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Abstract In this paper, we present some results concerning the automatic order
boundedness of band preserving operators on Dedekind σ -complete vector lattices.
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1 Introduction

The question of whether a band preserving linear operator on archimedean vector
lattices is automatically order bounded was posed by Wickstead [13]. There are sev-
eral results that guarantee automatic order boundedness for band preserving operator
acting in concrete classes of vector lattices, see [4,7,9,10]. The first example of an
unbounded band preserving linear operator was announced by Abramovich et al. [1].
Later, they [1] and Mc Polin and Wickstead [9] showed that all band preserving opera-
tors in a universally complete vector lattice A are automatically bounded if and only if
A is locally one-dimensional. Hence the Wickstead problem in the class of universally
complete vector lattices was thus reduced to characterization of locally one-dimen-
sional vector lattices. This characterization was studied in many works, see [6]. There
is now a small body of literature devoted to the study of the Wickstead problem for the
class of archimedean vector lattices. In fact, Bernau [4], Mc Polin and Wickstead [9]
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and De Pagter [10] proved, by using algebraic and technical tools, that if T is a band
preserving linear operator on an archimedean vector lattice A and if for every positive
sequence (xn) in A which converges to zero relatively uniformly, inf

n
{|T (xn)|} = 0,

then T is order bounded.
In this paper, we focus our attention on the class of Dedekind σ -complete vector

lattices. More precisely, if A is a Dedekind σ -complete vector lattice and if T : A → A
is a band preserving, there are special topological circumstances that may conspire to
force T to be order bounded. In fact, we prove, by using new techniques, that if the
universal completion Au of A is equipped with a Hausdorff f -compatible topology τ

(see Definition 2), then any continuous band preserving T : (A, (r.u) top) → (Au, τ )

is automatically order bounded, where (r.u) top is the relatively uniform topology. This
provides a generalization of results of Bernau [4], Mc Polin and Wickstead [9] and
De Pagter [10]. Moreover, we show that all band preserving operators on a Freuden-
thal vector lattice are automatically order bounded. As well, we study the Wickstead
problem for bilinear operators.

We point out that all proofs are purely order theoretical and algebraic in nature and
furthermore do not involve any analytical means. We take it for granted that the reader
is familiar with the notions of vector lattices (or Riesz spaces) and operators between
them. For terminology, notations and concepts that are not explained in this paper, one
can refer to the standard monographs [3,8,11].

2 Definitions and notations

In order to avoid unnecessary repetition we will suppose that all vector lattices and
�-algebras under consideration are Archimedean.

Let us recall some of the relevant notions. Let A be a vector lattice. A linear oper-
ator T : A → A is called band preserving (resp ideal preserving) if T (x) ⊥ y
whenever x ⊥ y in A (resp T (I ) ⊂ I for every order ideal I of A). A bilinear oper-
ator � : A × A → A is called separately band preserving (resp separately ideal
preserving) provided that the following mappings

�(., x) : y �→ �(y, x) and �(x, .) : y �→ �(x, y) (y ∈ A)

are band preserving (resp ideal preserving) for all x ∈ A.
Let A be a vector lattice and let 0 ≤ a ∈ A. An element 0 ≤ e ∈ A is called a

component of a if e ∧ (a − e) = 0.

Definition 1 A vector lattice A is called a Freudenthal vector lattice if A satisfies the
following property:
If 0 ≤ x ≤ e holds in A, then there exist positive real numbers α1, . . . , αn and
components e1, . . . , en of e satisfying x = ∑

1≤i≤n αi ei .

Example 1 The vector space of all real stationary sequences is an atomic Freudenthal
vector lattice.

Example 2 Let A be a non-atomic Dedekind σ -complete vector lattice and let e ∈ A+.
It is well known, by using the representation theorem of Kakutani [11, Proposition 7.2
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and Theorem 7.4], that the principal order ideal Ie generated by e in A can be identi-
fied with the vector lattice C(X), for some basically disconnected compact Hausdorff
space X . Let F = { f ∈ C(X), f (X) is a finite subset of R}. It is an easy task to
prove that 0 ≤ f ∈ F if and only if there exist k ∈ N, X1, . . . , Xk mutually disjoint

clopen subsets of X and positive real numbers α1, . . . , αk such that f = ∑k
i=1 αi 1Xi .

