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1. Introduction

Let � be a bounded C1,1-domain in R
n(n � 3), and G := G�, be the Green

function of the Laplacian in �. In [13], Zhao have established interesting
inequalities for the Green function G. In particular, he proved the existence
of a positive constant C, such that for each x, y, z in �

δ(y)

δ(x)
G(x, y) � C

|x − y|n−2
, (1.1)

1
C

H(x, y) � G(x, y) � CH(x, y), (1.2)

G(x, z)G(z, y)

G(x, y)
� ⊆ |x − y|n−2

|x − z|n−2|y − z|n−2
, (1.3)

where

H(x, y) := 1
|x − y|n−2

min
(

1,
δ(x)δ(y)

|x − y|2
)

� This paper has not been submitted elsewhere in identical or similar form, nor will it be
during the first three months after its submission to Positivity.
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and δ(x) denotes the Euclidean distance between x and ∂�.
The inequality (1.3), called 3G-Theorem is often used in this form

G(x, z)G(z, y)

G(x, y)
� C

(
1

|x − z|n−2
+ 1

|y − z|n−2

)
. (1.4)

This 3G-Theorem is useful for the study of functions belonging to the Kato
class Kn(�) (see Definition 1 below), which is widely used in the study of
some nonlinear differential equations (see for example [1], [10] and [12]).
More properties pertaining to this class can be found in [1] and [3].

DEFINITION 1 (See [l] or [3]). A Borel measurable function ϕ in �

belongs to the Kato class Kn(�) if ϕ satisfies the following condition

lim
α→0

(
sup
x∈�

∫
�∩B(x,α)

|ϕ(y)|
|x − y|n−2

dy

)
= 0. (1.5)

In [6], Kalton and Verbitsky improve (1.4), in the following form

G(x, z)G(z, y)

G(x, y)
� C0

[
δ(z)

δ(x)
G(x, z) + δ(z)

δ(y)
G(y, z)

]
. (1.6)

More precisely, they denoted by N(x, y) = G(x,y)

δ(x)δ(y)
, the Naı̈m kernel and

they proved in [6] (Lemma 7.1) that ρ(x, y) = N(x, y)−1 is a quasi-metric
on �. Thus (1.6) holds.

This new form of the 3G-Theorem allows us to introduce a new class of
functions denoted by K(�) (see Definition 2 below), which contains prop-
erly the classical Kato class Kn(�) and which permits to generalize some
results of [7], [10] and [12].

DEFINITION 2. A Borel measurable function ϕ in � belongs to the Kato
class K(�) if ϕ satisfies the following condition

lim
α→0

(
sup
x∈�

∫
�∩B(x,α)

δ(y)

δ(x)
G(x, y)|ϕ(y)|dy)

)
= 0. (1.7)

The first purpose of this paper is to study the properties of functions
belonging to K(�), which we will doing in Section 2. In particular, we
show for 1 � λ < 2 that the function x → q(x) = 1

(δ(x))λ
is in K(�) but not

in Kn(�).
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In Section 3, we suppose that � contains 0 and we prove the existence of
infinitely many singular positive solutions for the following nonlinear ellip-
tic problem

(P )

⎧⎨
⎩

	u + f (·, u) = 0, in �\{0}(in the sense of distributions)
u|∂� = 0,

u(x) ∼ c
|x|n−2 , near x = 0, for any sufficiently small c > 0.

Under some conditions on the function f which will be specified later,
these solutions are continuous except at x = 0.

The existence of infinitely many singular positive solutions for the prob-
lem (P ) has been established, by Zhang and Zhao in [12], for the special
nonlinearity

f (x, t) = p(x)tµ, µ > 1,

where the function p satisfies

(H0) x → p(x)

|x|(n−2)(µ−1)
∈ Kn(�).

