
Positivity (2012) 16:471–495
DOI 10.1007/s11117-012-0174-8 Positivity

Mann type iterative methods for finding a common
solution of split feasibility and fixed point problems

Lu-Chuan Ceng · Qamrul Hasan Ansari ·
Jen-Chih Yao

Received: 30 January 2012 / Accepted: 29 February 2012 / Published online: 20 March 2012
© Springer Basel AG 2012

Abstract The purpose of this paper is to study and analyze three different kinds of
Mann type iterative methods for finding a common element of the solution set � of the
split feasibility problem and the set Fix(S) of fixed points of a nonexpansive mapping
S in the setting of infinite-dimensional Hilbert spaces. By combining Mann’s iterative
method and the extragradient method, we first propose Mann type extragradient-like
algorithm for finding an element of the set Fix(S) ∩ �; moreover, we derive the weak
convergence of the proposed algorithm under appropriate conditions. Second, we com-
bine Mann’s iterative method and the viscosity approximation method to introduce
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Mann type viscosity algorithm for finding an element of the Fix(S) ∩ �; moreover,
we derive the strong convergence of the sequences generated by the proposed algo-
rithm to an element of set Fix(S) ∩ � under mild conditions. Finally, by combining
Mann’s iterative method and the relaxed CQ method, we introduce Mann type relaxed
CQ algorithm for finding an element of the set Fix(S) ∩ �. We also establish a weak
convergence result for the sequences generated by the proposed Mann type relaxed
CQ algorithm under appropriate assumptions.
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1 Introduction

Let C and Q be nonempty closed convex subsets of the infinite-dimensional real
Hilbert spaces H1 and H2, respectively, and let A ∈ B(H1,H2), where B(H1,H2)

denotes the collection of all bounded linear operators from H1 to H2. The split feasi-
bility problem (SFP) is to find x∗ such that

x∗ ∈ C and Ax∗ ∈ Q. (1.1)

It was first introduced and considered by Censor and Elfving [7] in the finite-dimen-
sional Hilbert spaces for modeling inverse problems which arise from phase retrievals
and in medical image reconstruction [2]. The SFP has also been applied to modeling
the intensity-modulated radiation therapy; see, for example [6,8,9] and the references
therein. The SFP is also studied in [2,3,20,25,29,30] in the setting of finite-dimen-
sional spaces. The SFP and the relevant project method can be found in [21] for solving
image recovery problems. A special case of the SFP is the convex constrained linear
inverse problem [11,19]

x ∈ C and Ax = b. (1.2)

It has extensively been investigated in the literature using the projected Landweber
iterative method [12,15]. Comparatively, the SFP has received much less attention so
far, due to the complexity resulted from the set Q. Therefore, whether various versions
of the projected Landweber iterative method can be extended to solve the SFP remains
an interesting topic, for example, it is yet not clear if the dual approach to (1.2) of [13]
can be extended to the SFP. The original algorithm given in [7] involves the computa-
tion of the inverse A−1 (assuming the existence of the inverse of A), and thus, does not
become popular. A more popular algorithm that solves the SFP seems to be the CQ
algorithm of Byrne [2,3] which is found to be a gradient-projection method (GPM) in
convex minimization. It is a special case of the proximal forward-backward splitting
method [10]. The CQ algorithm only involves the computations of the projections PC
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and PQ onto the sets C and Q, respectively, and is therefore implementable in the case
where PC and PQ have closed-form expressions, for example, C and Q are the closed
balls or half-spaces. It remains a challenge how to implement the CQ algorithm in the
case where the projections PC and / or PQ fail to have closed-form expressions though
theoretically we can prove (weak) convergence of the algorithm. Very recently, Xu
[26] considered the SFP in the framework of infinite-dimensional Hilbert spaces. He
gave a continuation of study on the CQ algorithm and its convergence. He applied
Mann’s algorithm to the SFP and proposed an averaged CQ algorithm which was
proved to be weakly convergent to a solution of the SFP.

The purpose of this paper is to study and analyze Mann type three iterative methods
for finding a common element of the solution set � of the SFP and the set Fix(S) of
fixed points of a nonexpansive mapping S in the setting of infinite-dimensional real
Hilbert spaces. In Sect. 2, we mention some known results and definitions which will
be used in the sequel. By combining Mann’s iterative method and the extragradient
method [14,18], we propose Mann type extragradient-like algorithm for finding an
element of the set Fix(S)∩�; moreover, we derive the weak convergence of this algo-
rithm under appropriate conditions. By combining Mann’s iterative method and the
viscosity approximation method [4,5,17], in Sect. 4, we introduce Mann type viscosity
algorithm for finding an element of the set Fix(S)∩�; moreover, we derive the strong
convergence of the sequences generated by the proposed algorithm under mild con-
ditions. In the final section, we combine Mann’s iterative method and the relaxed CQ
method [26,29] to introduce Mann type relaxed CQ algorithm for finding an element
of the set Fix(S) ∩ �. In this method, the sets C and Q are level sets of convex func-
tions so that the projections involved in the CQ algorithm are onto half-spaces, which
makes the algorithm implementable. We also establish a weak convergence result for
Mann type relaxed CQ algorithm under appropriate assumptions. It is worth empha-
sizing that our results are new and novel in Hilbert spaces. Our results represent the
supplement, improvement and extension of the results given in [26] to a great extent.

2 Preliminaries

Let {xn} be a sequence and x be a point in a normed space X . We use xn → x
and xn ⇀ x to denote the strong and weak convergence to x of the sequence {xn},
respectively. We also use ωw(xn) to denote the weak ω-limit set of the sequence {xn},
namely,

ωw(xn) := {
x ∈ X : xni ⇀ x for some subsequence {xni } of {xn}} .

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉
and ‖ · ‖, respectively. Let K be a nonempty closed convex subset of H. Recall that
the (nearest point or metric) projection from H onto K , denoted by PK , is defined in
such a way that, for each x ∈ H, PK x is the unique point in K with the property

‖x − PK x‖ = inf
y∈K

‖x − y‖ =: d(x, K ).



474 L.-C. Ceng et al.

Some important properties of projections are gathered in the following proposition.

Proposition 2.1 For given x ∈ H and z ∈ K .

(i) z = PK x if and only if 〈x − z, y − z〉 ≤ 0, for all y ∈ K .
(ii) z = PK x if and only if ‖x − z‖2 ≤ ‖x − y‖2 − ‖y − z‖2, for all y ∈ K .

(iii) For all y ∈ H, 〈PK x − PK y, x − y〉 ≥ ‖PK x − PK y‖2.

Definition 2.1 A mapping T : H → H is said to be

(a) nonexpansive if

‖T x − T y‖ ≤ ‖x − y‖, ∀x, y ∈ H;

(b) firmly nonexpansive if 2T − I is nonexpansive, or equivalently,

〈x − y, T x − T y〉 ≥ ‖T x − T y‖2, ∀x, y ∈ H.

Alternatively, T is firmly nonexpansive if and only if T can be expressed as

T = 1

2
(I + S),

where S : H → H is nonexpansive. Projections are firmly nonexpansive.

Definition 2.2 Let T be a nonlinear operator whose domain is D(T ) ⊆ H and range
is R(T ) ⊆ H and let β > 0 and ν > 0 be given constants. The operator T is said to
be

(a) monotone if

〈x − y, T x − T y〉 ≥ 0, ∀x, y ∈ D(T ).

(b) β-strongly monotone if

〈x − y, T x − T y〉 ≥ β‖x − y‖2, ∀x, y ∈ D(T ).

