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Increasing functions and inverse Santald
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Abstract. Let ¢ : R® — R U {+oc0} be a convex function and L¢ be its
Legendre tranform. It is proved that if ¢ is invariant by changes of signs,
then fe_¢ fe_E‘ﬁ > 4", This is a functional version of the inverse Santal6
inequality for unconditional convex bodies due to J. Saint Raymond. The
proof involves a general result on increasing functions on R" x R" together
with a functional form of Lozanovskii’s lemma. In the last section, we prove
that for some ¢ > 0, one has always fef‘Zb j e £? > . This generalizes a
result of B. Klartag and V. Milman.
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1. Introduction

In the last decades, some functional forms of inequalities holding for subsets of
R™ were extended to functions. The most useful is probably Prekopa-Leindler
inequality, which is a functional version of Brunn-Minkowski. Let us mention also
Blaschke-Santalé inequality ([3] and [16]), which states that if K is a convex body
in R™ and

P(K) = min |K||K*?|
zeK
where K** = {y € R",(y,x — z) < 1 for all z € K} is the polar body of K with
respect to z, then
P(K) < P(By)

where Bj is the Euclidean ball, with equality if and only if K is an ellipsoid. If
z = 0, we use the standard notation K*° = K°. Notice that the volume product
P(K) is an affine invariant.
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An inverse form of the Blaschke-Santalé inequality for convex sets was
conjectured by Mahler in [12]. The symmetric Mahler conjecture asks if

P(K) > P(BY7) for every centrally symmetric convex body K,

where B} = {z € R™; ||zl = >_ |z;] < 1}. This inequality was proved for uncon-
ditional convex bodies (i.e. symmetric with respect to n-orthogonal hyperplanes)
by Saint Raymond [14] (see also Meyer [13] and Reisner [15]). In the general case,
it is still open but an asymptotic form was given by Bourgain and Milman [6]: for
some constants a > 0 and § > 0, one has

P(K)Y" > BP(BY)Y" ~ aP(By)'/".

The functional analogue of polarity for sets is the Legendre transform: for a
function ¢ : R™® — RU {+o0}, and z,y € R", let

L.p(y) = sup (x — 2,y — 2) — ¢(x).
reR™

Observe that one has then £,(L.¢) = ¢ if ¢ is a convex function. For z = 0, we
denote Lop = Lp. We define

P(¢) = inf /e*‘ﬁ(‘”)dx/efﬁz(b(y)dy.

z€ER"

Notice that ¢ — P(¢) is affine invariant too (i.e. P(¢ o A) = P(¢) for any one-to-
one affine function A : R" — R™). The functional version of the Blaschke-Santald
inequality states that

ro < (L)

where | - | stands here for the Euclidean norm in R™. This statement was proved
for even functions by K. Ball [2] and in full generality by Artstein-Klartag-Milman
[1] (see also Fradelizi-Meyer [8]).

We give here the following sharp functional version of the reverse inequality:
if ¢ is convex and unconditional (i.e. ¢(z1,...,2,) = ¢(|z1],...,|zs|) for every
(21,...,2n) € R™), then

P(o)= [ s [ 20y = 4 = P )
R R
For this, we establish functional versions of some results of Saint-Raymond [14]
and of Bollobas Leader and Radcliffe [5], and give a functional form of the classi-
cal Lozanovskii theorem. In a forthcoming paper [9], we shall prove among other
results that for n = 1 and general ¢, P(¢) > e.

This paper is organized in the following way. In section 2, we give various
inequalities about integrals of increasing functions on R™. In section 3, we prove
a functional extension of Lozanovskii lemma and apply the results of section 2
to integrals of Legendre transforms. In section 4, we give a short proof of the
Klartag-Milman’s [10] functional extension of Bourgain-Milman inequality, using
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this inequality for sets in the most general case ([6]). Namely, we prove that there
exists a constant C' > 0 such that for every convex function ¢ : R™ — R with
0< fRn e~ @) dy < 400, one has

/e_¢($)dm/e_£¢($)dx > C".

