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Increasing functions and inverse Santaló
inequality for unconditional functions
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Abstract. Let φ : R
n → R ∪ {+∞} be a convex function and Lφ be its

Legendre tranform. It is proved that if φ is invariant by changes of signs,
then

∫
e−φ

∫
e−Lφ ≥ 4n. This is a functional version of the inverse Santaló

inequality for unconditional convex bodies due to J. Saint Raymond. The
proof involves a general result on increasing functions on R

n × R
n together

with a functional form of Lozanovskii’s lemma. In the last section, we prove
that for some c > 0, one has always

∫
e−φ

∫
e−Lφ ≥ cn. This generalizes a

result of B. Klartag and V. Milman.
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ity.

1. Introduction

In the last decades, some functional forms of inequalities holding for subsets of
R
n were extended to functions. The most useful is probably Prekopa-Leindler

inequality, which is a functional version of Brunn-Minkowski. Let us mention also
Blaschke-Santaló inequality ([3] and [16]), which states that if K is a convex body
in R

n and

P (K) = min
z∈K

|K||K∗z|

where K∗z = {y ∈ R
n, 〈y, x − z〉 ≤ 1 for all x ∈ K} is the polar body of K with

respect to z, then

P (K) ≤ P (Bn2 )

where Bn2 is the Euclidean ball, with equality if and only if K is an ellipsoid. If
z = 0, we use the standard notation K∗0 = K◦. Notice that the volume product
P (K) is an affine invariant.
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An inverse form of the Blaschke-Santaló inequality for convex sets was
conjectured by Mahler in [12]. The symmetric Mahler conjecture asks if

P (K) ≥ P (Bn1 ) for every centrally symmetric convex body K,

where Bn1 = {x ∈ R
n; ‖x‖1 =

∑ |xi| ≤ 1}. This inequality was proved for uncon-
ditional convex bodies (i.e. symmetric with respect to n-orthogonal hyperplanes)
by Saint Raymond [14] (see also Meyer [13] and Reisner [15]). In the general case,
it is still open but an asymptotic form was given by Bourgain and Milman [6]: for
some constants α > 0 and β > 0, one has

P (K)1/n ≥ βP (Bn1 )1/n ∼ αP (Bn2 )1/n.

The functional analogue of polarity for sets is the Legendre transform: for a
function φ : R

n → R ∪ {+∞}, and z, y ∈ R
n, let

Lzφ(y) = sup
x∈Rn

〈x− z, y − z〉 − φ(x).

Observe that one has then Lz(Lzφ) = φ if φ is a convex function. For z = 0, we
denote L0φ = Lφ. We define

P (φ) = inf
z∈Rn

∫
e−φ(x)dx

∫
e−Lzφ(y)dy.

Notice that φ �→ P (φ) is affine invariant too (i.e. P (φ ◦A) = P (φ) for any one-to-
one affine function A : R

n → R
n). The functional version of the Blaschke-Santaló

inequality states that

P (φ) ≤ P

( | · |2
2

)

where | · | stands here for the Euclidean norm in R
n. This statement was proved

for even functions by K. Ball [2] and in full generality by Artstein-Klartag-Milman
[1] (see also Fradelizi-Meyer [8]).

We give here the following sharp functional version of the reverse inequality:
if φ is convex and unconditional (i.e. φ(x1, . . . , xn) = φ(|x1|, . . . , |xn|) for every
(x1, . . . , xn) ∈ R

n), then

P (φ) =
∫

Rn

e−φ(x)dx

∫

Rn

e−Lφ(y)dy ≥ 4n = P (‖ · ‖1).

For this, we establish functional versions of some results of Saint-Raymond [14]
and of Bollobás Leader and Radcliffe [5], and give a functional form of the classi-
cal Lozanovskii theorem. In a forthcoming paper [9], we shall prove among other
results that for n = 1 and general φ, P (φ) ≥ e.