Here we generalize the result of Zhang and Zhao [12] to the class K(�).
We note that the problem (P ) is obviously equivalent to the following

inhomogenious problem

{
	u + f (., u) = −δ0, in �

u|∂� = 0,

where δ0 is the δ-function at {0}.
This latter problem has been solved in [6] with arbitrary measure data ω

in place of δ0 and the nonlinearity f (x, t) = p(x)tµ, µ > 1. In fact, in [6]
the authors obtained sharper results by a different method. In particular
they gave a necessary and sufficient condition for the existence of positive
solutions for the Dirichlet problem (P ). In this paper, we require the fol-
lowing hypotheses:
(H1) f is a Borel measurable function in � × (0, ∞), continuous with

respect to the second variable.
(H2) |f (x, t)| � tq(x, t), where q is a nonnegative Borel measurable func-

tion in �×(0, ∞), nondecreasing with respect to the second variable
such that limt→0 q(x, t) = 0.

(H3) The function θ defined on � by θ(x) = q(x, G(x, 0)) belongs to the
class K(�).
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We point out that in the case where f (x, t) = p(x)tµ, the assumption (H0)
implies (H3).

As usual, let B(�) be the set of Borel measurable functions in � and
let B+(�) be the set of the nonnegative ones. C0(�) will denote the set
of continuous functions in �̄ vanishing at ∂�. The letter C will denote a
generic positive constant which may vary from line to line. When two pos-
itive functions f and g are defined on a set S, we write f ∼ g if the two-
sided inequality 1

C
g � f � Cg holds on S.

2. The Kato Class K(�)

We start this section by proving some inequalities for the Green function
G, that we will use later.

PROPOSITION 1. For each x, y ∈ �, we have

G(x, y) ∼ δ(x)δ(y)

|x − y|n−2(|x − y|2 + δ(x)δ(y))
(2.1)

and

δ(x)δ(y) � CG(x, y). (2.2)

Moreover, if |x − y| � r then

G(x, y) � C
δ(x)δ(y)

rn
. (2.3)

Proof. Since for each a, b > 0, we have ab
a+b

� min(a, b) � 2 ab
a+b

, then
from (1.2), we deduce (2.1). Inequalities (2.2) and (2.3) follow immediately
from (2.1).

In the sequel, we give some properties of functions belonging to the
Kato class K(�).

LEMMA 1. Let ϕ be a function in K(�). Then the function

x → δ2(x)ϕ(x)

is in L1(�).
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Proof. Let ϕ ∈ K(�), then by (1.7) there exists α > 0 such that for each
x in �

∫
B(x,α)∩�

δ(y)

δ(x)
G(x, y)|ϕ(y)|dy � 1.

Let x1, . . . , xm in � such that � ⊂ ∪1�i�mB(xi, α). Then by (2.2), there
exists C > 0 such that for all i ∈ {1, . . . , m} and y ∈ B(xi, α) ∩ �, we have

(δ(y))2 � C
δ(y)

δ(xi)
G(xi, y)

Hence, we have

∫
�

(δ(y))2|ϕ(y)|dy � C
∑

1�i�m

∫
B(xi , α)∩�

δ(y)

δ(xi)
G(xi, y)|ϕ(y)dy

� Cm < ∞.

This completes the proof.

We use the notation

‖ϕ‖� := sup
x∈�

∫
�

δ(y)

δ(x)
G(x, y)|ϕ(y)|dy.

PROPOSITION 2. Let ϕ be a function in K(�), then ‖ϕ‖� < ∞.

Proof. Let ϕ ∈ K(�) and α > 0. Then we have

∫
�

δ(y)

δ(x)
G(x, y)|ϕ(y)|dy �

∫
�∩|x−y|�α

δ(y)

δ(x)
G(x, y)|ϕ(y)|dy

+
∫

�∩|x−y|�α

δ(y)

δ(x)
G(x, y)|ϕ(y)|dy.