;0 R™
This was proved in [10] under the restrictive hypothesis that ¢(0) = min ¢ (which
includes of course the case of even functions).

2. Some inequalities on integrals of increasing functions
Notation. We say that a function ¢ : R™ — R is unconditional if
(X1, xn) = @(|x1], ..., |zn|) for every (z1,...,2,) € R,
We consider on R™ the canonical partial order:
x=(x1,..,2n) <y=Y1,---,yn) whenever z; <y;, 1 <i<n.
For z,y € R™ such that x < y, we define the order intervals
[z,y] = {z e R"jz < 2 <y},
[y, +0) ={z € R"; 2>y} and (—o0,z]={z€R"; 2z <z}
We say that ¢ : R™ — R is increasing if p(z) < ¢(y) when z < y.
In the same way, a subset K of R™ is unconditional (respectively increasing)
if its indicator function 1k is unconditional (respectively increasing). Finally, we

denote by |A| the Lebesgue measure of a measurable set A in R™.
Our first result concerns increasing functions of two variables in R™.

Theorem 1. Let F : R™ x R" — Ry be an increasing function. Then the following
inequality holds for all z € R™

/F(x,z—x) dz > / sup F(z,w —z) dw.
TER™
R (—00,z]

Proof. 1) Assume first that F' = 1k, where K C R™ x R” is an increasing set. We
define for z € R", the sets

K,={zeR" (z,z2—xz) e K}, C={weR"; K, #0} and C, = CN (-0, z].
One has to prove that
/1K(:C,z—:1c) dx = |K,| > / sup 1 (z,w — ) dw = |C,|.
zER™
R (—00,7]
The proof goes by induction on n > 1.

a. Suppose n = 1; then K € R? and C C R. Let w € C,. Then for every
x € K, and t € [0,z — w], one has

(r,w—2x)e K, x+t>2 and z—(r+1t)>w-—u.
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Since K is increasing, this implies that (z 4+ ¢,z — (z +t)) € K and therefore that
z+t € K,. It follows that K,, + [0,z —w] C K, for every w € C,. Thus K, # ()
and C is increasing. Setting wx = inf C € RU{—oc0}, we get that

(wK,z] cC,C [’LUK,Z]
and that

|K.|> sup (z —w) =z—infC, =z —wg = |C,|.
wel,

b. For n > 2, we proceed by induction to show that |C,| < |K | for every increasing
subset K of R™ x R™.
Writing 2 = (21, 72) € R x R*™1 =R", one has

|K.| = / /1K($17l‘2,21 — X1, 22 — T2) dxy | dxs.

Rn—1 \R
Applying the 1-dimensional case to
M,y = {(21,91) € R?; (1, 22,y1,2) € K}

which is an increasing subset of R?, one has for all (x2,y2)

{1 (w1, w2, 21 — 21, 42) € K}
> H{wy < z1; (b1, 2, w1 — t1,y2) € K for some ¢ }|.

It follows that

|K.| = / /1K(x1,x2,21 —Z1,20 — x2) dxy | dxo

Rr—1 \R

> / / sup 1 (t1, zo, wy — t1, 22 — x2) dwy | dao
t
Rn—1 wy<z1 '

= / / 1z, (x2,22 — x2) dxo | dwy,
wi<z;  \Rn-1
where
Ly, = {(z9,y2) € R x R" ™ (t1, w9, w1 — t1,52) € K for some t;}.
We apply the induction hypothesis to this increasing subset to get

{za; (22,20 — x2) € Ly, } > [{wa < 29; (t2, wy — t2) € Ly, for some to}.
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It follows that

K| = / / sup 11, (t2, w2 —t2) dws | dwy
w1<z1 \wz2<z2 ’