This paper is organized in the following way. In section 2, we give various
inequalities about integrals of increasing functions on R

n. In section 3, we prove
a functional extension of Lozanovskii lemma and apply the results of section 2
to integrals of Legendre transforms. In section 4, we give a short proof of the
Klartag-Milman’s [10] functional extension of Bourgain-Milman inequality, using
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this inequality for sets in the most general case ([6]). Namely, we prove that there
exists a constant C > 0 such that for every convex function φ : R

n → R with
0 <

∫
Rn e

−φ(x)dx < +∞, one has
∫

Rn

e−φ(x)dx

∫

Rn

e−Lφ(x)dx ≥ Cn.

This was proved in [10] under the restrictive hypothesis that φ(0) = minφ (which
includes of course the case of even functions).

2. Some inequalities on integrals of increasing functions

Notation. We say that a function ϕ : R
n → R is unconditional if

ϕ(x1, . . . , xn) = ϕ(|x1|, . . . , |xn|) for every (x1, . . . , xn) ∈ R
n.

We consider on R
n the canonical partial order:

x = (x1, . . . , xn) ≤ y = (y1, . . . , yn) whenever xi ≤ yi, 1 ≤ i ≤ n.

For x, y ∈ R
n such that x ≤ y, we define the order intervals

[x, y] = {z ∈ R
n;x ≤ z ≤ y},

[y,+∞) = {z ∈ R
n; z ≥ y} and (−∞, x] = {z ∈ R

n; z ≤ x}.
We say that ϕ : R

n → R is increasing if ϕ(x) ≤ ϕ(y) when x ≤ y.
In the same way, a subset K of R

n is unconditional (respectively increasing)
if its indicator function 1K is unconditional (respectively increasing). Finally, we
denote by |A| the Lebesgue measure of a measurable set A in R

n.
Our first result concerns increasing functions of two variables in R

n.

Theorem 1. Let F : R
n×R

n → R+ be an increasing function. Then the following
inequality holds for all z ∈ R

n

∫

Rn

F (x, z − x) dx ≥
∫

(−∞,z]

sup
x∈Rn

F (x,w − x) dw.

Proof. 1) Assume first that F = 1K , where K ⊂ R
n × R

n is an increasing set. We
define for z ∈ R

n, the sets

Kz = {x ∈ R
n; (x, z − x) ∈ K}, C = {w ∈ R

n; Kw �= ∅} and Cz = C ∩ (−∞, z].

One has to prove that
∫

Rn

1K(x, z − x) dx = |Kz| ≥
∫

(−∞,z]

sup
x∈Rn

1K(x,w − x) dw = |Cz|.

The proof goes by induction on n ≥ 1.
a. Suppose n = 1; then K ⊂ R

2 and C ⊂ R. Let w ∈ Cz. Then for every
x ∈ Kw and t ∈ [0, z − w], one has

(x,w − x) ∈ K, x+ t ≥ x and z − (x+ t) ≥ w − x.
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Since K is increasing, this implies that (x+ t, z − (x+ t)) ∈ K and therefore that
x + t ∈ Kz. It follows that Kw + [0, z − w] ⊂ Kz for every w ∈ Cz. Thus Kz �= ∅
and C is increasing. Setting wK = inf C ∈ R ∪ {−∞}, we get that

(wK , z] ⊂ Cz ⊂ [wK , z]

and that

|Kz| ≥ sup
w∈Cz

(z − w) = z − inf Cz = z − wK = |Cz|.

b. For n ≥ 2, we proceed by induction to show that |Cz| ≤ |Kz| for every increasing
subset K of R

n × R
n.

Writing x = (x1, x2) ∈ R × R
n−1 = R

n, one has

|Kz| =
∫

Rn−1

⎛

⎝
∫

R

1K(x1, x2, z1 − x1, z2 − x2) dx1

⎞

⎠ dx2.