Therefore F is a non-atomic Freudenthal vector lattice.

Remark 1 Any order ideal I of a Freudenthal vector lattice A is a Freudenthal vector
lattice.

Let A be a vector lattice, let 0 ≤ v ∈ A, the sequence {an}n≥0 in A is called (v)

relatively uniformly convergent to a ∈ A if for every real number ε > 0, there exists
a natural number nε such that |an − a| ≤ εv for all n ≥ nε. This will be denoted
by an → a (v). If an → a (v) for some 0 ≤ v ∈ A, then the sequence {an}n≥1
is called (relatively) uniformly convergent to a, which is denoted by an → a(r.u).
The notion of (r.u) relatively uniform Cauchy sequence is defined in the obvious way.
A vector lattice is called relatively uniformly complete if every relatively uniform
Cauchy sequence in A has a unique limit. Relatively uniformly limits are unique if A
is archimedean, see [8, Theorem 63.2]. The relatively uniform topology is denoted by
(r.u) topology.

Let A be a vector lattice. A net (xi )i∈I of A is order convergent to x ∈ A (denoted
by xi

o→ x) if there exist net (y j ) j∈J such that

(i) y j ↓ 0
(ii) for each j ∈ J there exists some i0 ∈ I satisfying |xi − x | ≤ y j for all i ≥ i0.

A subset D of A is said to be order closed whenever {xi } ⊂ D and xi
o→ x imply

x ∈ D, see [2].
In the following lines, we recall definitions and some basic facts about f -algebras.

For more information about this field, one can refer to [3]. A (real) algebra A which
is simultaneously a vector lattice such that the partial ordering and the multiplication
in A are compatible, that is a, b ∈ A+ implies ab ∈ A+ is called a lattice-ordered
algebra (briefly �-algebra). In an �-algebra A we denote the collection of all nilpotent
elements of A by N (A). An �-algebra A is said to be semiprime if N (A) = {0}. An
�-algebra A is called an f -algebra if A verifies the property that a ∧ b = 0 and c ≥ 0
imply ac ∧ b = ca ∧ b = 0. Every unital f -algebra (i.e., an f -algebra with a unit
element) is semiprime.

The vector lattice A is called Dedekind σ -complete if for each non-void count-
able majorized set B ⊂ A, sup B exists in A. The vector lattice A is called laterally
complete provided that every orthogonal system in A has a supremum in A. If A is
Dedekind complete and laterally complete, then A is said to be universally complete.
Every vector lattice A has a universal completion Au , this means that there exists a
unique (up to a lattice isomorphism) universally complete vector lattice Au such that
A can be identified with an order dense sublattice of Au . For more properties about
universal completion, see [8, Chap. VII, Sect. 51].

We end this section with some definitions about bilinear maps on vector lattices.
Let A and B be vector lattices. A bilinear map � from A × A into B is said to be
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positive whenever (a, b) ∈ A+ × A+ imply �(a, b) ∈ B+. A bilinear map � from
A× A into B is said to be orthosymmetric if for all (a, b) ∈ A× A such that a ∧b = 0
implies �(a, b) = 0, see [5].

3 The main results

The present section considers band preserving linear operators on Dedekind
σ -complete vector lattices. More precisely, we are mainly concerned with generalizing
the results of Bernau [4], Mc Polin and Wickstead [9] and De Pagter [10]. In fact,
in [4,9,10] the authors proved, by using an algebraic and technical tools, that if
T is a band preserving linear operator on an archimedean vector lattice A and if
for every positive sequence (xn) in A which converges to zero relatively uniformly,
inf

n
{|T (xn)|} = 0 in A, then T is order bounded. Since inf

n
{|T (xn)|} = 0 in A is equal

to inf
n

{|T (xn)|} = 0 in Au . This implies that T : (A, (r.u)top) → (Au, order top)

is continuous.
The next proposition and theorem are an essential ingredient for our main results.

