On the weak compactness of b-weakly compact operators

Belmesnaoui Aqzzouz · Aziz Elbour

Received: 12 August 2008 / Accepted: 19 December 2008 / Published online: 7 March 2009 © Birkhäuser Verlag Basel/Switzerland 2009

Abstract We characterize Banach lattices on which the class of b-weakly compact operators coincides with that of weakly compact operators.

Keywords b-Weakly compact operator · Weakly compact operator · Order continuous norm · Reflexive Banach lattice

Mathematics Subject Classification (2000) 46A40 · 46B40 · 46B42

1 Introduction and notation

If *E* is a vector lattice, we denote by *E*[∼] its order dual. All the vector lattices that we consider in this paper have separating order duals. Recall from [\[2\]](#page-5-0) that a subset *A* of a vector lattice *E* is called b-order bounded in *E* if it is order bounded in the order bidual (*E*∼) [∼]. It is clear that every order bounded subset of *E* is b-order bounded. However, the converse is not true in general. In fact, the subset $A = \{e_n : n \in \mathbb{N}\}\$ is b-order bounded in the vector lattice c_0 but *A* is not order bounded in c_0 , where e_n is the sequence of reals numbers with all terms zero except for the *n*th which is 1.

An operator *T* from a Banach lattice *E* into a Banach space *X* is said to be b-weakly compact whenever *T* carries each b-order bounded subset of *E* into a relatively weakly compact subset of *X*. For different studies and characterizations for b-weakly compact

B. Aqzzouz (\boxtimes)

A. Elbour

Département d'Economie, Faculté des Sciences Economiques, Université Mohammed V-Souissi, Juridiques et Sociales, B.P. 5295, SalaEljadida, Morocco e-mail: baqzzouz@hotmail.com

Département de Mathématiques, Faculté des Sciences, Université Ibn Tofail, B.P. 133, Kenitra, Morocco

operators, we refer the reader to $[2-5,7]$ $[2-5,7]$ $[2-5,7]$. Also, for the duality property of this class of operators, we refer the reader to [\[8\]](#page-6-1).

On the other hand, it is easy to see that each weakly compact operator is b-weakly compact but the converse may be false in general. For example, the identity operator $Id_{L^{1}[0,1]} : L^{1}[0,1] \rightarrow L^{1}[0,1]$ is b-weakly compact but it is not weakly compact. Moreover, we observe that even the second power of a b-weakly compact operator is not necessarily weakly compact. However, if *E* is an AM-space, then each b-weakly compact operator $T : E \to X$ is weakly compact for every Banach space X.

The objective of this paper is to generalize the latter result by proving that each b-weakly compact operator *T* from a Banach lattice *E* into a Banach space *X* is weakly compact if and only if the norm of E' is order continuous or X is reflexive. As consequences, we give some characterizations of the order continuity of the dual norm and a characterization of reflexive Banach lattices. Next, we will give a necessary and sufficient condition for which the second power of a b-weakly compact operator is weakly compact.

To state our results, we need to fix some notation and recall some definitions. Let *E* be a vector lattice, for each $x, y \in E$ with $x \leq y$, the set $[x, y] = \{z \in E : x \leq z\}$ $z \leq y$ is called an order interval. A subset of *E* is said to be order bounded if it is included in some order interval. A Banach lattice is a Banach space $(E, \|\cdot\|)$ such that *E* is a vector lattice and its norm satisfies the following property: for each $x, y \in E$ such that $|x| \le |y|$, we have $||x|| \le ||y||$. If *E* is a Banach lattice, its topological dual E' , endowed with the dual norm and dual order, is also a Banach lattice. A norm $\|.\|$ of a Banach lattice *E* is order continuous if for each generalized sequence (x_α) such that $x_\alpha \downarrow 0$ in *E*, the generalized sequence (x_α) converges to 0 for the norm $\Vert \cdot \Vert$ where the notation $x_\alpha \downarrow 0$ means that (x_α) is decreasing, its infimum exists and inf $(x_\alpha) = 0$. It follows from Theorem 5.16 of Schaefer [\[10\]](#page-6-2), that a Banach lattice *E* is reflexive if and only if the norms of its topological dual E' and of its topological bidual E'' are order continuous. A Banach lattice *E* is said to be an AM-space if for each $x, y \in E$ such that inf $(x, y) = 0$, we have $||x + y|| = \max{||x||}$, $||y||$. It is an AL-space if its topological dual E' is an AM-space.

An operator $T : E \longrightarrow F$ between two Banach lattices is a bounded linear mapping. It is positive if $T(x) \geq 0$ in *F* whenever $x \geq 0$ in *E*. Note that each positive linear mapping on a Banach lattice is continuous.