= Sllle(t17t2,w1—t1’w2_t2) dw:|cz|
ty,t
w=(w1,w2)<(21,22)=% e

2) Now if F: R" x R"™ — R, is an increasing function, then for every ¢t > 0,
{F >t} is an increasing subset of R™ x R™. We apply 1) to get:

+oo
/F(x,z—x) dx = / /1{p>t}(x,z—x) dx | dt
R 0 \r»
+o0
> / / sup lypsy (v, w —u) dw | dt
0 w<z “
+oo
= / / sup 1ipsey (v, w —u) dt | dw
w<z 0 “
= / sup F(u, w — u) dw.
w<z

O

Remark. It can be proved that, if n = 1, there is equality in Theorem 1 for
every z € R™ if and only if one has F(x,y) = inf(a(z), 8(y)) for some increasing
functions a,  : R — R. This characterization does not hold for n > 2.

The following corollary states that the volume of a union of parallelepipeds
with faces parallel to the coordinate hyperplanes is minimal if they share the same
corner (for example the corner with the smallest coordinates). We use the notation
introduced in the beginning of this section for order intervals in R™.

Corollary 2. Let uy,...,unx € R}, Then for every vy,...,vny € R", one has
N N
U[O,ul] < U[vi,ui + ’Ui] .
i=1 i=1

Proof. Let a;,b; € R", 1 <i < N. Applying Theorem 1 to the indicator function
of the increasing set ) defined by

N
Q = U [ai,+00) X [b“—FOO),
i=1
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we get for every z € R",

/1Q(gg, 2 — z)de =

R

N
U[ai, z—=b| >
i=1

N

U[ai —l—bi,z] .

i=1

/ sup1lg(z,w — z)dw

x

(_0072]

The last equality follows from the fact that sup 1g(z,w—x) =1 if and only if for

some 1 < ¢ < N and some x € R™, onehasal<a:<w—bl,ze if and only if for
some 1 <i < N, one has a; <w — b;. For 1 <i < N, let

u;, =z—a; —b; and wv; =b;.
Since [a;,z — b;] = z — [v;, u; + v;] and [a; + b;, z] = z — [0, u;], one gets

N N
< U[%,UrFUi] :
i=1

U [07 ’U,l]

i=1

O

From Theorem 1 we deduce also the following functional version of an inequal-
ity due to Saint-Raymond ([14]) and of the reverse Kleitman inequality due to
Bollobés, Leader and Radcliffe ([5]).

Theorem 3. Let f,g: R™ — R be increasing functions. Define h : R™ — R by
h(z) = sup, f(z)g(z — x). Then one has:

) (f*xg)(z) = (hx*1ry)(2) for every z € R™.

ii) For every &,...,&, >0,

/e_<’375>f(x)dx/e_@’@g(x)dm 2/ —(z ’5>h /(H &) )

R™ R"» R™

Proof. To get 1), we apply the preceding theorem to F(x,y) = f(x)g(y). Then for
every w € R", one has sup F(z,w — x) = h(w), so that for every z € R’

(f*g)(z)z/F(x,z—x)dxz / h(w)dw = (h * 1gy )(2).
R™ (—00,2]
Inequality ii) follows from i) using the Laplace transform at £ = (&1, ...,&,), with
£>0,1<i<n. O

Remarks. 1) Using the remark after Theorem 1, one can prove that, for n = 1,
there is equality in i) or in ii) of Theorem 3 if and only if either f or g is of the
form c14 4o for some ¢ > 0 and some d € R.
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2) The function h in Theorem 3 is known as the Asplund sum of f and g. This
comes from the fact that for f = 14 and g = 1p then h = 144 5. If moreover A
and B are increasing, Theorem 3 gives