Applying the 1-dimensional case to

Mx2,y2 = {(x1, y1) ∈ R
2; (x1, x2, y1, y2) ∈ K}

which is an increasing subset of R
2, one has for all (x2, y2)

|{x1; (x1, x2, z1 − x1, y2) ∈ K}|
≥ |{w1 ≤ z1; (t1, x2, w1 − t1, y2) ∈ K for some t1}|.

It follows that

|Kz| =
∫

Rn−1

⎛

⎝
∫

R

1K(x1, x2, z1 − x1, z2 − x2) dx1

⎞

⎠ dx2

≥
∫

Rn−1

⎛

⎝
∫

w1≤z1

sup
t1

1K(t1, x2, w1 − t1, z2 − x2) dw1

⎞

⎠ dx2

=
∫

w1≤z1

⎛

⎝
∫

Rn−1

1Lw1
(x2, z2 − x2) dx2

⎞

⎠ dw1,

where

Lw1 = {(x2, y2) ∈ R
n−1 × R

n−1; (t1, x2, w1 − t1, y2) ∈ K for some t1}.
We apply the induction hypothesis to this increasing subset to get

|{x2; (x2, z2 − x2) ∈ Lw1}| ≥ |{w2 ≤ z2; (t2, w2 − t2) ∈ Lw1 for some t2}|.
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It follows that

|Kz| ≥
∫

w1≤z1

⎛

⎝
∫

w2≤z2

sup
t2

1Lw1
(t2, w2 − t2) dw2

⎞

⎠ dw1

=
∫

w=(w1,w2)≤(z1,z2)=z

sup
t1,t2

1K(t1, t2, w1 − t1, w2 − t2) dw = |Cz|.

2) Now if F : R
n × R

n → R+ is an increasing function, then for every t > 0,
{F > t} is an increasing subset of R

n × R
n. We apply 1) to get:

∫

Rn

F (x, z − x) dx =

+∞∫

0

⎛

⎝
∫

Rn

1{F>t}(x, z − x) dx

⎞

⎠ dt

≥
+∞∫

0

⎛

⎝
∫

w≤z
sup
u

1{F>t}(u,w − u) dw

⎞

⎠ dt

=
∫

w≤z

⎛

⎝
+∞∫

0

sup
u

1{F>t}(u,w − u) dt

⎞

⎠ dw

=
∫

w≤z
sup
u
F (u,w − u) dw.

�

Remark. It can be proved that, if n = 1, there is equality in Theorem 1 for
every z ∈ R

n if and only if one has F (x, y) = inf(α(x), β(y)) for some increasing
functions α, β : R → R+. This characterization does not hold for n ≥ 2.

The following corollary states that the volume of a union of parallelepipeds
with faces parallel to the coordinate hyperplanes is minimal if they share the same
corner (for example the corner with the smallest coordinates). We use the notation
introduced in the beginning of this section for order intervals in R

n.

Corollary 2. Let u1, . . . , uN ∈ R
n
+. Then for every v1, . . . , vN ∈ R

n, one has
∣
∣
∣
∣
∣

N⋃

i=1

[0, ui]

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

N⋃

i=1

[vi, ui + vi]

∣
∣
∣
∣
∣
.

Proof. Let ai, bi ∈ R
n, 1 ≤ i ≤ N . Applying Theorem 1 to the indicator function

of the increasing set Q defined by

Q =
N⋃

i=1

[ai,+∞) × [bi,+∞),
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we get for every z ∈ R
n,

∫

Rn

1Q(x, z − x)dx =

∣
∣
∣
∣
∣

N⋃

i=1

[ai, z − bi]

∣
∣
∣
∣
∣
≥

∫

(−∞,z]

sup
x

1Q(x,w − x)dw

=

∣
∣
∣
∣
∣

N⋃

i=1

[ai + bi, z]

∣
∣
∣
∣
∣
.