For terminology concerning Banach lattice theory and positive operators, we refer the reader to the excellent book of Aliprantis–Burkinshaw [\[1\]](#page-5-2).

2 Main results

To establish a necessary and sufficient condition for which each b-weakly compact operator is weakly compact, we need to give the following Lemma.

Lemma 2.1 *Let E be a Banach lattice. If E does not have an order continuous norm, then there exists a disjoint sequence* (u_n) *of positive elements in E with* $||u_n|| \leq 1$ *for all n and there exist some* $0 \le \phi \in E'$ *and some* $\varepsilon > 0$ *satisfying* $\phi(u_n) > \varepsilon$ *for all n. Moreover, the components* ϕ_n *of* ϕ *in the carrier* C_{u_n} *form an order bounded disjoint sequence in* $(E')^{+}$ *such that* $\phi_n(u_n) = \phi(u_n)$ *for all n and* $\phi_n(u_m) = 0$ *if n* \neq *m.*

Proof It follows from Theorem 116.1 of Zaanen [\[11](#page-6-3)] that there is a norm bounded disjoint sequence (u_n) of positive elements in E which does not converge weakly to zero. Hence, we may assume that $||u_n|| \leq 1$ for all *n* and also that for some $0 \leq \phi \in E'$ and some $\varepsilon > 0$ we have $\phi(u_n) > \varepsilon$ for all *n* (see also the proof of the implication $(iii) \Rightarrow (iv)$ of Theorem 117.2 of Zaanen [\[11\]](#page-6-3)). The rest of the proof follows from Theorem 116.3 (i) of Zaanen [\[11\]](#page-6-3).

A Banach space *E* is said to have the Schur property if every sequence in *E* weakly convergent to zero is norm convergent to zero. For example, the Banach space *l* ¹ has the Schur property.

Note that if E is an AM-space, then the norm of E' is order continuous because E' is an AL-space.

Theorem 2.2 *Let E be a Banach lattice and X a Banach space. Then the following assertions are equivalent*:

- 1) *Each b-weakly compact operator* $T : E \longrightarrow X$ *is weakly compact.*
- 2) *One of the following conditions holds*:
	- i) the norm of E' is order continuous.
	- ii) *X is reflexive.*

Proof 2-*i*) \implies 1) Let *T* : *E* \longrightarrow *X* be a b-weakly compact operator and let *B* be the band generated by E in its topological bidual E'' . Then it follows from Proposition 2 of [\[4\]](#page-5-3) that $T''(B) \subset X$ where T'' is the second adjoint of *T*.

On the other hand, since the norm of E' is order continuous, it follows from Theo-rem 2.4.14 of [\[9](#page-6-4)] that $B = E''$. Thus $T''(E'') \subset X$ and hence the result follows from Theorem 5.23 of [\[1](#page-5-2)].

 $2-i*i*$) In this case, each operator $T: E \longrightarrow X$ is weakly compact.

1) \implies 2) Assume by way of contradiction that the norm of E' is not order continuous and *X* is not reflexive. To finish the proof, we have to construct a b-weakly compact operator $T : E \longrightarrow X$ which is not weakly compact.

Since the norm of E' is not order continuous, it follows from Lemma [2.1](#page-1-0) that there exists a disjoint sequence (u_n) of positive elements in *E* with $||u_n|| \leq 1$ for all *n* and that for some $0 \le \phi \in E'$ and some $\varepsilon > 0$ such that $\phi(u_n) > \varepsilon$ for all *n*. Moreover, the components ϕ_n of ϕ in the carrier C_{u_n} form an order bounded disjoint sequence in $(E')^+$ such that

$$
\phi_n(u_n) = \phi(u_n) \text{ for all } n \text{ and } \phi_n(u_m) = 0 \text{ if } n \neq m. \tag{*}
$$

Note that $0 \le \phi_n \le \phi$ holds for all *n*. Define the operator $T_1: E \to l^1$ by

$$
T_1(x) = \left(\frac{\phi_n(x)}{\phi(u_n)}\right)_{n=1}^{\infty} \text{ for all } x \in E.
$$

Since $\sum_{n=1}^{\infty}$ $\frac{\phi_n(x)}{x}$ $\left|\frac{\phi_n(x)}{\phi(u_n)}\right| \leq \frac{1}{\varepsilon} \sum_{n=1}^{\infty} \phi_n(|x|) \leq \frac{1}{\varepsilon} \phi(|x|)$ holds for each $x \in E$, the operator T_1 is well defined.