1pax1p > 1A+B*1]R11 i.€. |Aﬂ(—B)| > |(A+B)0Rﬁ|

This inequality was proved by Saint Raymond in [14]. Bollobds, Leader and Radc-
liffe [5] reproved and reinterpreted it in terms of a reverse Kleitman inequality: If
S is a solid subset S of R™ (i.e. [x,y] C S, for every z,y € S such that = < y), one
has

(S —$)NRY| < 5]
Actually, if ST = Ugeglz, +00) and S~ = Ugeg(—00, x], one has S = STNS~ and
(S—=S)NRY = (S~ —ST)NRY. Setting A = ST and B = —S5~, we conclude.
Notation. For z = (z1,...,2,) € R"and y = (y1,...,yn) € R", we define z-y € R"
by
Ty =(T1Y1, - TnYn)-
The next theorem is also a functional form of a result of Saint-Raymond ([14]).

Theorem 4. Let f,§ : R — Ry be decreasing functions, and define h: R? — R,
by

h(z) = sup f(x)j(y) for all z € R?.

z=x-y

Then for every r; >0, 1 <i <n, one has
/ HJET’ dx/ Ha:r‘ g dz>/ Hz" dx/HTz
n - Rn - R" =1

In particular

f(x)dx/g(:r)dx > /ﬁ(x)dx

T R%

Proof. For t € R", we define

ft)=fle ... e7t), g(t) =gle™™,...,e7t) and h(t) = h(e ", ... e ).

Then f,g: R™ — R, are increasing and for every z € R", one has

h(z) = sup f(@)g(y)-

+

z=x+y
Setting x; = e~ % for i = 1,...,n, we need to prove
/ e F()dt / e g (t)dt > / e n(t)dt/ (H m) ,
R™ Rn Rn =1

and this follows from Theorem 3. O
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3. Applications to the inverse Santal6 functional inequality

We first establish a functional form of Lozanovskii’s theorem ([11]).

Lemma 5. Let ¢ : R™ — R be a conver unconditional function such that
/e_¢(x)dx < +o00.

R"'L
Then for every z € (0,4+00)™ one has

inf — (¢(x) + Lo(y Z Zi.

z,y>0, zy==z

Proof. We follow the proof of Lozanovskii’s theorem given by Saint-Raymond in
[14]. Let z € (0,400)™ be fixed. It is clear that for every x,y such that z -y = z
one has

$(a) + Lo(y) > szyz >z
i=1

It is thus enough show that there exist x,y € (0, +oo)" such that

Define F': (0,+00)™ — R by
F(w) = ¢p(w) — Zzl log(w;)  for w = (wy,...,wy).

Then F is convex and the integrability condition f]R” e~ ?Wdw < 400 implies
+

easily that for some ¢ = (cq,...,¢,) € (0,400)", one has
B(w) 2 6(0) + (e, ) = 6(0) + 3 caws,  for every w € (0, +00)".

It follows that F'(w) — 400 when w; +- - -4+w,, — 400 or when for some 1 < i < n,
w; — 0. Hence F reaches its global minimum at some point z € (0, +00)™. We
define L : (0,+00)™ — R by

w) = Z z; log(wy;).

Since F(w) > F(z) on (0,+00)™, one has
o(w) — ¢(x) > L(w) — L(x) for every w € (0, +00)™,

Since ¢ is convex and L is concave, by Hahn-Banach’s theorem, we can separate
the epigraph of ¢ from the subgraph of L with an affine hyperplane; thus there
exists y € R™ such that

d(w) — p(x) > (w—x,y) > L(w) — L(z) for every w € (0,+00)™.
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The right hand side inequality implies that y = VL(x) = (£,..., 2=) € (0, +o0)"
and the left hand side inequality gives

Lo(y) = Stllup<w, y) — d(w) = (z,y) — ().

Remarks. 1) If A, B are subsets of R", let
A-B={x-y; x € A, y € B}.