They were proved by Toumi et al. [12]. In order to make this paper self contained we
reproduce alternative and short proofs.

Proposition 1 Let A be a Freudenthal vector lattice and let B be a vector space. Then
any orthosymmetric bilinear operator � : A × A → B is symmetric.

Proof Let k, k′ ∈ A. It follows that k = ∑i=n
i=1αi ei and k′ = ∑ j=m

j=1 β j f j , where ei ,
f j are components of e = |k| + |k′|. Then

�(k, k′) =
∑

1≤i≤n

1≤ j≤m

αiβ j�(ei , f j ). (1)

Let ed
i be the disjoint complement of ei . Hence e = ei + ed

i where ei ∧ ed
i = 0. Then

f j = f j ∧ e = f j ∧ (ei + ed
i ) = ( f j ∧ ei ) + ( f j ∧ ed

i ).

Since ( f j ∧ ed
i ) ∧ ei = 0, then

�(ei , f j ) = �(ei , ( f j ∧ ei ) + ( f j ∧ ed
i )) = �(ei , f j ∧ ei ).

Using the same argument, we prove that

�(ei , f j ) = �(ei , f j ∧ ei ) = �( f j ∧ ei , f j ∧ ei ) = �( f j , ei ).

Therefore, in view of equality (1), we have

�(k, k′) = �(k′, k),

which gives the desired result. ��
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Theorem 1 Let A be a Dedekind σ -complete vector lattice equipped with the (r.u)
topology and let B be a Hausdorff topological vector space. Then any continuous
orthosymmetric bilinear operator � : A × A → B is symmetric.

Proof Let a, b ∈ A, let e = |a| + |b| and let F = {
k ∈ I e; k =∑i=n

i=1αi ei , αi∈ R, ei

is a component of e, n ∈ N
∗}. It is clear that F is a Freudenthal vector lattice. More-

over, by using the Freudenthal spectral Theorem [3, Theorem 40.2.], F is a dense
vector subspace of Ie.

According to the previous proposition, the restriction of � to F × F, denoted
also by �, is symmetric. Now since a, b ∈ Ie and since F is dense in Ie, there exist
an, bn ∈ F, for all n ∈ N, such that an → a (r.u) and bn → b (r.u). By the continuity
of �, we have

�(an, bn) → �(a, b) and �(bn, an) → �(b, a).

Since �(an, bn) = �(bn, an), it follows that �(a, b) = �(b, a), which gives the
desired result. ��

For the purpose of clarifying the aim of this paper, we make use of the following
well known lemma.

Lemma 1 Let A be a universally complete vector lattice and let e be a weak order
unit of A. Then there exists a unique multiplication on A in such a way that A is an
f -algebra with e as a unit element.

Remark 2 We remark that any universally complete vector lattice can be seen as a
universally complete unital f -algebra. Then in the sequel we denote its f -algebra
multiplication by juxtaposition.

Remark 3 We note that the f -algebra structure on a universally complete vector lattice
is not unique.

We intend to supply a topological condition in order to force a band preserving
linear operator on a Dedekind σ -complete vector lattice to be order bounded. For this
reason, we need the following definition.

Definition 2 Let A be a universally complete vector lattice. A linear topology τ on A

is called an f -compatible topology if xnyn
τ→ 0 whenever xn

τ→ 0 and yn → 0 (r.u).

Example 3 The relatively uniform topology (abbreviated as (r.u) top), the order topol-
ogy and the norm topology are f -compatible topologies.

Remark 4 A universally complete vector lattice A cannot have a (lattice) norm topol-
ogy unless it is finite dimensional.

We need the following lemma, which is of some independent interest in its own
right.
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Lemma 2 Let A be a universally complete vector lattice, let τ be an f -compatible
topology on A and let � : A × A → A be a positive separately band preserving
bilinear map. Then �(xn, yn)

τ→ 0 whenever xn
τ→ 0 and yn → 0 (r.u).