(c) ν-inverse strongly monotone (ν-ism) if

〈x − y, T x − T y〉 ≥ ν‖T x − T y‖2, ∀x, y ∈ D(T ).

It can be easily seen that if T is nonexpansive, then I − T is monotone. It is also
easy to see that a projection PK is nonexpansive and 1-ism.

Inverse strongly (also referred to as co-coercive) monotone operators have widely
been applied to solving practical problems in various fields; for instance, in traffic
assignment problems, see, for example, [1,13].
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Definition 2.3 A mapping T : H → H is said to be an averaged mapping if it can be
written as the average of the identity I and a nonexpansive mapping, that is,

T = (1 − α)I + αS (2.1)

where α is a number in (0, 1) and S : H → H is nonexpansive. More precisely,
when (2.1) holds, we say that T is α-averaged. Thus firmly nonexpansive mappings
(in particular, projections) are 1

2 -averaged maps.

Proposition 2.2 [3] Let T : H → H be an operator.

(i) T is nonexpansive if and only if the complement I − T is 1
2 -ism.

(ii) If T is ν-ism, then for γ > 0, γ T is ν
γ

-ism.
(ii) T is averaged if and only if the complement I − T is ν-ism for some ν > 1/2.

Indeed, for α ∈ (0, 1), T is α-averaged if and only if I − T is 1
2α

-ism.

Proposition 2.3 [3] Let S, T, V : H → H be given operators.

(i) If T = (1−α)S+αV for some α ∈ (0, 1), S is averaged and V is nonexpansive,
then T is averaged.

(ii) T is firmly nonexpansive if and only if the complement I − T is firmly nonex-
pansive.

(iii) If T = (1 − α)S + αV for some α ∈ (0, 1), S is firmly nonexpansive and V is
nonexpansive, then T is averaged.

(iv) The composite of finitely many averaged mappings is averaged. That is, if each
of the mappings {Ti }N

i=1 is averaged, then so is the composite T1 ◦ · · · ◦ TN . In
particular, if T1 is α1-averaged and T2 is α2-averaged, where α1, α2 ∈ (0, 1),
then the composite T1 ◦ T2 is α-averaged, where α = α1 + α2 − α1α2.

(v) If the mappings {Ti }N
i=1 are averaged and have a common fixed point, then

N⋂

i=1

Fix(Ti ) = Fix(T1 ◦ · · · ◦ TN ).

The notation Fix(T ) denotes the set of all fixed points of the mapping T , that is,
Fix(T ) = {x ∈ H : T x = x}.

The following result is useful to prove the weak convergence of a sequence.

Proposition 2.4 (Proposition 2.6 of [26]) Let K be a nonempty closed convex subset
of a real Hilbert space H. Let {xn} be a bounded sequence which satisfies the following
properties:

(i) every weak limit point of {xn} lies in K ;
(ii) limn→∞ ‖xn − x‖ exists for every x ∈ K .

Then, the sequence {xn} converges weakly to a point in K .

The so-called demiclosedness principle for nonexpansive mappings will often be
used.
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Lemma 2.1 [12] Let K be a nonempty closed convex subset of a real Hilbert space
H and let T : K → K be a nonexpansive mapping with Fix(T ) �= ∅. If the sequence
{xn} ⊆ K weakly converges to x and the sequence {(I − T )xn} converges strongly to
y, then (I − T )x = y; in particular, if y = 0, then x ∈ Fix(T ).

The following elementary result on real sequences is quite well-known.

Lemma 2.2 (Lemma 2.1 of [28]) Let {an} be a sequence of nonnegative numbers
satisfying the condition

an+1 ≤ (1 − γn)an + γnδn, ∀n ≥ 0,

where {γn} and {δn} are sequences of real numbers such that

(i) {γn} ⊂ [0, 1] and
∑∞

n=0 γn = ∞, or equivalently,

∞∏

n=0

(1 − γn) := lim
n→∞

n∏

k=0

(1 − γk) = 0;

(ii) lim supn→∞ δn ≤ 0, or
(ii)′

∑∞
n=0 γn|δn| is convergent.

Then, limn→∞ an = 0.

It is easy to see that the following lemma holds.

Lemma 2.3 [12] Let H be a real Hilbert space. Then, for all x, y ∈ H and λ ∈ [0, 1]

‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2.

Lemma 2.4 [22] Let {xn} and {yn} be bounded sequences in a Banach space X and
let {αn} be a sequence in [0, 1] with 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1.
Suppose xn+1 = (1 − αn)yn + αn xn for all integers n ≥ 0 and lim supn→∞(‖yn+1 −
yn‖ − ‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖yn − xn‖ = 0.

3 Mann type extragradient-like algorithm

Throughout the paper, we denote the solution set of the SFP by �, that is,

� = {x ∈ C : Ax ∈ Q} = C ∩ A−1 Q,

and assume that the SFP is consistent, that is, � is nonempty, closed and convex.
Recall that the GPM [16] is one of the powerful methods for solving constrained

optimization problems. The SFP can be reformulated as an optimization problem so
that the GPM is applicable. Indeed, x ∈ � means that there is an x ∈ C such that
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Ax − q = 0 for some q ∈ Q. This motivates us to consider the distance function
d(Ax, q) = ‖Ax − q‖ and the minimization problem

min
x∈C,q∈Q

1

2
‖Ax − q‖2.

Minimizing with respect to q ∈ Q motivates us to consider the minimization

min
x∈C

f (x) := 1

2
‖Ax − PQ Ax‖2, (3.1)

where the objective function f is continuously differentiable with gradient given by

∇ f (x) = A∗(I − PQ)Ax, (3.2)

where A∗ denotes the adjoint of A. Due to the fact that I − PQ is (firmly) nonexpan-
sive, we find that ∇ f is L-Lipschitz continuous with Lipschitz constant L := ‖A‖2,
namely

‖∇ f (x) − ∇ f (y)‖ ≤ ‖A‖2‖x − y‖, ∀x, y ∈ H1. (3.3)

The GPM is thus applied to solve (3.1). This method with gradient ∇ f given as in
(3.2) is referred to as the CQ algorithm in [2,3] and generates a sequence {xn} via the
procedure

xn+1 = PC (I − γ A∗(I − PQ)A)xn, ∀n ≥ 0, (3.4)

where the initial guess x0 ∈ H1 and γ > 0 is a parameter. By Proposition 2.5 [26],
we immediately get the following convergence result.

Theorem 3.1 [2,3,25] If 0 < γ < 2/‖A‖2, then the sequence {xn} generated by the
CQ algorithm (3.4) converges weakly to a solution of the SFP.

On the other hand, let γ > 0 and assume that x∗ ∈ �. Then Ax∗ ∈ Q ⇒
(I − PQ)Ax∗ = 0 ⇒ γ A∗(I − PQ)Ax∗ = 0, hence, we get the fixed point equa-
tion (I − γ A∗(I − PQ)A)x∗ = x∗. Requiring that x∗ ∈ C , consider the fixed point
equation:

PC (I − γ A∗(I − PQ)A)x∗ = x∗. (3.5)

The following proposition shows that the solution sets of fixed point equation (3.5)
and SFP are the same.

Proposition 3.1 (Proposition 3.2 of [26]) Given x∗ ∈ H1. Then x∗ solves the SFP if
and only if x∗ solves the fixed point equation (3.5).