If we apply Lemma 5 to ¢(x) = ||z]|%/2, we get back the classical Lozanovskii
theorem asserting that if K is an unconditional convex body, one has

K-K°=Bp:={x; Y |z <1}
As a matter of fact, for all z € (0,400)", one has

inf Il Iyl > mf x|l &yl e > 1nf (x,y) Zz
z=ry | 2 2 - v

From lemma 5, the left hand side is equal to the right hand side, hence
n
it allyle: = 352 = lel

which means that the gauges of K - K° and of B} are equal.

2) If we apply Theorem 4 to indicator functions, we get the following result,
obtained by B. Bollobds and I. Leader, and independently by M. Meyer and A. Pa-
jor (see [4]). Let A and B be decreasing compact subsets of R. Then

A|[B| > |4 B|.
Using Lozanovskii’s theorem, this gives the inverse Blaschke-Santalé inequality for

unconditional convex bodies due to Saint-Raymond [14]: Let K be an uncondi-
tional convex body in R™. Then

IKI|K°| > |K - K°| = 2"|By| = 4" /nl.
We give now our main theorem, a functional version of the inverse Santalé inequal-

ity for unconditional convex functions:

Theorem 6. Let ¢ : R™ — R be a convexr unconditional function. Then for all
(ri,...,mn) € (0,400)™ one has

/(ﬁmx:1> eid’(:”)dx/ <ﬁr,x:1> e L@ gy ﬁ D(r; +1).
— g \i ,

R:— 1= =1

In particular,

/e_(b(”)dx/e_uﬁ(x)dmz 1.
R R
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and

P(¢) = /6_¢(m)dﬂf/€_£¢(z)dx >4" = P(| - |l1)-

]Rn Rfl
Proof. Observe that ¢ and L¢ are increasing on R’t. We apply Theorem 4 to
f=e?and § =e *?. From Lemma 5 we get

h(z) = sup e~ (@@+LEW) — e= 21 % for every z € (0, +00)",

z=x-y
which gives the first inequality. For the second inequality we take ri=---=r,=1.
The fact that ¢ is unconditional implies that ¢ is even and that L¢ is also uncon-
ditional. Hence

P(¢) = / e @) dy / e EW gy = 4m / e @) dy / e LW dy > 4n,

R™ R" R R

O

Remarks. 1) If we apply Theorem 6 to ¢(x) = ||z| x, where K is a unconditional
convex body, one gets e “? = 1go. It enables to recover inequalities of Saint
Raymond [14]. For example, our last inequality gives

Pzl k) = nl|K||K°| = n!P(K) > 4™.

2) Using the remark after Theorem 3, it is easy to prove that, for n = 1, there is
equality in the inequalities of Theorem 6 if and only either

e~ P@) — o=B-alz] g5 q Lol — 651[7%0‘] (y)

or vice-versa. The inequalities of the Theorem 6 are sharp for every n: take for
instance ¢(z) = |z|1 = >, |xi|. But, for n > 2, we ignore the characteriza-
tion of the case of equality. For unconditional bodies, this problem was solved
independantly by Meyer [13] and Reisner [15] (see also [5] for an other proof).

3) Theorem 6 can be generalized as follows. We say that a convex function ¢ :
R™ — R is almost unconditional if for every € = (£1,...,e,) € {—1,1}",

(T1,...,2n) — dle11, ..., EnTy)

is increasing on R’'. Using Theorem 6, it is easy to prove, as in [14] for almost
unconditional bodies, that P(¢) > 4™ for every almost unconditional even convex
function ¢ : R” — R.

4. A general functional version of the Bourgain-Milman inequality

The following theorem was proved by Klartag and Milman [10] in the particular
case when the function ¢ is minimal at 0. We shall prove it in full generality, using
as a main tool, like in [10], the Bourgain-Milman inequality for convex sets ([6]),
which says that for some a > 0, one has
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P(K) > o"P(B%) for every n > 1 and every convex body K in R,
where B3 denotes here the Euclidean ball in R™.