Proof Let � : A × A → A be a positive separately band preserving bilinear map and
let τ be an f -compatible topology on A. By the fact that A can be seen as an f -algebra
with a unit element e, it is not hard to prove, by using [5, Corollary 2], that

�(x, y) = �(x, y)e = �(e, y)x = �(e, e)xy

for all x, y ∈ A. Therefore , if xn
τ→ 0 and yn → 0 (r.u), it follows that �(e, e)yn → 0

(r.u). Since τ is an f -compatible topology on A, we get

�(xn, yn) = �(e, e)yn xn
τ→ 0

as required. ��
Let A be a vector lattice, let Au be its universal completion. In the sequel, let us

denote by i the natural embedding of A into Au .

All the preparations have been made for the first central result in the paper.

Theorem 2 Let A be a Dedekind σ -complete vector lattice, let Au be its universal
completion, let τ be an f -compatible topology on Au and let T : A → A be a band
preserving linear operator such that i ◦ T : (A, (r.u) top) → (Au, τ ) is continuous.
Then T is order bounded.

Proof Let 0 ≤ x ≤ y in A. Let Iy be the order ideal generated by y in A and let
By = {y}dd be the band generated by y in Au . Since T is band preserving, it follows
that T (x) ∈ Bx ⊂ By . By the fact that By is a universally complete vector lattice,
there exists a unique multiplication (denoted by ∗) on By in such a way that By is an
f -algebra with y as a unit element, see Lemma 1. Moreover this multiplication can be
extended (denoted also by ∗) to Au in the obvious way. That is

a ∗ b = a1 ∗ b1

where a1(resp b1) is the band projection (in Au) of a in By. It is an easy task to prove that
the bilinear map associated to the multiplication ∗ is positive separately band preserv-
ing. Let � : Iy× Iy → Au defined by �(a, b) = T (a)∗b for all a, b ∈ Iy. The fact that
τ is an f -compatible topology on Au and i ◦ T : (A, (r.u) top) → (Au, τ ) is contin-
uous coupled with Lemma 2, we deduce that � : (Iy, (r.u) top)× (Iy, (r.u) top) →
(Au, τ ) is continuous. According to Theorem 1, � is symmetric. Therefore

T (x) = T (x) ∗ y

= T (y) ∗ x .

It follows that T (x) ∈ [−c, c], where c = |T (y)| ∗ y = |T (y)|. Thus i ◦ T is order
bounded. By Aliprantis and Burkinshaw [3, Theorem 2.40], the modulus of i o T exists
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and |i ◦ T |(x) = |i ◦ T (x)| for all 0 ≤ x ∈ A. Since i ◦ T (x) = T (x) for all x ∈ A, it
follows that

|i ◦ T |(x) = |T (x)| ∈ A

for all 0 ≤ x ∈ A. Therefore |i ◦ T | is a positive operator on A. Since T = 1
2 (T +

|i ◦ T |) − 1
2 (|i ◦ T | − T ), it follows that T is a regular operator. Therefore T is order

bounded and we are done. ��
Corollary 1 Let A be a Dedekind σ -complete vector lattice, let Au be its univer-
sal completion, let τ be an f -compatible topology on Au and let T : A → A be
band preserving linear operator. Then the band preserving i ◦ T : (A, (r.u) top) →
(Au, order top) is continuous if and only if T is order bounded.

Proof (⇒) This path follows by using the fact that the order topology is an f -compat-
ible topology and the previous theorem.
(⇐) Since T is order bounded, then T is an orthomorphism. It follows that T is
(r.u) continuous. That is if xn → 0 (r.u) in A then T (xn) → 0(r.u). It follows that
inf

n
{|T (xn)|}=0 in A. Therefore inf

n
{|T (xn)|}=0 in Au, and the proof is complete.

��
Similarly, we deduce the following corollary.