The following proposition was proved by Takahashi and Toyoda [23].
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Proposition 3.2 Let H be a real Hilbert space, D be a nonempty closed convex subset
of H and {xn} be a sequence in H. Suppose that, for all u ∈ D,

‖xn+1 − u‖ ≤ ‖xn − u‖, ∀n ≥ 0.

Then, the sequence {PDxn} converges strongly to some z ∈ D.

By combining Mann’s iterative method and the extragradient method [14,18], we
propose Mann type extragradient-like method for finding a common element of the
set of solutions of the SFP and the set of fixed points of a nonexpansive mapping in the
setting of real Hilbert spaces. Motivated by the work in [27], we derive the following
weak convergence result.

Theorem 3.2 Let S : C → C be a nonexpansive mapping such that Fix(S) ∩ � �= ∅.
Let {xn} and {yn} be the sequences generated by the following Mann type extragradi-
ent-like algorithm:

⎧
⎨

⎩

x0 = x ∈ H1 chosen arbitrarily,
yn = (1 − βn)xn + βn PC (I − λn A∗(I − PQ)A)xn,

xn+1 = αn xn + (1 − αn)S PC (I − λn A∗(I − PQ)A)yn, ∀n ≥ 0,

(3.6)

where the sequences of parameters {αn}, {βn} and {λn} satisfy the following condi-
tions:

(i) {αn} ⊂ [0, 1] and 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(ii) {βn} ⊂ [0, 1] and lim infn→∞ βn > 0;

(iii) {λn} ⊂
(

0, 2
‖A‖2

)
and 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2

‖A‖2 .

Then, both the sequences {xn} and {yn} converge weakly to z ∈ Fix(S) ∩ �, where

z = ‖ · ‖ − lim
n→∞ PFix(S)∩�xn .

Proof For the sake of simplicity, we may assume that

0 < a ≤ λn ≤ b <
2

‖A‖2 and 0 < c ≤ αn ≤ d < 1, ∀ n ≥ 0,

where a, b, c and d are constants.
First, we assert that PC (I −λA∗(I − PQ)A) is α-averaged for each λ ∈

(
0, 2

‖A‖2

)
,

where

α = 2 + λ‖A‖2

4
.

As a matter of fact, we have seen that A∗(I − PQ)A is 1
‖A‖2 -ism and λA∗(I − PQ)A

is 1
λ‖A‖2 -ism. Hence, by Proposition 2.2 (iii) the complement I − λA∗(I − PQ)A is
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λ‖A‖2

2 -averaged. Therefore, noting that PC is 1
2 -averaged and applying Proposition 2.3

(iv), we know that for each λ ∈
(

0, 2
‖A‖2

)
, PC (I − λA∗(I − PQ)A) is α-averaged,

with

α = 1

2
+ λ‖A‖2

2
− 1

2
· λ‖A‖2

2
= 2 + λ‖A‖2

4
∈ (0, 1).

Hence, we can write

PC (I − λA∗(I − PQ)A) = 2 − λ‖A‖2

4
I + 2 + λ‖A‖2

4
Tλ = (1 − α)I + αTλ,

(3.7)

where Tλ is nonexpansive and α = 2+λ‖A‖2

4 ∈ ( 1
2 , 1

)
for each λ ∈

(
0, 2

‖A‖2

)
. In

particular, we can write

PC (I − λn A∗(I − PQ)A) = 2 − λn‖A‖2

4
I + 2 + λn‖A‖2

4
Tn

= (1 − γn)I + γnTn, (3.8)

where Tn is nonexpansive and γn = 2+λn‖A‖2

4 ∈ [a1, b1] ⊂ (0, 1) with a1 = (2 +
a‖A‖2)/4 and b1 = (2 + b‖A‖2)/4 < 1. Then, from (3.6), we have

yn = (1 − βn)xn + βn[(1 − γn)xn + γnTn xn]. (3.9)

Put

zn := PC (I − λn A∗(I − PQ)A)yn (= (1 − γn)yn + γnTn yn). (3.10)

Then, xn+1 = αn xn + (1 − αn)Szn for all n ≥ 0. Now take a fixed p ∈ Fix(S) ∩ �

arbitrarily. Note that Tn p = p and Sp = p. Thus, we have

‖yn − p‖2 = ‖(1 − βn)(xn − p) + βn[(1 − γn)xn + γnTn xn − p]‖2

≤ (1 − βn)‖xn − p‖2 + βn‖(1 − γn)(xn − p) + γn(Tn xn − p)‖2

= (1 − βn)‖xn − p‖2 + βn[(1 − γn)‖xn − p‖2

+γn‖Tn xn − p‖2 − γn(1 − γn)‖xn − Tn xn‖2]
≤ (1 − βn)‖xn − p‖2 + βn[(1 − γn)‖xn − p‖2

+γn‖xn − p‖2 − γn(1 − γn)‖xn − Tn xn‖2]
= ‖xn − p‖2 − βnγn(1 − γn)‖xn − Tn xn‖2,
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‖zn − p‖2 = (1 − γn)‖yn − p‖2 + γn‖Tn yn − p‖2 − γn(1 − γn)‖yn − Tn yn‖2

≤ ‖yn − p‖2 − γn(1 − γn)‖yn − Tn yn‖2

≤ ‖xn − p‖2 − βnγn(1 − γn)‖xn − Tn xn‖2 − γn(1 − γn)‖yn − Tn yn‖2,

and hence,

‖xn+1 − p‖2 = αn‖xn − p‖2 + (1 − αn)‖Szn − p‖2 − αn(1 − αn)‖xn − Szn‖2

≤ αn‖xn − p‖2 + (1 − αn)‖zn − p‖2 − αn(1 − αn)‖xn − Szn‖2

≤ αn‖xn − p‖2 + (1 − αn)[‖xn − p‖2 − βnγn(1 − γn)‖xn − Tn xn‖2

−γn(1 − γn)‖yn − Tn yn‖2] − αn(1 − αn)‖xn − Szn‖2

= ‖xn − p‖2 − (1 − αn)βnγn(1 − γn)‖xn − Tn xn‖2

−(1 − αn)γn(1 − γn)‖yn − Tn yn‖2 − αn(1 − αn)‖xn − Szn‖2

≤ ‖xn − p‖2. (3.11)

It follows that the real nonnegative sequence {‖xn − p‖} is nonincreasing. Hence,

lim
n→∞ ‖xn − p‖ exists for all p ∈ Fix(S) ∩ �. (3.12)

Noting that lim infn→∞ βn > 0, we may assume that βn ≥ l(∀n ≥ 0) for some l > 0.
From (3.11), it follows that

(1 − d)la1(1 − b1)‖xn − Tn xn‖2

+(1 − d)a1(1 − b1)‖yn − Tn yn‖2 + c(1 − d)‖xn − Szn‖2

≤ (1 − αn)βnγn(1 − γn)‖xn − Tn xn‖2 + (1 − αn)γn(1 − γn)‖yn − Tn yn‖2

+αn(1 − αn)‖xn − Szn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2.