The last equality follows from the fact that sup
x

1Q(x,w− x) = 1 if and only if for

some 1 ≤ i ≤ N and some x ∈ R
n, one has ai ≤ x ≤ w − bi, i.e. if and only if for

some 1 ≤ i ≤ N , one has ai ≤ w − bi. For 1 ≤ i ≤ N , let

ui = z − ai − bi and vi = bi.

Since [ai, z − bi] = z − [vi, ui + vi] and [ai + bi, z] = z − [0, ui], one gets
∣
∣
∣
∣
∣

N⋃

i=1

[0, ui]

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

N⋃

i=1

[vi, ui + vi]

∣
∣
∣
∣
∣
.

�

From Theorem 1 we deduce also the following functional version of an inequal-
ity due to Saint-Raymond ([14]) and of the reverse Kleitman inequality due to
Bollobás, Leader and Radcliffe ([5]).

Theorem 3. Let f, g : R
n → R+ be increasing functions. Define h : R

n → R+ by
h(z) = supx f(x)g(z − x). Then one has:
i) (f ∗ g)(z) ≥ (h ∗ 1R

n
+
)(z) for every z ∈ R

n.

ii) For every ξ1, . . . , ξn > 0,
∫

Rn

e−〈x,ξ〉f(x)dx
∫

Rn

e−〈x,ξ〉g(x)dx ≥
∫

Rn

e−〈x,ξ〉h(x)dx
/( n∏

i=1

ξi

)

.

Proof. To get i), we apply the preceding theorem to F (x, y) = f(x)g(y). Then for
every w ∈ R

n, one has sup
x
F (x,w − x) = h(w), so that for every z ∈ R

n
+

(f ∗ g)(z) =
∫

Rn

F (x, z − x)dx ≥
∫

(−∞,z]

h(w)dw = (h ∗ 1R
n
+
)(z).

Inequality ii) follows from i) using the Laplace transform at ξ = (ξ1, . . . , ξn), with
ξi > 0, 1 ≤ i ≤ n. �

Remarks. 1) Using the remark after Theorem 1, one can prove that, for n = 1,
there is equality in i) or in ii) of Theorem 3 if and only if either f or g is of the
form c1[d,+∞) for some c > 0 and some d ∈ R.
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2) The function h in Theorem 3 is known as the Asplund sum of f and g. This
comes from the fact that for f = 1A and g = 1B then h = 1A+B . If moreover A
and B are increasing, Theorem 3 gives

1A ∗ 1B ≥ 1A+B ∗ 1R
n
+
, i.e. |A ∩ (−B)| ≥ |(A+B) ∩ R

n
−|.

This inequality was proved by Saint Raymond in [14]. Bollobás, Leader and Radc-
liffe [5] reproved and reinterpreted it in terms of a reverse Kleitman inequality: If
S is a solid subset S of R

n (i.e. [x, y] ⊂ S, for every x, y ∈ S such that x ≤ y), one
has

|(S − S) ∩ R
n
+| ≤ |S|.

Actually, if S+ = ∪x∈S [x,+∞) and S− = ∪x∈S(−∞, x], one has S = S+ ∩S− and
(S − S) ∩ R

n
+ = (S− − S+) ∩ R

n
+. Setting A = S+ and B = −S−, we conclude.

Notation. For x = (x1, . . . , xn) ∈ R
n and y = (y1, . . . , yn) ∈ R

n, we define x·y ∈ R
n

by

x · y = (x1y1, . . . , xnyn).

The next theorem is also a functional form of a result of Saint-Raymond ([14]).

Theorem 4. Let f̃ , g̃ : R
n
+ → R+ be decreasing functions, and define h̃ : R

n
+ → R+

by

h̃(z) = sup
z=x·y

f̃(x)g̃(y) for all z ∈ R
n
+.

