that this dual problem can be rewritten as the following linear programming
problem:
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In the following theorem, we show that the primal worst value equals the dual best value
for uncertain fractional programming without qualifications under interval uncertainty.

Theorem 4.2 Strong duality between (RULP1) and (ODLP1) holds.

Proof Let Vi := [vi , v̄i ], i = 1, . . . ,m, f (x) = 〈a, x〉 + α, g(x) = 〈b, x〉 + β, and
hi : X × X∗ → R be defined by hi (x, vi ) = 〈vi , x〉 − βi , for any i = 1, . . . ,m.
Moreover, let V = �m

i=1Vi ⊆ �m
i=1 X∗ := Z and let h : X × Z → Rm be defined by

h(x, v) = (h(x, v1), . . . , h(x, vm)). Obviously, h is a continuous function and for any
v ∈ Z , h(·, v) is a differentiable S-convex function. Then, from Theorem 3.3, we only
need to prove that

⋃
vi ∈Vi ,λi ≥0 epi

(∑m
i=1 λi hi (·, vi )

)∗ is convex and weak∗ closed.
Moreover, by using the similar methods of [15, Theorem 4.1 and Corollary 4.2], we
can easily get

⋃
vi ∈Vi ,λi ≥0 epi

(∑m
i=1 λi hi (·, vi )

)∗ is convex and weak∗ closed. This
completes the proof. �

5 Conclusions

In this paper, we present a robust Farkas lemma for a uncertain cone convex system.
We also introduce a robust characteristic cone constraint qualification. By using the
robust Farkas lemma and the robust characteristic cone constraint qualification, we
characterize robust strong duality for an uncertain fractional programming problem
and its uncertain Wolfe dual programming problem by showing strong duality between
the deterministic counterparts: robust counterpart of the primal model and the opti-
mistic counterpart of its dual problem. Moreover, we show that the robust counterpart
of linear fractional programming under componentwise scenario uncertainty or inter-
val uncertainty is computationally tractable by establishing that the robust conjugate
duality always holds and the optimistic counterpart of its Wolfe dual is a linear pro-
gramming problem.

Our study presented in this paper raises some questions for our further research.
We have provided some special classes of uncertain linear fractional programming
for which strong duality holds and the optimistic counterparts are computationally
tractable mathematical programs. It would be interesting to consider this tractability
for other specially structured fractional programming with broad classes of uncertainty
sets. On the other hand, second-order cone programming problems and semi-definite
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cone programming problems as these two important classes of conical programming
problems attract a lot of attention in the past decades, it can be interesting to specialize
our results to the second-order cone cases and semi-definite cone cases. These may
be the topic of some of our forthcoming papers.
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paper.
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