Consequently, from (3.12), we deduce that

lim
n→∞ ‖xn − Tn xn‖ = lim

n→∞ ‖yn − Tn yn‖ = lim
n→∞ ‖xn − Szn‖ = 0. (3.13)

This together with (3.9) and (3.10) implies that

lim
n→∞ ‖yn − xn‖ = lim

n→∞ βnγn‖Tn xn − xn‖ = 0,

lim
n→∞ ‖zn − yn‖ = lim

n→∞ γn‖Tn yn − yn‖ = 0.

and hence,

lim
n→∞ ‖zn − xn‖ = lim

n→∞ ‖zn − Szn‖ = 0. (3.14)
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Next, we show that

ωw(xn) ⊂ Fix(S) ∩ �. (3.15)

Indeed, suppose x̂ ∈ ωw(xn) and {xn j } is a subsequence of {xn} such that xn j ⇀ x̂ .
We may assume λn j → λ; then we have 0 < λ < 2/‖A‖2. Set T = PC (I −λA∗(I −
PQ)A); then T is nonexpansive. Since yn j = (1 − βn j )xn j + βn j PC (I − λn j A∗(I −
PQ)A)xn j and ‖xn j − yn j ‖ → 0, we conclude that

‖xn j − T xn j ‖ ≤ ‖xn j − yn j ‖ + ‖yn j − T xn j ‖ = ‖xn j − yn j ‖ + ‖(1 − βn j )xn j

+βn j PC (I − λn j A∗(I − PQ)A)xn j − T xn j ‖
≤ ‖xn j − yn j ‖ + (1 − βn j )‖xn j − T xn j ‖ + βn j ‖PC (I − λn j

×A∗(I − PQ)A)xn j − PC (I − λA∗(I − PQ)A)xn j ‖
≤ ‖xn j − yn j ‖ + (1 − βn j )‖xn j − T xn j ‖

+βn j ‖(I − λn j A∗(I − PQ)A)xn j − (I − λA∗(I − PQ)A)xn j ‖
= ‖xn j − yn j ‖ + (1 − βn j )‖xn j − T xn j ‖ + βn j |λn j

−λ|‖A∗(I − PQ)A)xn j ‖ ≤ ‖xn j − yn j ‖ + (1 − βn j )‖xn j

−T xn j ‖ + M |λn j − λ|,
which hence implies that

‖xn j − T xn j ‖ ≤ 1

βn j

[‖xn j − yn j ‖ + M |λn j − λ|]

≤ 1

l
[‖xn j − yn j ‖ + M |λn j − λ|] → 0.

By Lemma 2.1, we obtain x̂ ∈ Fix(T ). But Fix(T ) = �, therefore, we have x̂ ∈ �.
Furthermore, since xn j ⇀ x̂ and limn→∞ ‖zn − xn‖ = limn→∞ ‖zn − Szn‖ = 0 (due
to (3.14), it is known that zn j ⇀ x̂ and lim j→∞ ‖zn j − Szn j ‖ = 0. Consequently, by
Lemma 2.1, we get x̂ ∈ Fix(S). Therefore, we have x̂ ∈ Fix(S) ∩ �. This shows that
(3.15) holds.

Finally, by applying Proposition 2.4 to Fix(S) ∩ �, we can see from (3.12) and
(3.15) that {xn} converges weakly to a point z ∈ Fix(S) ∩ �. In the meantime, from
‖xn − yn‖ → 0, it follows that yn ⇀ z. Now, put

un = PFix(S)∩�xn .

Let us show that

lim
n→∞ ‖un − z‖ = 0.

Indeed, noticing the fact that

un = PFix(S)∩�xn and z ∈ Fix(S) ∩ �,

by Proposition 2.1 (i), we have
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〈z − un, un − xn〉 ≥ 0. (3.16)

Utilizing Proposition 3.2, we deduce from (3.11) that {un} converges strongly to some
z0 ∈ Fix(S) ∩ �. Then, from (3.16), we have

〈z − z0, z0 − z〉 ≥ 0,

and hence, z = z0. ��

4 Mann type viscosity algorithm

In this section, we modify the Mann type extragradient-like algorithm, proposed in
the last section, to obtain the strong convergence of the sequences. Our modification
is of viscosity approximation nature [4,5,17].

Theorem 4.1 Let f : C → C be a ρ-contraction with ρ ∈ [0, 1) and S : C → C be
a nonexpansive mapping such that Fix(S)∩� �= ∅. Let {xn} and {yn} be the sequences
generated by the following Mann type viscosity algorithm:

⎧
⎪⎪⎨

⎪⎪⎩

x0 = x ∈ H1 chosen arbitrarily,
yn = PC (I − λn A∗(I − PQ)A)xn,

zn = PC (I − λn A∗(I − PQ)A)yn,

xn+1 = θn f (yn) + μn xn + νnzn + δn Szn, ∀n ≥ 0,

(4.1)

where the sequences of parameters {θn}, {μn}, {νn}, {δn}⊂[0, 1] and {λn}⊂
(

0, 2
‖A‖2

)

satisfy the following conditions:

(i) θn + μn + νn + δn = 1;
(ii) limn→∞ θn = 0 and

∑∞
n=0 θn = ∞;

(iii) lim infn→∞ δn > 0;

(iv) limn→∞
(

νn+1
1−μn+1

− νn
1−μn

)
= 0;

(v) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2
‖A‖2 and limn→∞(λn − λn+1) = 0.

Then, both the sequences {xn} and {yn} converge strongly to x∗ ∈ Fix(S) ∩ � which
is also a unique solution of the variational inequality (VI)

〈(I − f )x∗, x − x∗〉 ≥ 0, ∀x ∈ Fix(S) ∩ �.

In other words, x∗ is a unique fixed point of the contraction PFix(S)∩� f, x∗ =
(PFix(S)∩� f )x∗.

Proof We divide the proof into several steps.
Step 1. The sequence {xn} is bounded.

Indeed, repeating the same argument as in the proof of Theorem 3.2, we can obtain
that for each n ≥ 0

Vn := PC (I − λn A∗(I − PQ)A) = (1 − γn)I + γnTn, (4.2)
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where Tn is nonexpansive and γn = 2+λn‖A‖2

4 . Then, Vn is nonexpansive, and Mann
type viscosity algorithm (4.1) can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

x0 = x ∈ H1 chosen arbitrarily,

yn = Vn xn,

zn = Vn yn,

xn+1 = θn f (yn) + μn xn + νnzn + δn Szn, ∀n ≥ 0.

Moreover, we have Vn p = p for all p ∈ �. Consequently, Tn p = p for all p ∈ �.
Now take a fixed x̄ ∈ Fix(S) ∩ � arbitrarily. Then, we have

‖yn − x̄‖2 = (1 − γn)‖xn − x̄‖2 + γn‖Tn xn − x̄‖2 − γn(1 − γn)‖xn − Tn xn‖2

≤ ‖xn − x̄‖2 − γn(1 − γn)‖xn − Tn xn‖2

≤ ‖xn − x̄‖2, (4.3)

‖zn − x̄‖2 = (1 − γn)‖yn − x̄‖2 + γn‖Tn yn − x̄‖2 − γn(1 − γn)‖yn − Tn yn‖2

≤ ‖yn − x̄‖2 − γn(1 − γn)‖yn − Tn yn‖2

≤ ‖xn − x̄‖2 − γn(1 − γn)‖xn − Tn xn‖2 − γn(1 − γn)‖yn − Tn yn‖2

≤ ‖xn − x̄‖2, (4.4)

and hence,

‖xn+1 − x̄‖ ≤ θn‖ f (yn) − x̄‖ + μn‖xn − x̄‖ + νn‖zn − x̄‖ + δn‖Szn − x̄‖
≤ θn[‖ f (yn)− f (x̄)‖+‖ f (x̄)− x̄‖]+μn‖xn − x̄‖+(νn + δn)‖zn − x̄‖
≤ θnρ‖yn − x̄‖ + θn‖ f (x̄) − x̄‖ + μn‖xn − x̄‖ + (νn + δn)‖zn − x̄‖
≤ θnρ‖xn − x̄‖ + θn‖ f (x̄) − x̄‖ + μn‖xn − x̄‖ + (νn + δn)‖xn − x̄‖
= θnρ‖xn − x̄‖ + θn‖ f (x̄) − x̄‖ + (μn + νn + δn)‖xn − x̄‖
= θnρ‖xn − x̄‖ + θn‖ f (x̄) − x̄‖ + (1 − θn)‖xn − x̄‖
= (1 − (1 − ρ)θn)‖xn − x̄‖ + θn‖ f (x̄) − x̄‖
≤ max

{
‖xn − x̄‖, 1

1 − ρ
‖ f (x̄) − x̄‖

}
.