Then for every ri > 0, 1 ≤ i ≤ n, one has
∫

R
n
+

n∏

i=1

xri−1
i f̃(x)dx

∫

R
n
+

n∏

i=1

xri−1
i g̃(x)dx ≥

∫

R
n
+

n∏

i=1

xri−1
i h̃(x)dx

/ n∏

i=1

ri.

In particular
∫

R
n
+

f̃(x)dx
∫

R
n
+

g̃(x)dx ≥
∫

R
n
+

h̃(x)dx.

Proof. For t ∈ R
n, we define

f(t) = f̃(e−t1 , . . . , e−tn), g(t) = g̃(e−t1 , . . . , e−tn) and h(t) = h̃(e−t1 , . . . , e−tn).

Then f, g : R
n → R+ are increasing and for every z ∈ R

n, one has

h(z) = sup
z=x+y

f(x)g(y).

Setting xi = e−ti for i = 1, . . . , n, we need to prove
∫

Rn

e−〈t,r〉f(t)dt
∫

Rn

e−〈t,r〉g(t)dt ≥
∫

Rn

e−〈t,r〉h(t)dt/

(
n∏

i=1

ri

)

,

and this follows from Theorem 3. �
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3. Applications to the inverse Santaló functional inequality

We first establish a functional form of Lozanovskii’s theorem ([11]).

Lemma 5. Let φ : R
n → R be a convex unconditional function such that

∫

Rn

e−φ(x)dx < +∞.

Then for every z ∈ (0,+∞)n one has

inf
x,y≥0, x·y=z

(φ(x) + Lφ(y)) =
n∑

i=1

zi.

Proof. We follow the proof of Lozanovskii’s theorem given by Saint-Raymond in
[14]. Let z ∈ (0,+∞)n be fixed. It is clear that for every x, y such that x · y = z
one has

φ(x) + Lφ(y) ≥ 〈x, y〉 =
n∑

i=1

xiyi =
n∑

i=1

zi.

It is thus enough show that there exist x, y ∈ (0,+∞)n such that

x · y = z and φ(x) + Lφ(y) = 〈x, y〉 =
n∑

i=1

zi.

Define F : (0,+∞)n → R by

F (w) = φ(w) −
n∑

i=1

zi log(wi) for w = (w1, . . . , wn).

Then F is convex and the integrability condition
∫

R
n
+
e−φ(w)dw < +∞ implies

easily that for some c = (c1, . . . , cn) ∈ (0,+∞)n, one has

φ(w) ≥ φ(0) + 〈c, w〉 = φ(0) +
n∑

i=1

ciwi, for every w ∈ (0,+∞)n.

It follows that F (w) → +∞ when w1+· · ·+wn → +∞ or when for some 1 ≤ i ≤ n,
wi → 0. Hence F reaches its global minimum at some point x ∈ (0,+∞)n. We
define L : (0,+∞)n → R by

L(w) =
n∑

i=1

zi log(wi).

Since F (w) ≥ F (x) on (0,+∞)n, one has

φ(w) − φ(x) ≥ L(w) − L(x) for every w ∈ (0,+∞)n,

Since φ is convex and L is concave, by Hahn-Banach’s theorem, we can separate
the epigraph of φ from the subgraph of L with an affine hyperplane; thus there
exists y ∈ R

n such that

φ(w) − φ(x) ≥ 〈w − x, y〉 ≥ L(w) − L(x) for every w ∈ (0,+∞)n.
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The right hand side inequality implies that y = ∇L(x) = ( z1x1
, . . . , zn

xn
) ∈ (0,+∞)n

and the left hand side inequality gives

Lφ(y) = sup
w

〈w, y〉 − φ(w) = 〈x, y〉 − φ(x).

�
Remarks. 1) If A,B are subsets of R

n, let

A ·B = {x · y; x ∈ A, y ∈ B} .
If we apply Lemma 5 to φ(x) = ‖x‖2

K/2, we get back the classical Lozanovskii
theorem asserting that if K is an unconditional convex body, one has

K ·K◦ = Bn1 := {x;
n∑

i=1

|xi| ≤ 1}.