On the other hand, since *X* is not reflexive, then the closed unit ball B_X of *X* is not weakly compact. Thus, by Theorem 3.40 (Eberlein-Šmulian Theorem) of [\[1](#page-5-2)], there exists a sequence $(y_n) \subset B_X$ without any weakly convergent subsequence. Now, consider the operator $T_2: l^1 \to X$ defined by

$$
T_2\left(\left(\lambda_n\right)\right) = \sum_{n=1}^{\infty} \lambda_n y_n \quad \text{for all } \left(\lambda_n\right) \in l^1.
$$

Note that in view of $\sum_{n=1}^{\infty} ||\lambda_n y_n|| \leq \sum_{n=1}^{\infty} |\lambda_n| < \infty$, the series defining T_2 is norm convergent for each $(\lambda_n) \in l^1$.

Next, we consider the composed operator $T = T_2 \circ T_1 : E \to l^1 \to X$ defined by

$$
T(x) = \sum_{n=1}^{\infty} \frac{\phi_n(x)}{\phi(u_n)} \cdot y_n \quad \text{for all } x \in E.
$$

Since l^1 has the Schur property, the first operator $T_1: E \to l^1$ is b-weakly compact and therefore *T* is b-weakly compact. But *T* is not weakly compact. To see this, note that from (*) we have $T(u_n) = y_n$ for all *n*. Thus, since (y_n) has no weakly convergent subsequence, we conclude that *T* is not weakly compact, and this ends the proof of the Theorem.

If we assume *X* is a Banach lattice in Theorem [2.2,](#page-2-0) we obtain

Theorem 2.3 *Let E and F be two Banach lattices. Then the following assertions are equivalent*:

- 1) *Each b-weakly compact operator* $T : E \longrightarrow F$ *is weakly compact.*
- 2) *Each positive b-weakly compact operator* $T : E \longrightarrow F$ *is weakly compact.*
- 3) *One of the following conditions holds*:
	- i) the norm of E' is order continuous.
	- ii) *F is reflexive.*

Proof 1) \implies 2) Obvious.

3) \implies 1) It is just the implication 2) \implies 1) of Theorem [2.2.](#page-2-0)

2) \implies 3) The same proof as the implication 1) \implies 2) of Theorem [2.2](#page-2-0) if we note that if *F* is not reflexive, then there exists a positive sequence (y_n) in the closed unit ball B_F of F without any weakly convergent subsequence.

As a consequence, we obtain a characterization of the order continuity of the dual norm.

Corollary 2.4 *Let E be a Banach lattice. Then the following assertions are equivalent*:

- 1) *Each b-weakly compact operator* $T : E \longrightarrow E$ *is weakly compact.*
- 2) *Each positive b-weakly compact operator* $T : E \longrightarrow E$ *is weakly compact.*
- 3) *The norm of E is order continuous.*

A Banach lattice *E* is said to be a KB-space whenever every increasing norm bounded sequence of E^+ is norm convergent.

Note that if *F* is a KB-space (in particular, an AL-space) then each operator *T* : $E \longrightarrow F$ is b-weakly compact (see Corollary of [\[4](#page-5-3), p. 577]).

Another characterization of the order continuity of the dual norm is given by,

Corollary 2.5 *Let E be a Banach lattice and F an infinite-dimensional AL-space. Then the following assertions are equivalent*:

- 1) *Each operator* $T : E \longrightarrow F$ *is weakly compact.*
- 2) *Each positive operator* $T : E \longrightarrow F$ *is weakly compact.*
- 3) *The norm of E' is order continuous.*

Proof Follows immediately from Theorem 2.3 and Corollary of [\[4](#page-5-3), p. 577] if we note that *F* is not reflexive.

Also, recall that if *E* is a KB-space (in particular, an AL-space), then each operator $T: E \longrightarrow F$ is b-weakly compact (see Proposition 2.1 of Altin [\[6\]](#page-5-4)).

Another consequence, of Theorem [2.3,](#page-3-0) is a characterization of reflexive Banach lattices.

Corollary 2.6 *Let E be an infinite-dimensional AL-space and F a Banach lattice. Then the following assertions are equivalent*:

- 1) *Each operator* $T : E \longrightarrow F$ *is weakly compact.*
- 2) *Each positive operator* $T : E \longrightarrow F$ *is weakly compact.*
- 3) *F is reflexive.*

Proof Follows immediately from Theorem 2.3 and Proposition 2.1 of Altin [\[6](#page-5-4)] if we note that the norm of E' is not order continuous.

Now, observe that the second power of a b-weakly compact operator $T : E \longrightarrow E$ is not necessarily weakly compact. In fact, the identity operator $Id_{L^1[0,1]} : L^1[0,1] \rightarrow$ L^1 [0, 1] is b-weakly compact not weakly compact. Also, its second power $\left(Id_{L^{1}[0,1]} \right)^{2} = Id_{L^{1}[0,1]}$ is not weakly compact.

To give a necessary and sufficient condition for which the second power of a b-weakly compact operator is weakly compact, we need to give a Lemma.