Theorem 7. There exists ¢ > 0 such that for every conver function ¢ : R —
R U {+oo}, with 0 < [5, e=*@dz < +00 one has,

P(¢) = inf/e‘¢($)dx/e_£z¢(y)dy > "

z
R R

We need first a lemma giving an interesting relationship between the level sets of
a convex function and of its Legendre transform.

Lemma 8. Let ¢ : R" — R U {+o0} be a convex function. Then for every t > 0

one has
x 2 o
{£¢§t+£¢(0)}:{¢(x)min¢+t;x€R} D t{p<t+¢(0)} .

and for every s,t € R such that s+t >0
{Lp<t}C(s+t){p<s}°.

Proof. Since for every ¢ € R one has L(¢ — ¢) = L¢$ + ¢, we may assume that
min ¢ = 0. This implies that £#(0) = —min ¢ = 0. For every ¢t > 0, we define

x
Kii={——: zeR"}.
t {¢(w)+tm }
Then, for ¢ > 0,

{Lo <t} ={y eR™; (z,y) < ¢(z) +t, Vo € R"}

={y e R™; <¢(x)+t,y>§1, Vz € R"}

={y eR"; (z,y) <1, Vz € Ky}
= K.

Using the convexity of ¢, one has for every z € R",

e t o)
’ (¢<z) +t> < ST X 0@ gy < A0 <+ 9(0).

This prove that tK; C {¢ < t+ ¢(0)}. Finally, taking the polar with respect to
the origin, we obtain

(Lo <t} =K Dt{g <t+¢(0)}".
The second inequality follows from the fact that if ¢(z) > s and Lé(y) < ¢, then

(z,y) < op(x) + LO(y) < s+t
O
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Proof of Theorem 7. Let qS R™ — R U {400} be a convex function. For every
z € R™, we define ¢,(z) = ¢(z + ). As observed in [1], the function

. / —6(@) gy / L6 gy

R‘I‘L
is strictly convex on R™ and reaches its minimum P(¢) at a unique point zg. Using
a change of variable, we may assume that zp = 0 and since P(¢ + ¢) = P(¢), we
may assume also that min ¢ = 0.
One has then
ye LW dy = 0.
R"

By a change of variables, one has

+oo +oo
[etow= [ osa|az [ <o
Rn min ¢ #(0)
—+o00

= e *0) / e "{o < t+ ¢(0)}]dt.
0
Applying this inequality to ¢ and L¢, using Lemma 8, Cauchy-Schwarz inequality
and the Bourgain-Milman inequality [6] as recalled at the beginning of this section,
we get

P(¢) = /67¢(1)dl'/67£¢(y)dy

Rn R"
+oo +oo

> ¢=¢(0)=La(0 /—t|{¢<t+¢( )} dt /e—t\{£¢§t+£¢(0)}|dt
0 0
+00 T

> 0000 (o < 6Ot o010 < 1+ 60t

0

> ¢=#(0)=La(0

0 N )

> e 00" ( 7ttn/2\/|{¢<t+¢( 0} Ho <t + ¢(0)}°|dt
2

( +1)) a"B3

If we can prove that qu( ) + (;5( ) < n, we get

P)= (F)

(&

e~ #(0)—L(0
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Actually, we know that —¢(0) = min L¢, and it follows from [7] that for every
convex function ¢ : R™ — R such that fRn ye YW dy = 0 one has

(0) < miney + n.

For the sake of completeness, we give a short proof of this fact : by Jensen’s
inequality and the convexity of 1, one has

$(0) = w(fR ye‘“””@/) Jer V(W)e w(y)dy.
fRn

I]R" e w(y)dy
Applying again the convexity of ¢, z,y € R"

P(x) 2 YY) + (x =y, (VY) ().
Multiplying both terms by e~*®) and integrating over R™, we get

(z) / W dy > / B(y)e PPy + /<x—y,<w>(y>>e-w<y>dy

R™ R

/¢ = (y) dy _ n/e—w(y)dy.