As a matter of fact, for all z ∈ (0,+∞)n, one has

inf
z=x·y

(‖x‖2
K

2
+

‖y‖2
K◦

2

)

≥ inf
z=x·y ‖x‖K‖y‖K◦ ≥ inf

z=x·y〈x, y〉 =
n∑

i=1

zi.

From lemma 5, the left hand side is equal to the right hand side, hence

inf
z=x·y ‖x‖K‖y‖K◦ =

n∑

i=1

zi = ‖z‖1,

which means that the gauges of K ·K◦ and of Bn1 are equal.
2) If we apply Theorem 4 to indicator functions, we get the following result,
obtained by B. Bollobás and I. Leader, and independently by M. Meyer and A. Pa-
jor (see [4]). Let A and B be decreasing compact subsets of R

n
+. Then

|A||B| ≥ |A ·B|.
Using Lozanovskii’s theorem, this gives the inverse Blaschke-Santaló inequality for
unconditional convex bodies due to Saint-Raymond [14]: Let K be an uncondi-
tional convex body in R

n. Then

|K||K◦| ≥ |K ·K◦| = 2n|Bn1 | = 4n/n!.

We give now our main theorem, a functional version of the inverse Santaló inequal-
ity for unconditional convex functions:

Theorem 6. Let φ : R
n → R be a convex unconditional function. Then for all

(r1, . . . , rn) ∈ (0,+∞)n one has
∫

R
n
+

(
n∏

i=1

rix
ri−1
i

)

e−φ(x)dx

∫

R
n
+

(
n∏

i=1

rix
ri−1
i

)

e−Lφ(x)dx ≥
n∏

i=1

Γ(ri + 1).

In particular,
∫

R
n
+

e−φ(x)dx

∫

R
n
+

e−Lφ(x)dx ≥ 1.
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and

P (φ) =
∫

Rn

e−φ(x)dx

∫

Rn

e−Lφ(x)dx ≥ 4n = P (‖ · ‖1).

Proof. Observe that φ and Lφ are increasing on R
n
+. We apply Theorem 4 to

f̃ = e−φ and g̃ = e−Lφ. From Lemma 5 we get

h̃(z) = sup
z=x·y

e−(φ(x)+Lφ(y)) = e−∑n
i=1 zi for every z ∈ (0,+∞)n,

which gives the first inequality. For the second inequality we take r1 = · · ·=rn=1.
The fact that φ is unconditional implies that φ is even and that Lφ is also uncon-
ditional. Hence

P (φ) =
∫

Rn

e−φ(x)dx

∫

Rn

e−Lφ(y)dy = 4n
∫

R
n
+

e−φ(x)dx

∫

R
n
+

e−Lφ(y)dy ≥ 4n.

�

Remarks. 1) If we apply Theorem 6 to φ(x) = ‖x‖K , where K is a unconditional
convex body, one gets e−Lφ = 1K◦ . It enables to recover inequalities of Saint
Raymond [14]. For example, our last inequality gives

P (‖x‖K) = n!|K||K◦| = n!P (K) ≥ 4n.

2) Using the remark after Theorem 3, it is easy to prove that, for n = 1, there is
equality in the inequalities of Theorem 6 if and only either

e−φ(x) = e−β−α|x| and e−Lφ(y) = eβ1[−α,α](y)

or vice-versa. The inequalities of the Theorem 6 are sharp for every n: take for
instance φ(x) = ‖x‖1 =

∑n
i=1 |xi|. But, for n ≥ 2, we ignore the characteriza-

tion of the case of equality. For unconditional bodies, this problem was solved
independantly by Meyer [13] and Reisner [15] (see also [5] for an other proof).
3) Theorem 6 can be generalized as follows. We say that a convex function φ :
R
n → R is almost unconditional if for every ε = (ε1, . . . , εn) ∈ {−1, 1}n,

(x1, . . . , xn) �→ φ(ε1x1, . . . , εnxn)

is increasing on R
n
+. Using Theorem 6, it is easy to prove, as in [14] for almost

unconditional bodies, that P (φ) ≥ 4n for every almost unconditional even convex
function φ : R

n → R.