So, an induction argument shows that

‖xn − x̄‖ ≤ max

{
‖x0 − x̄‖, 1

1 − ρ
‖ f (x̄) − x̄‖

}
, ∀n ≥ 0.

Thus, {xn} is bounded, and so are {yn} and {zn}.
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Step 2. limn→∞ ‖xn+1 − xn‖ = 0.
Indeed, observe that

‖yn+1 − yn‖ = ‖Vn+1xn+1 − Vn xn‖
≤ ‖Vn+1xn+1 − Vn+1xn‖ + ‖Vn+1xn − Vn xn‖
≤ ‖xn+1 − xn‖

+‖PC (I − λn+1 A∗(I − PQ)A)xn − PC (I − λn A∗(I − PQ)A)xn‖
≤ ‖xn+1 − xn‖

+‖(I − λn+1 A∗(I − PQ)A)xn − (I − λn A∗(I − PQ)A)xn‖
= ‖xn+1 − xn‖ + |λn+1 − λn|‖A∗(I − PQ)Axn‖,

and hence,

‖zn+1 − zn‖ = ‖Vn+1 yn+1 − Vn yn‖
≤ ‖Vn+1 yn+1 − Vn+1 yn‖ + ‖Vn+1 yn − Vn yn‖
≤ ‖yn+1 − yn‖

+‖PC (I − λn+1 A∗(I − PQ)A)yn − PC (I − λn A∗(I − PQ)A)yn‖
≤ ‖yn+1 − yn‖

+‖(I − λn+1 A∗(I − PQ)A)yn − (I − λn A∗(I − PQ)A)yn‖
= ‖yn+1 − yn‖ + |λn+1 − λn|‖A∗(I − PQ)Ayn‖
≤ ‖xn+1 − xn‖

+|λn+1 − λn|(‖A∗(I − PQ)Axn‖ + ‖A∗(I − PQ)Ayn‖).

Now, define xn+1 = μn xn + (1 − μn)wn for all n ≥ 0. It then follows that

wn+1 − wn = xn+2 − μn+1xn+1

1 − μn+1
− xn+1 − μn xn

1 − μn

= θn+1 f (yn+1) + νn+1zn+1 + δn+1Szn+1

1 − μn+1
− θn f (yn) + νnzn + δn Szn

1 − μn

= θn+1 f (yn+1)

1 − μn+1
− θn f (yn)

1 − μn
+ νn+1(zn+1 − zn) + δn+1(Szn+1 − Szn)

1 − μn+1

+
(

νn+1

1 − μn+1
− νn

1 − μn

)
zn +

(
δn+1

1 − μn+1
− δn

1 − μn

)
Szn,

which hence implies that

‖wn+1 − wn‖ ≤ θn+1

1 − μn+1
‖ f (yn+1)‖ + θn

1 − μn
‖ f (yn)‖

+‖νn+1(zn+1 − zn) + δn+1(Szn+1 − Szn)‖
1 − μn+1

+
∣
∣
∣
∣

νn+1

1 − μn+1
− νn

1 − μn

∣
∣
∣
∣ ‖zn‖ +

∣
∣
∣
∣

δn+1

1 − μn+1
− δn

1 − μn

∣
∣
∣
∣ ‖Szn‖
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≤ θn+1

1 − μn+1
(‖ f (yn+1)‖ + ‖Szn‖) + θn

1 − μn
(‖ f (yn)‖ + ‖Szn‖)

+νn+1+δn+1

1 − μn+1
‖zn+1−zn‖+

∣
∣
∣
∣

νn+1

1 − μn+1
− νn

1 − μn

∣
∣
∣
∣ (‖zn‖ + ‖Szn‖)

≤ θn+1

1 − μn+1
(‖ f (yn+1)‖ + ‖Szn‖) + θn

1 − μn
(‖ f (yn)‖ + ‖Szn‖)

+‖zn+1 − zn‖ +
∣
∣
∣
∣

νn+1

1 − μn+1
− νn

1 − μn

∣
∣
∣
∣ (‖zn‖ + ‖Szn‖)

≤ θn+1

1 − μn+1
(‖ f (yn+1)‖ + ‖Szn‖) + θn

1 − μn
(‖ f (yn)‖ + ‖Szn‖)

+‖xn+1 − xn‖ + |λn+1 − λn|(‖A∗(I − PQ)Axn‖ + ‖A∗

×(I − PQ)Ayn‖) +
∣
∣
∣
∣

νn+1

1 − μn+1
− νn

1 − μn

∣
∣
∣
∣ (‖zn‖ + ‖Szn‖),

(4.5)

Consequently, it follows from (4.5) and conditions (ii), (iv), (v) that

lim sup
n→∞

(‖wn+1 − wn‖ − ‖xn+1 − xn‖)

≤ lim sup
n→∞

{
θn+1

1 − μn+1
(‖ f (yn+1)‖ + ‖Szn‖) + θn

1 − μn
(‖ f (yn)‖ + ‖Szn‖)

+|λn+1 − λn|(‖A∗(I − PQ)Axn‖ + ‖A∗(I − PQ)Ayn‖)
+

∣
∣
∣
∣

νn+1

1 − μn+1
− νn

1 − μn

∣
∣
∣
∣ (‖zn‖ + ‖Szn‖)

}
= 0.

Hence, by Lemma 2.4, we get limn→∞ ‖wn − xn‖ = 0. Thus,

lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞(1 − μn)‖wn − xn‖ = 0. (4.6)

Step 3. limn→∞ ‖xn − yn‖ = limn→∞ ‖yn − zn‖ = limn→∞ ‖zn − Szn‖ = 0.
Indeed, from (4.1), we get

‖xn+1− x̄‖2 = 〈θn( f (yn)− x̄)+μn(xn − x̄)+νn(zn − x̄)+δn(Szn − x̄), xn+1− x̄〉
= θn〈 f (yn) − x̄, xn+1 − x̄〉 + μn〈xn − x̄, xn+1 − x̄〉

+〈νn(zn − x̄) + δn(Szn − x̄), xn+1 − x̄〉
≤ θn〈 f (yn) − x̄, xn+1 − x̄〉 + μn‖xn − x̄‖‖xn+1 − x̄‖

+‖νn(zn − x̄) + δn(Szn − x̄)‖‖xn+1 − x̄‖
≤ θn〈 f (yn) − x̄, xn+1 − x̄〉 + μn‖xn − x̄‖‖xn+1 − x̄‖

+(νn + δn)‖zn − x̄‖‖xn+1 − x̄‖
≤ θn〈 f (yn) − x̄, xn+1 − x̄〉 + μn

2

(
‖xn − x̄‖2 + ‖xn+1 − x̄‖2

)

+νn + δn

2

(
‖zn − x̄‖2 + ‖xn+1 − x̄‖2

)
,



486 L.-C. Ceng et al.

that is,

‖xn+1 − x̄‖2 ≤ 2θn

1 + θn
〈 f (yn) − x̄, xn+1 − x̄〉 + μn

1 + θn
‖xn − x̄‖2

+νn + δn

1 + θn
‖zn − x̄‖2. (4.7)