Lemma 2.7 *Let* (*un*) *be a disjoint sequence of a Banach lattice E. If* (*un*) *converges weakly to some* $u \in E$ *, then* $u = 0$ *.*

Proof Let (u_n) be a disjoint sequence of *E* such that $u_n \to u$ for $\sigma(E, E')$. Then the set $W = \{u, u_1, u_2, \ldots\}$ is weakly compact. So, by Theorem 4.34 of [\[1](#page-5-2)], each disjoint sequence in the solid hull of *W* converges weakly to zero. In particular $u_n \to 0$ for $\sigma(E, E')$. Thus $u = 0$.

Now, we are in position to establish our Theorem.

Theorem 2.8 *Let E be a Banach lattice. Then the following assertions are equivalent*:

- 1) *For each positive operators S and T from E into E such that* $0 \leq S \leq T$ *and* T *is b-weakly compact, the operator S is weakly compact.*
- 2) *Each positive b-weakly compact operator* $T : E \longrightarrow E$ *is weakly compact.*
- 3) *For each positive b-weakly compact operator T from E into E, the second power operator* T^2 *is weakly compact*
- 4) *The norm of E is order continuous.*

Proof 1) \implies 2) and 2) \implies 3) are obvious.

3) \implies 4) Assume by way of contradiction that the norm of E' is not order continuous. To finish the proof, we have to construct a positive b-weakly compact operator $T: E \longrightarrow E$ such that its second power operator T^2 is not weakly compact.

We proceed as in the proof of Theorem [2.2,](#page-2-0) the idea is to take $(y_n) = (u_n)$, which does not admit any weakly convergent subsequence by Lemma [2.7.](#page-4-0)

Since the norm of E' is not order continuous, it follows from Lemma [2.1](#page-1-0) that there exists a disjoint sequence (u_n) of positive elements in *E* with $||u_n|| \leq 1$ for all *n* and that for some $0 \le \phi \in E'$ and some $\varepsilon > 0$ such that $\phi(u_n) > \varepsilon$ for all *n*. Moreover, the components ϕ_n of ϕ in the carrier C_{u_n} form an order bounded disjoint sequence in $(E')^+$ such that

$$
\phi_n(u_n) = \phi(u_n) \quad \text{for all } n \text{ and } \phi_n(u_m) = 0 \text{ if } n \neq m. \tag{*}
$$

On the other hand, since (u_n) is a disjoint sequence of *E* such that $\phi(u_n) > \varepsilon$ for all n , we conclude from Lemma [2.7](#page-4-0) that (u_n) does not have any weakly convergent subsequence.

Now, we consider the operator $T : E \to E$ defined by

$$
T(x) = \sum_{n=1}^{\infty} \frac{\phi_n(x)}{\phi(u_n)} u_n \text{ for all } x \in E.
$$

It is clear that *T* is well defined and positive.

Since *T* admits a factorization through the Banach lattice l^1 , it follows from the proof of Theorem [2.2](#page-2-0) that *T* is b-weakly compact. But its second power T^2 is not weakly compact. To see this, note that from $(*)$, we have $T(u_n) = u_n$ for all *n*, and hence $T^2(u_n) = u_n$ for all *n*. Thus, since (u_n) has no weakly convergent subsequence, we conclude that T^2 is not weakly compact, and the proof of 3) \implies 4) is finished.

4) \implies 1) Follows immediately from Corollary 2.9 of [\[2](#page-5-0)] and Corollary [2.4.](#page-3-1)

References

- 1. Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Reprint of the 1985 original. Springer, Dordrecht (2006)
- 2. Alpay, S., Altin, B., Tonyali, C.: On property (b) of vector lattices. Positivity **7**(1–2), 135–139 (2003)
- 3. Alpay, S., Altin, B., Tonyali, C.: A note on Riesz spaces with property-b. Czechoslov. Math. J. **56**(131), no. 2, 765–772 (2006)
- 4. Alpay, S., Altin, B.: A note on b-weakly compact operators. Positivity **11**(4), 575–582 (2007)
- 5. Alpay, S., Ercan, Z.: Characterizations of Riesz spaces with b-property. Positivity **13**(1), 21–30 (2009)
- 6. Altin, B.: Some properties of b-weakly compact operators. G.U. J. Sci. **18**(3), 391–395 (2005)
- 7. Altin, B.: On b-weakly compact operators on Banach lattices. Taiwan. J. Math. **11**, 143–150 (2007)
- 8. Aqzzouz, B., Elbour, A., Hmichane, J.: The duality problem for the class of b-weakly compact operators. Positivity (in press)
- 9. Meyer-Nieberg, P.: Banach Lattices. Springer, Berlin (1991)
- 10. Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974)
- 11. Zaanen, A.C.: Riesz spaces II. North Holland Publishing Company, Amsterdam (1983)