4. A general functional version of the Bourgain-Milman inequality

The following theorem was proved by Klartag and Milman [10] in the particular
case when the function ϕ is minimal at 0. We shall prove it in full generality, using
as a main tool, like in [10], the Bourgain-Milman inequality for convex sets ([6]),
which says that for some α > 0, one has
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P (K) ≥ αnP (Bn2 ) for every n ≥ 1 and every convex body K in R
n,

where Bn2 denotes here the Euclidean ball in R
n.

Theorem 7. There exists c > 0 such that for every convex function φ : R
n →

R ∪ {+∞}, with 0 <
∫

Rn e
−φ(x)dx < +∞ one has,

P (φ) = inf
z

∫

Rn

e−φ(x)dx

∫

Rn

e−Lzφ(y)dy ≥ cn.

We need first a lemma giving an interesting relationship between the level sets of
a convex function and of its Legendre transform.

Lemma 8. Let φ : R
n → R ∪ {+∞} be a convex function. Then for every t > 0

one has

{Lφ ≤ t+ Lφ(0)} =
{

x

φ(x) − minφ+ t
; x ∈ R

n

}◦
⊃ t {φ ≤ t+ φ(0)}◦

.

and for every s, t ∈ R such that s+ t > 0

{Lφ ≤ t} ⊂ (s+ t) {φ ≤ s}◦
.

Proof. Since for every c ∈ R one has L(φ − c) = Lφ + c, we may assume that
minφ = 0. This implies that Lφ(0) = −minφ = 0. For every t > 0, we define

Kt :=
{

x

φ(x) + t
; x ∈ R

n

}

.

Then, for t > 0,

{Lφ ≤ t} = {y ∈ R
n; 〈x, y〉 ≤ φ(x) + t, ∀x ∈ R

n}
= {y ∈ R

n; 〈 x

φ(x) + t
, y〉 ≤ 1, ∀x ∈ R

n}
= {y ∈ R

n; 〈z, y〉 ≤ 1, ∀z ∈ Kt}
= K0

t .

Using the convexity of φ, one has for every x ∈ R
n,

φ

(
tx

φ(x) + t

)

≤ t

φ(x) + t
× φ(x) +

φ(x)
φ(x) + t

× φ(0) ≤ t+ φ(0).

This prove that tKt ⊂ {φ ≤ t + φ(0)}. Finally, taking the polar with respect to
the origin, we obtain

{Lφ ≤ t} = K◦
t ⊃ t{φ ≤ t+ φ(0)}◦.

The second inequality follows from the fact that if φ(x) ≥ s and Lφ(y) ≤ t, then

〈x, y〉 ≤ φ(x) + Lφ(y) ≤ s+ t.

�
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Proof of Theorem 7. Let φ : R
n → R ∪ {+∞} be a convex function. For every

z ∈ R
n, we define φz(x) = φ(z + x). As observed in [1], the function

z �→
∫

Rn

e−φ(x)dx

∫

Rn

e−L(φz)(y)dy

is strictly convex on R
n and reaches its minimum P (φ) at a unique point z0. Using

a change of variable, we may assume that z0 = 0 and since P (φ + c) = P (φ), we
may assume also that minφ = 0.

One has then
∫

Rn

ye−Lφ(y)dy = 0.

By a change of variables, one has

∫

Rn

e−φ(x)dx =

+∞∫

minφ

e−t∣∣{φ ≤ t}∣∣ dt ≥
+∞∫

φ(0)

e−t∣∣{φ ≤ t}∣∣dt

= e−φ(0)

+∞∫

0

e−t∣∣{φ ≤ t+ φ(0)}∣∣dt.