Corollary 2 Let A be a Dedekind σ -complete vector lattice, let Au be its univer-
sal completion, let τ be an f -compatible topology on Au and let T : A → A be
band preserving linear operator. Then the band preserving i ◦ T : (A, (r.u) top) →
(Au, (r.u) top) is continuous if and only if T is order bounded.

If A is a Freudenthal vector lattice, the situation improves considerably. In fact, we
have the following result. Its corresponding proof is omitted, since it is similar to the
proof of Theorem 2.

Theorem 3 Let A be a Freudenthal vector lattice. Then all band preserving operators
on A are automatically order bounded.

We consider now the Wickstead bilinear problem. The findings we have mentioned
can pave the way to the next theorem.

Theorem 4 Let A be a Dedekind σ -complete vector lattice, let Au be its universal
completion, let τ be an f -compatible topology on Au and let � : A× A → A be a sep-
arately band preserving bilinear operator. If i ◦� : (A, (r.u) top)×(A, (r.u) top) →
(Au, τ ) is continuous then � is order bounded.

Proof Let 0 ≤ x1, x2 ≤ y in A. Let Iy be the order ideal generated by y in A and let
By = {y}dd be the band generated by y in Au . Since � is a separately band preserving
bilinear operator, it follows that �(x1, z) ∈ Bx1 ⊂ By and �(z, x2) ∈ Bx2 ⊂ By for
all z ∈ A. By the fact that By is a universally complete vector lattice, there exists
a unique multiplication (denoted by ∗) on By in such a way that By is an f -algebra
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with y as a unit element, see Lemma 1. Moreover this multiplication can be extended
(denoted also by ∗) to Au in the obvious way. That is

a ∗ b = a1 ∗ b1

where a1(resp b1) is the band projection (in Au) of a in By . Let � : Iy × Iy × Iy → Au

defined by �(a, b, c) = �(a, b) ∗ c for all a, b, c ∈ Iy . � is orthosymmetric in each
pair of variables. Indeed, let a, b, c ∈ Iy such that a ∧ b = 0, then �(a, b) = 0 and
then �(a, b, c) = 0. If we assume now that a ∧c = 0, then, by the fact that � is sepa-
rately band preserving, it follows that �(a, b) ∈ Ba . Moreover, since ∗ is an f -algebra
multiplication, �(a, b) ∗ c ∈ Bc. Therefore �(a, b, c) ∈ Ba ∩ Bc = {0} . Using the
same argument, we deduce that �(a, b, c) = 0 as soon as b ∧ c = 0. From the fact
τ is an f -compatible topology on Au and i ◦ � : (A, (r.u) top) × (A, (r.u) top) →
(Au, τ ) is continuous, coupled with Lemma 2, we deduce that � : (Iy, (r.u) top) ×
(Iy, (r.u) top) × (Iy, (r.u) top) → (Au, τ ) is continuous. According to Theorem 1,
� is trisymmetric, that is �(a1, a2, a3) = �(aσ(1), aσ(2), aσ(3)) for any permutation
σ of {1, 2, 3}. Therefore

�(x1, x2) = �(x1, x2) ∗ y

= �(x1, x2, y)

= �(x1, y, x2)

= �(x1, y) ∗ x2

= �(x1, y) ∗ x2 ∗ y

= [�(x1, y) ∗ y] ∗ x2

= �(x1, y, y) ∗ x2

= �(y, y, x1) ∗ x2

= �(y, y) ∗ x1 ∗ x2

It follows that �(x1, x2) ∈ [−c, c] , where c = |�(y, y)| ∗ y ∗ y = |�(y, y)| . Thus
i ◦ � is order bounded. It is not hard to prove, by using [3, Theorem 2.40], that the
modulus of i ◦ � exists and |i ◦ �|(x, y) = |i ◦ �(x, y)| for all 0 ≤ x, y ∈ A. Since
i ◦ �(x, y) = �(x, y) for all x, y ∈ A, It follows that

|i ◦ �| (x, y) = |�(x, y)| ∈ A

for all 0 ≤ x, y ∈ A. Therefore |i ◦ �| is a positive bilinear operator on A × A. Since
� = 1

2 (� +|i ◦�|)− 1
2 (|i ◦�|−�), it follows that � is a regular operator. Therefore

� is order bounded and we are done. ��
An immediate consequence is the following corollary.