RTL
and this gives the result. 0

Remark. There exists ¢ > 0 such that if p : Ry — R, is non-increasing and
¢ : R™ — RT is convex and satisfies ¢(0) = min¢ = 0 and 0 < [, p(¢) < +o0,
then

2

[oo) [oeor=c | [otia /s

R’Vl Rn Rn
This follows from the same argument as in theorem 7 writing in the regular case
p(t) = t+oo 0(s)ds. If moreover p is log-concave then it was proved in Theorem 8

of [8] that
[o@) [ oteo)< | [ stal?/2o

R R R

References

[1] S. Artstein, M. Klartag, V. Milman, The Santald point of a function and a functional
form of Santald inequality, Mathematika, 51 (2004), 33—48.

[2] K. Ball, Isometric problems in £, and sections of convex sets, Ph.D Dissertation,
Cambridge (1986).

[3] W. Blaschke, Uber affine Geometrie 7: Neue Eztremeigenschaften von Ellipse und

Ellipsoid, Wilhelm Blaschke Gesammelte Werke 3, Thales Verlag, Essen (1985), pp
246-258.



420 M. Fradelizi and M. Meyer Positivity

[4] B. Bollobds, 1. Leader, Products of unconditional bodies, Oper. Theory Adv. Appl.,
77 (1995), 13-24.

[5] B. Bollobés, I. Leader, A.J. Radcliffe, Reverse Kleitman inequalities, Proc. Lond.
Math. Soc. 58 (3) (1989), 153-168.

[6] J. Bourgain, V.D. Milman, New volume ratio properties for conver symmetric bodies
in R™, Invent. Math., 88(2) (1987), 319-340.

[7] M. Fradelizi, Sections of convex bodies through their centroid, Arch. Math., 69(6)
(1997), 515-522.

[8] M. Fradelizi, M. Meyer, Some functional forms of Blaschke-Santald inequality, Math.
Z., 256 (2007), 379-395.

[9] M. Fradelizi, M. Meyer, Some functional form of inverse Santald inequality (in prep-
aration).

[10] B. Klartag, V. Milman, Geometry of log-concave functions and measures, Geom.
Dedic., 112 (2005), 169-182.

[11] G. Ya. Lozanovskii, On some Banach lattices, Siberian, Math. J., 10 (1969), 419-430.

[12] K. Mahler, Ein Ubertragungsprinzip fir konveze Kérper, Casopis Pést. Mat. Fys.,
68 (1939), 93-102.

[13] M. Meyer, Une caractérisation volumique de certains espaces normés de dimension
finie, Isr. J. Math., 55(3) (1986), 317-326.

[14] J. Saint Raymond, Sur le volume des corps convexes symétriques. Séminaire d’Initi-
ation a U"Analyse, 1980/1981, Publ. Math. Univ. Pierre et Marie Curie, Paris (1981).

[15] S. Reisner, Minimal volume product in Banach spaces with a 1-unconditional basis,
J. Lond. Math. Soc., 36 (1987), 126-136.

[16] L.A. Santalé, An affine invariant for convex bodies of n-dimensional space. Port.
Math. 8, (1949), 155-161.

Matthieu Fradelizi and Mathieu Meyer

Université de Marne la Vallée

Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050)

Cité Descartes — 5, Bd Descartes

Champs-sur-Marne

77454 Marne la Vallée Cedex 2

France

e-mail: Matthieu.FradeliziQuniv-mlv.fr
Mathieu.MeyerQuniv-mlv.fr

Received 4 July 2007; accepted 20 November 2007

To access this journal online:
www.birkhauser.ch/pos




	1. Introduction
	2. Some inequalities on integrals of increasing functions
	3. Applications to the inverse Santaló functional inequalityÉ
	4. A general functional version of the Bourgain-Milman inequality
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