Applying this inequality to φ and Lφ, using Lemma 8, Cauchy-Schwarz inequality
and the Bourgain-Milman inequality [6] as recalled at the beginning of this section,
we get

P (φ) =
∫

Rn

e−φ(x)dx

∫

Rn

e−Lφ(y)dy

≥ e−φ(0)−Lφ(0)

+∞∫

0

e−t|{φ ≤ t+ φ(0)}|dt
+∞∫

0

e−t|{Lφ ≤ t+ Lφ(0)}|dt

≥ e−φ(0)−Lφ(0)

+∞∫

0

e−t|{φ ≤ t+ φ(0)}|dt
+∞∫

0

e−ttn|{φ ≤ t+ φ(0)}◦|dt

≥ e−φ(0)−Lφ(0)

⎛

⎝
+∞∫

0

e−ttn/2
√

|{φ ≤ t+ φ(0)}| |{φ ≤ t+ φ(0)}◦|dt
⎞

⎠

2

≥ e−φ(0)−Lφ(0)
(
Γ
(n

2
+ 1
))2

αn|Bn2 |2

= e−φ(0)−Lφ(0)(απ)n.

If we can prove that Lφ(0) + φ(0) ≤ n, we get

P (φ) ≥
(απ
e

)n
.
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Actually, we know that −φ(0) = minLφ, and it follows from [7] that for every
convex function ψ : R

n → R such that
∫

Rn ye
−ψ(y)dy = 0 one has

ψ(0) ≤ minψ + n.

For the sake of completeness, we give a short proof of this fact : by Jensen’s
inequality and the convexity of ψ, one has

ψ(0) = ψ

(∫
Rn ye

−ψ(y)dy
∫

Rn e−ψ(y)dy

)

≤
∫

Rn ψ(y)e−ψ(y)dy
∫

Rn e−ψdy
.

Applying again the convexity of ψ, x, y ∈ R
n

ψ(x) ≥ ψ(y) + 〈x− y, (∇ψ)(y)〉.
Multiplying both terms by e−ψ(y) and integrating over R

n, we get

ψ(x)
∫

Rn

e−ψ(y)dy ≥
∫

Rn

ψ(y)e−ψ(y)dy +
∫

Rn

〈x− y, (∇ψ) (y)〉e−ψ(y)dy

=
∫

Rn

ψ(y)e−ψ(y)dy − n

∫

Rn

e−ψ(y)dy.

and this gives the result. �

Remark. There exists c > 0 such that if ρ : R+ → R+ is non-increasing and
φ : R

n → R
+ is convex and satisfies φ(0) = minφ = 0 and 0 <

∫
Rn ρ(φ) < +∞,

then
∫

Rn

ρ(φ)
∫

Rn

ρ(Lφ) ≥ cn

⎛

⎝
∫

Rn

ρ(|x|2/2)dx

⎞

⎠

2

.

This follows from the same argument as in theorem 7 writing in the regular case
ρ(t) =

∫ +∞
t

θ(s)ds. If moreover ρ is log-concave then it was proved in Theorem 8
of [8] that

∫

Rn

ρ(φ)
∫

Rn

ρ(Lφ) ≤
⎛

⎝
∫

Rn

ρ(|x|2/2)dx

⎞

⎠

2

.
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Cité Descartes – 5, Bd Descartes
Champs-sur-Marne
77454 Marne la Vallée Cedex 2
France
e-mail: Matthieu.Fradelizi@univ-mlv.fr

Mathieu.Meyer@univ-mlv.fr

Received 4 July 2007; accepted 20 November 2007

To access this journal online:
www.birkhauser.ch/pos


	1. Introduction
	2. Some inequalities on integrals of increasing functions
	3. Applications to the inverse Santaló functional inequalityÉ
	4. A general functional version of the Bourgain-Milman inequality
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