By combining (4.4) and (4.7), we have

‖xn+1 − x̄‖2 ≤ 2θn

1 + θn
‖ f (yn) − x̄‖‖xn+1 − x̄‖ + μn

1 + θn
‖xn − x̄‖2 + νn + δn

1 + θn

×‖zn − x̄‖2 ≤ 2θn

1 + θn
‖ f (yn) − x̄‖‖xn+1 − x̄‖ + μn

1 + θn
‖xn − x̄‖2

+νn + δn

1 + θn

[
‖xn − x̄‖2 − γn(1 − γn)‖xn − Tn xn‖2 − γn(1 − γn)‖yn − Tn yn‖2

]

= 2θn

1 + θn
‖ f (yn) − x̄‖‖xn+1 − x̄‖ + μn + νn + δn

1 + θn
‖xn − x̄‖2

− (νn + δn)γn(1 − γn)

1 + θn
(‖xn − Tn xn‖2 + ‖yn − Tn yn‖2)

≤ 2θn

1 + θn
‖ f (yn) − x̄‖‖xn+1 − x̄‖ + ‖xn − x̄‖2

− (νn + δn)γn(1 − γn)

1 + θn
(‖xn − Tn xn‖2 + ‖yn − Tn yn‖2).

It immediately follows that

(νn + δn)γn(1 − γn)

1 + θn
(‖xn − Tn xn‖2 + ‖yn − Tn yn‖2)

≤ 2θn

1 + θn
‖ f (yn) − x̄‖‖xn+1 − x̄‖ + ‖xn − x̄‖2 − ‖xn+1 − x̄‖2

≤ 2θn

1 + θn
‖ f (yn) − x̄‖‖xn+1 − x̄‖ + ‖xn − xn+1‖(‖xn − x̄‖ + ‖xn+1 − x̄‖).

Since θn → 0, ‖xn − xn+1‖ → 0, 1
2 < lim infn→∞ γn ≤ lim supn→∞ γn < 1 and

lim infn→∞(νn + δn) > 0, we have

lim
n→∞ ‖xn − Tn xn‖ = lim

n→∞ ‖yn − Tn yn‖ = 0. (4.8)

This implies that

lim
n→∞ ‖yn − xn‖ = lim

n→∞ γn‖Tn xn − xn‖ = 0,

lim
n→∞ ‖zn − yn‖ = lim

n→∞ γn‖Tn yn − yn‖ = 0,



Mann type iterative methods 487

and so,

lim sup
n→∞

‖zn − xn‖ ≤ lim sup
n→∞

(‖zn − yn‖ + ‖yn − xn‖) = 0.

Note that

δn‖Szn − zn‖ = ‖xn+1 − zn − θn( f (yn) − zn) − μn(xn − zn)‖
≤ ‖xn+1 − zn‖ + θn‖ f (yn) − zn‖ + μn‖xn − zn‖
≤ ‖xn+1 − xn‖ + ‖xn − zn‖ + θn‖ f (yn) − zn‖ + μn‖xn − zn‖
= ‖xn+1 − xn‖ + (1 + μn)‖xn − zn‖ + θn‖ f (yn) − zn‖.

Since θn → 0, lim infn→∞ δn > 0, ‖xn − zn‖ → 0 and ‖xn − xn+1‖ → 0, we obtain

lim
n→∞ ‖Szn − zn‖ = 0.

Step 4. lim supn→∞〈 f (x∗) − x∗, xn − x∗〉 ≤ 0 where x∗ = (PFix(S)∩� f )x∗.
Indeed, take a subsequence {xni } of {xn} such that

lim sup
n→∞

〈 f (x∗) − x∗, xn − x∗〉 = lim
i→∞〈 f (x∗) − x∗, xni − x∗〉. (4.9)

Without loss of generality, we may assume that xni ⇀ w and λni → λ ∈
(

0, 2
‖A‖2

)
,

due to condition (v). First, it is clear from ‖xn − zn‖ → 0 that zni ⇀ w. Hence, by
Lemma 2.1, we deduce from ‖zn − Szn‖ → 0 that w ∈ Fix(S). Second, let us show
that w ∈ �. Set V = PC (I − λA∗(I − PQ)A). Notice that V is nonexpansive and
Fix(V ) = �. It turns out that

‖xni − V xni ‖ ≤ ‖xni − Vni xni ‖ + ‖Vni xni − V xni ‖
= ‖xni − yni ‖

+‖PC (I − λni A∗(I − PQ)A)xni − PC (I − λA∗(I − PQ)A)xni ‖
≤ ‖xni − yni ‖

+‖(I − λni A∗(I − PQ)A)xni − (I − λA∗(I − PQ)A)xni ‖
= ‖xni − yni ‖ + |λni − λ|‖A∗(I − PQ)Axni ‖ → 0.

By Lemma 2.1, we get w ∈ Fix(V ), and hence, w ∈ �. Therefore, w ∈ Fix(S) ∩ �.
This together with (4.9) and the property of metric projection implies that

lim sup
n→∞

〈 f (x∗) − x∗, xn − x∗〉 = lim
i→∞〈 f (x∗) − x∗, xni − x∗〉

= 〈 f (x∗) − x∗, w − x∗〉
≤ 0. (4.10)

Step 5. limn→∞ ‖xn − x∗‖ = limn→∞ ‖yn − x∗‖ = 0.
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Indeed, from (4.4) and (4.7), we have

‖xn+1 − x∗‖2 ≤ 2θn

1 + θn
〈 f (yn) − x∗, xn+1 − x∗〉 + μn

1 + θn
‖xn − x∗‖2

+νn + δn

1 + θn
‖xn − x∗‖2 = 2θn

1 + θn
〈 f (xn) − f (x∗), xn+1 − x∗〉

+ 2θn

1 + θn
[〈 f (x∗) − x∗, xn+1 − x∗〉+〈 f (yn) − f (xn), xn+1 − x∗〉]

+1 − θn

1 + θn
‖xn − x∗‖2 ≤ 2θnρ

1 + θn
‖xn − x∗‖‖xn+1 − x∗‖

+ 2θn

1 + θn
[〈 f (x∗) − x∗, xn+1 − x∗〉

+ρ‖yn − xn‖‖xn+1 − x∗‖] + 1 − θn

1 + θn
‖xn − x∗‖2 ≤ θnρ

1 + θn

×(‖xn − x∗‖2 +‖xn+1− x∗‖2) + 2θn

1 + θn
[〈 f (x∗) − x∗, xn+1 − x∗〉

+ρ‖yn − xn‖‖xn+1 − x∗‖] + 1 − θn

1 + θn
‖xn − x∗‖2

= 1 − (1 − ρ)θn

1 + θn
‖xn − x∗‖2 + θnρ

1 + θn
‖xn+1 − x∗‖2

+ 2θn

1 + θn
[〈 f (x∗) − x∗, xn+1 − x∗〉 + ρ‖yn − xn‖‖xn+1 − x∗‖],

which hence implies that

‖xn+1 − x∗‖2 ≤ 1 − (1 − ρ)θn

1 + (1 − ρ)θn
‖xn − x∗‖2 + 2θn

1 + (1 − ρ)θn

×[〈 f (x∗) − x∗, xn+1 − x∗〉 + ρ‖yn − xn‖‖xn+1 − x∗‖]
≤ (1 − (1 − ρ)θn)‖xn − x∗‖2 + 2θn