Corollary 3 Let A be a Dedekind σ -complete vector lattice, let Au be its universal
completion and let � : A× A → A be a separately band preserving bilinear operator.
Then the following statements are equivalent:
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(i) i ◦ � : (A, (r.u) top) × (A, (r.u) top) → (Au, order top) is continuous
(ii) i ◦ � : (A, (r.u) top) × (A, (r.u) top) → (Au, (r.u) top) is continuous

(iii) � is order bounded.

Now, we give a new version of a theorem of Gutman et al. [7, Theorem 4.2.5] about
band preserving linear operators on Dedekind σ -complete vector lattices.

Theorem 5 Let A be a Dedekind σ -complete vector lattice and let Au be its universal
completion. Then the following are equivalent:

(1) All separately band preserving bilinear operators from A × A into Auare order
bounded.

(2) All separately band preserving bilinear operators from A × A into Au are sym-
metric.

(3) All separately band preserving bilinear operators from (A, (r.u) top) ×
(A, (r.u) top) into (Au, order top) are continuous.

(4) All separately band preserving bilinear operators from (A, (r.u) top) ×
(A, (r.u) top) into (Au, (r.u) top) are continuous.

(5) All band preserving linear operators from A into Auare order bounded.
(6) All band preserving linear operators from (A, (r.u) top) into (Au, order top)

are continuous.
(7) All band preserving linear operators from (A, (r.u) top) into (Au, (r.u) top)

are continuous.

Proof (1) ⇒ (2) This follows by Theorem 1.
(2) ⇒ (1) This follows by using the same argument as in the proof of Theorem 4.
(1) ⇒ (3) ⇒ (4) Obvious.
(5) ⇒ (6) ⇒ (7) Obvious.
(1) ⇒ (5) This follows by using the same argument as in the proof of Theorem 2.
(5) ⇒ (1) Let � : A × A → A be a separately band preserving, then the mappings
�(., x) : y �→ �(y, x) and �(x, .) : y �→ �(y, x) are band preserving. It follows that
�(., x) and �(x, .) are order bounded. Therefore �(., x) and �(x, .) are continuous
with respect to (r.u) topology. Consequently, by using Theorem 1, � is symmetric and
the proof is complete. ��
Theorem 6 Let A be a Dedekind σ -complete vector lattice and let Au be its universal
completion. Then the following assertions are true:

(1) All ideal preserving linear operators on A are order bounded.
(2) All ideal preserving linear operators from(A, (r.u) top) into (A, order top) are

continuous.
(3) All ideal preserving linear operators from (A, (r.u) top) into (A, (r.u) top) are

continuous.
(4) All separately ideal preserving bilinear operators on A × A are order bounded.
(5) All separately ideal preserving bilinear operators on A × A are symmetric.
(6) All separately ideal preserving bilinear operators from (A, (r.u) top)×(A, (r.u)

top) into (A, order top) are continuous.
(7) All separately ideal preserving bilinear operators from (A, (r.u) top)×(A, (r.u)

top) into (A, (r.u) top) are continuous.
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Proof (1) It follows from [13, Proposition 2.6].
(2), (3), (5), (6) and (7) Obvious.
(4) This follows by using the same argument as in the proof of Theorem 4. ��

If A is a Freudenthal vector lattice, the situation improves considerably. In fact, we
have the following result.

Theorem 7 Let A be a Freudenthal vector lattice. Then all separately band preserving
bilinear operators on A × A are automatically order bounded.

Proof The proof follows by using the fact that any orthosymmetric bilinear map �

from A × A into B is symmetric, where B is a topological vector space. ��
Acknowledgments The authors wish to thank the referee for his careful reading of the paper and for his
valuable suggestions.
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