1 + (1 − ρ)θn

×[〈 f (x∗) − x∗, xn+1 − x∗〉 + ρ‖yn − xn‖‖xn+1 − x∗‖]
= (1 − (1 − ρ)θn)‖xn − x∗‖2

+(1 − ρ)θn · 2

(1 + (1 − ρ)θn)(1 − ρ)
[〈 f (x∗) − x∗, xn+1 − x∗〉

+ρ‖yn − xn‖‖xn+1 − x∗‖]. (4.11)

Note that θn → 0 and
∑∞

n=0(1 − ρ)θn = ∞ due to condition (ii). Since

lim sup
n→∞

2

(1+(1−ρ)θn)(1−ρ)
[〈 f (x∗)−x∗, xn+1 − x∗〉+ρ‖yn −xn‖

‖xn+1−x∗‖] ≤ 0
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due to (4.10), an application of Lemma 2.2 to (4.11) yields ‖xn − x∗‖ → 0. Conse-
quently, ‖yn − x∗‖ → 0 by using ‖xn − yn‖ → 0. ��

5 Mann type relaxed CQ algorithm

As pointed out in [26], the CQ algorithm (3.4) involves two projections PC and PQ

and hence might be hard to be implemented in the case where one of them fails to
have a closed-form expression. Thus, in [26] it was shown that if C and Q are level
sets of convex functions, then the projections onto half-spaces are just needed to make
the CQ algorithm implementable in this case. Inspired by his relaxed CQ algorithm,
we propose Mann type relaxed CQ algorithm via projections onto half-spaces.

Define the closed convex sets C and Q as the level sets:

C = {x ∈ H1 : c(x) ≤ 0} and Q = {y ∈ H2 : q(y) ≤ 0}, (5.1)

where c : H1 → R and q : H2 → R are the convex functions. We assume that c and
q are subdifferentiable on C and Q, respectively, namely, the subdifferentials

∂c(x) = {z ∈ H1 : c(u) ≥ c(x) + 〈u − x, z〉, ∀u ∈ H1} �= ∅

for all x ∈ C , and

∂q(y) = {w ∈ H2 : q(v) ≥ q(y) + 〈v − y, w〉, ∀v ∈ H2} �= ∅

for all y ∈ Q. We also assume that c and q are bounded on bounded sets. Note that
this condition is automatically satisfied if H1 and H2 are finite dimensional. This
assumption guarantees that if {xn} is a bounded sequence in H1 (respectively, H2) and
{x∗

n } is another sequence in H1 (respectively, H2) such that x∗
n ∈ ∂c(xn) (respectively,

x∗
n ∈ ∂q(xn)) for each n ≥ 0, then {x∗

n } is bounded.
Let S : H1 → H1 be a nonexpansive mapping. Assume that the sequences of

parameters {αn}, {βn} and {λn} satisfy the following conditions:

(i) {αn} ⊂ [0, 1] and 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1;
(ii) {βn} ⊂ [0, 1] and lim infn→∞ βn > 0;

(iii) {λn} ⊂
(

0, 2
‖A‖2

)
and 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2

‖A‖2 .

Let {xn} and {yn} be the sequences defined by the following Mann type relaxed CQ
algorithm:

⎧
⎨

⎩

x0 = x ∈ H1 chosen arbitrarily,

yn = (1 − βn)xn + βn PCn (I − λn A∗(I − PQn )A)xn,

xn+1 = αn xn + (1 − αn)S PCn (I − λn A∗(I − PQn )A)yn, ∀n ≥ 0,

(5.2)

where {Cn} and {Qn} are the sequences of closed convex sets constructed as follows:

Cn = {x ∈ H1 : c(xn) + 〈ξn, x − xn〉 ≤ 0}, (5.3)
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where ξn ∈ ∂c(xn), and

Qn = {y ∈ H2 : q(Axn) + 〈ηn, y − Axn〉 ≤ 0}, (5.4)

where ηn ∈ ∂q(Axn).
It can be easily seen that C ⊂ Cn and Q ⊂ Qn for all n ≥ 0. Also note that Cn and

Qn are half-spaces; thus, the projections PCn and PQn have closed-form expressions.
The relaxed CQ algorithm was introduced in [29] (see also [24]) in the finite-

dimensional setting. In [26], Xu derived the weak convergence of this algorithm in the
infinite-dimensional setting. The following theorem establishes the weak convergence
of Mann type relaxed CQ algorithm in the infinite-dimensional setting. Our proof is
very different from that of Xu’s Theorem 4.1 [26], and also needs the Hilbert space
technique and averaged mapping expression technique.

Theorem 5.1 Suppose that Fix(S) ∩ � �= ∅. The sequences {xn} and {yn} generated
by algorithm (5.2) converge weakly to z ∈ Fix(S) ∩ �, where

z = ‖ · ‖ − lim
n→∞ PFix(S)∩�xn .

Proof For the sake of simplicity, we may assume that

0 < a ≤ λn ≤ b <
2

‖A‖2 and 0 < c ≤ αn ≤ d < 1

for all n ≥ 0, where a, b, c and d are constants.
Repeating the same argument as in the proof of Theorem 3.2, we can write

V̂n := PCn (I − λn A∗(I − PQn )A)

= 2 − λn‖A‖2

4
I + 2 + λn‖A‖2

4
T̂n

= (1 − γn)I + γn T̂n, (5.5)

where T̂n is nonexpansive and γn = 2+λn‖A‖2

4 ∈ [a1, b1] ⊂ (0, 1) with a1 = (2 +
a‖A‖2)/4 and b1 = (2+b‖A‖2)/4 < 1. Then V̂n is nonexpansive and the Mann type
relaxed CQ algorithm (5.2) can be rewritten as

⎧
⎪⎨

⎪⎩

x0 = x ∈ H1 chosen arbitrarily,

yn = (1 − βn)xn + βn V̂n xn,

xn+1 = αn xn + (1 − αn)SV̂n yn, ∀n ≥ 0.

Moreover, we have V̂n x∗ = x∗ for all x∗ ∈ �. In the meantime, we have

yn = (1 − βn)xn + βn[(1 − γn)xn + γn T̂n xn]. (5.6)
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Put

zn := V̂n yn (= (1 − γn)yn + γn T̂n yn). (5.7)

Then, xn+1 = αn xn + (1 − αn)Szn for all n ≥ 0. Now take a fixed p ∈ Fix(S) ∩ �

arbitrarily. Note that T̂n p = p and Sp = p. Thus, we have

‖yn − p‖2 = ‖(1 − βn)(xn − p) + βn[(1 − γn)xn + γn T̂n xn − p]‖2

≤ (1 − βn)‖xn − p‖2 + βn‖(1 − γn)(xn − p) + γn(T̂n xn − p)‖2

= (1 − βn)‖xn − p‖2 + βn[(1 − γn)‖xn − p‖2

+γn‖T̂n xn − p‖2 − γn(1 − γn)‖xn − T̂n xn‖2]
≤ (1 − βn)‖xn − p‖2 + βn[(1 − γn)‖xn − p‖2

+γn‖xn − p‖2 − γn(1 − γn)‖xn − T̂n xn‖2]
= ‖xn − p‖2 − βnγn(1 − γn)‖xn − T̂n xn‖2,

‖zn − p‖2 = (1 − γn)‖yn − p‖2 + γn‖T̂n yn − p‖2 − γn(1 − γn)‖yn − T̂n yn‖2

≤ ‖yn − p‖2 − γn(1 − γn)‖yn − T̂n yn‖2

≤ ‖xn − p‖2 − βnγn(1 − γn)‖xn − T̂n xn‖2 − γn(1 − γn)‖yn − T̂n yn‖2,

and hence,

‖xn+1 − p‖2 = αn‖xn − p‖2 + (1 − αn)‖Szn − p‖2 − αn(1 − αn)‖xn − Szn‖2

≤ αn‖xn − p‖2 + (1 − αn)‖zn − p‖2 − αn(1 − αn)‖xn − Szn‖2

≤ αn‖xn − p‖2 + (1 − αn)[‖xn − p‖2 − βnγn(1 − γn)‖xn − T̂n xn‖2

−γn(1 − γn)‖yn − T̂n yn‖2] − αn(1 − αn)‖xn − Szn‖2

= ‖xn − p‖2 − (1 − αn)βnγn(1 − γn)‖xn − T̂n xn‖2

−(1 − αn)γn(1 − γn)‖yn − T̂n yn‖2 − αn(1 − αn)‖xn − Szn‖2

≤ ‖xn − p‖2. (5.8)

It follows that the real nonnegative sequence {‖xn − p‖} is nonincreasing. Hence,

lim
n→∞ ‖xn − p‖ exists for allp ∈ Fix(S) ∩ �. (5.9)

Noting that lim infn→∞ βn > 0, we may assume that βn ≥ l(∀n ≥ 0) for some l > 0.
From (5.8) it follows that

(1 − d)la1(1 − b1)‖xn − T̂n xn‖2

+(1 − d)a1(1 − b1)‖yn − T̂n yn‖2 + c(1 − d)‖xn − Szn‖2
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≤ (1 − αn)βnγn(1 − γn)‖xn − T̂n xn‖2 + (1 − αn)γn(1 − γn)‖yn − T̂n yn‖2

+αn(1 − αn)‖xn − Szn‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2.

Consequently, from (5.9) we deduce that

lim
n→∞ ‖xn − T̂n xn‖ = lim

n→∞ ‖yn − T̂n yn‖ = lim
n→∞ ‖xn − Szn‖ = 0. (5.10)

This together with (5.6) and (5.7) implies that

lim
n→∞ ‖yn − xn‖ = lim

n→∞ βnγn‖T̂n xn − xn‖ = 0,

lim
n→∞ ‖zn − yn‖ = lim

n→∞ γn‖T̂n yn − yn‖ = 0.

and hence,

lim
n→∞ ‖zn − xn‖ = lim

n→∞ ‖zn − Szn‖ = 0. (5.11)

Next let us show that

ωw(xn) ⊂ Fix(S) ∩ �. (5.12)

Indeed, assume that x̂ ∈ ωw(xn) and {xn j } is a subsequence of {xn} such that xn j ⇀ x̂ .
Utilizing (5.11), we have zn j ⇀ x̂ and lim j→∞ ‖zn j − Szn j ‖ = 0. By Lemma 2.1,
we have x̂ ∈ Fix(S). Furthermore, since xn j +1 ∈ Cn j , we obtain

c(xn j ) + 〈ξn j , xn j +1 − xn j 〉 ≤ 0.

Thus,

c(xn j ) ≤ −〈ξn j , xn j +1 − xn j 〉 ≤ ξ‖xn j +1 − xn j ‖,

where ξ satisfies ‖ξn‖ ≤ ξ for all n ≥ 0. By virtue of the lower semicontinuity of c,
we get from (5.8)

c(x̂) ≤ lim inf
j→∞ c(xn j ) ≤ 0.

Therefore, x̂ ∈ C .
Now we show that ‖(I − PQn )Axn‖ → 0. Indeed, we need more accurate estimates

on ‖zn − p‖ as follows. Using the nonexpansivity of projections, we get
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‖zn − p‖2 ≤ ‖(I − λn A∗(I − PQn )A)yn − p‖2

= ‖(yn − p) − λn A∗(I − PQn )Ayn‖2

= ‖yn − p‖2 + λ2
n‖A∗(I − PQn )Ayn‖2

−2λn〈yn − p, A∗(I − PQn )Ayn〉
≤ ‖yn − p‖2 + λ2

n‖A‖2‖(I − PQn )Ayn‖2

−2λn〈Ayn − Ap, (I − PQn )Ayn〉. (5.13)

Since Ap ∈ Q ⊂ Qn , we have

〈(I − PQn )Ayn, Ap − PQn Ayn〉 ≤ 0.

This implies that

〈(I − PQn )Ayn, Ayn − Ap〉 = 〈(I − PQn )Ayn, Ayn − PQn Ayn〉
+〈(I − PQn )Ayn, PQn Ayn − Ap〉

≥ ‖(I − PQn )Ayn‖2. (5.14)

By combining (5.13) and (5.14), we get

‖zn − p‖2 ≤ ‖yn − p‖2 − λn(2 − λn‖A‖2)‖(I − PQn )Ayn‖2, (5.15)

which hence implies that

λn(2 − λn‖A‖2)‖(I − PQn )Ayn‖2 ≤ ‖yn − p‖2 − ‖zn − p‖2

≤ (‖yn − p‖ + ‖zn − p‖)‖zn − yn‖.

Since limn→∞ ‖zn − yn‖ = 0 and 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2
‖A‖2 , we

have

lim
n→∞ ‖(I − PQn )Ayn‖ = 0. (5.16)

Thus it follows that

‖(I − PQn )Axn‖ ≤ ‖(I − PQn )Ayn‖ + ‖(I − PQn )Axn − (I − PQn )Ayn‖
≤ ‖(I − PQn )Ayn‖ + ‖Axn − Ayn‖
≤ ‖(I − PQn )Ayn‖ + ‖A‖‖xn − yn‖ → 0,

due to limn→∞ ‖xn − yn‖ = 0.
Next let us show that Ax̂ ∈ Q. To see this, set wn = Axn − PQn Axn → 0 and let η

be such that ‖ηn‖ ≤ ‖η‖ for all n ≥ 0. Then, since Axn j − wn j = PQn j
Axn j ∈ Qn j ,

we get
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q(Axn j ) + 〈ηn j , (Axn j − wn j ) − Axn j 〉 ≤ 0.

Hence,

q(Axn j ) ≤ 〈ηn j , wn j 〉 ≤ η‖wn j ‖ → 0.

By the weak lower semicontinuity of q and the fact that Axn j → Ax̂ weakly, we
arrive at the following conclusion

q(Ax̂) ≤ lim inf
j→∞ q(Axn j ) ≤ 0.

Namely, Ax̂ ∈ Q.
Therefore, x̂ ∈ �. This shows that (5.12) holds. Now we can apply Proposition 2.4

to K := Fix(S) ∩ � to get that the full sequence {xn} converges weakly to a point
z ∈ Fix(S) ∩ �. In the meantime, from ‖xn − yn‖ → 0 it follows that yn ⇀ z. Now,
put

un = PFix(S)∩�xn .

Let us show that

lim
n→∞ ‖un − z‖ = 0.

Indeed, noticing the fact that

un = PFix(S)∩�xn and z ∈ Fix(S) ∩ �,

in terms of Proposition 2.1 (i) we have

〈z − un, un − xn〉 ≥ 0. (5.17)

Utilizing Proposition 3.2, we deduce from (5.8) that {un} converges strongly to some
z0 ∈ Fix(S) ∩ �. Then, we have from (5.17)

〈z − z0, z0 − z〉 ≥ 0,

and hence z = z0. ��
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