Now, since by (2.3), we have

∫
�∩|x−y|�α

δ(y)

δ(x)
G(x, y)|ϕ(y)|dy � C

αn

∫
�

(δ(y))2|ϕ(y)|dy,

then the result follows from (1.7) and Lemma 1.
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PROPOSITION 3. Let ϕ ∈ K(�),x0 ∈ 
� and h be a nonnegative superharmonic
function in �. Then for all x in �, we have

∫
�

G(x, y)h(y)|ϕ(y)|dy � 2C0‖ϕ‖�h(x), (2.4)

where C0 is the constant given in (1.6).
Moreover, we have

lim
α→0

(
sup
x∈�

1
h(x)

∫
�∩B(x0,α)

G(x, y)h(y)|ϕ(y)|dy

)
= 0. (2.5)

Proof. Let h be a nonnegative superharmonic function in �. Then by
([11], Theorem 2.1, p. 164), there exists a sequence (fn)n ⊂ B+(�) such that

h(y) = sup
n

∫
�

G(y, z)fn(z)dz.

Hence, it is enough to prove (2.4) and (2.5) for h(y) = G(y, z) uniformly
in z ∈ �.

Let ϕ ∈ K(�). Then by (1.6), we have for all x, z ∈ �

∫
�

G(x, y)G(y, z)|ϕ(y)|dy

� C0G(x, z)

∫
�

[
δ(y)

δ(x)
G(x, y) + δ(y)

δ(z)
G(y, z)

]
|ϕ(y)|dy

� 2C0‖ϕ‖�G(x, z).

Then (2.4) holds. Now, we shall prove (2.5). Let ε > 0, then by (1.7), there
exists r > 0 such that

sup
ζ∈�

∫
�∩B(ζ,r)

δ(y)

δ(ζ )
G(ζ, y)|ϕ(y)|dy � ε. (2.6)

Let α > 0. Then using (1.6), we have

1
G(x, z)

∫
�∩B(x0,α)

G(x, y)G(y, z)|ϕ(y)|dy

� C0

∫
�∩B(x0,α)

[
δ(y)

δ(x)
G(x, y) + δ(y)

δ(z)
G(y, z)

]
|ϕ(y)|dy

� 2C0 sup
ζ∈�

∫
�∩B(x0,α)

δ(y)

δ(ζ )
G(ζ, y)|ϕ(y)|dy.
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On the other hand, it follows from (2.3) that

∫
�∩B(x0,α)

δ(y)

δ(x)
G(x, y)|ϕ(y)|dy

�
∫

�∩(|x−y|�r)

δ(y)

δ(x)
G(x, y)|ϕ(y)|dy

+
∫

�∩B(x0,α)∩(|x−y|�r)

δ(y)

δ(x)
G(x, y)|ϕ(y)|dy

� sup
ζ∈�

∫
�∩B(ζ,r)

δ(y)

δ(ζ )
G(ζ, y)|ϕ(y)|dy + C

rn

∫
�∩B(x0,α)

(δ(y))2|ϕ(y)|dy

Which together with Lemma 1 and (2.6), end the proof by letting α → 0.

COROLLARY 1. Let ϕ be a function in K(�). Then we have

(a) sup
x∈�

∫
�

G(x, y)|ϕ(y)|dy < ∞ (2.7)

(b) The function x → δ(x)ϕ(x) is in L1(�).

Proof. (a) Put h ≡ 1 in (2.4) and using Proposition 2, we get (2.7).
(b) Let x0 ∈ �, then by (2.2), it follows that

δ(x0)

∫
�

δ(y)|ϕ(y)|dy � C

∫
�

G(x0, y)|ϕ(y)|dy.

Hence the result follows from (a).

Remark 1. As consequence of Corollary 1(b), if the function q defined in
� by

q(x) = 1
(δ(x))λ

belongs to K(�), then the function x → (δ(x))1−λ ∈ L1(�). Hence, it fol-
lows by [8, Lemma p. 726], that a necessary condition in order that q ∈
K(�) is λ < 2.

In fact, this condition is sufficient as it will be proved in the following.
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PROPOSITION 4. Let q be the function defined in � by

q(x) = 1
(δ(x))λ

.

Then q belongs to K(�) if and only if λ < 2.

Proof. If λ � 0, then q ∈ L∞(�) and so by (1.1), q ∈ K(�).
Let 0 < λ < 2 and α > 0. We first remark by (2.1) that for each x, y ∈ �,
we have

1
(δ(y))λ

δ(y)

δ(x)
G(x, y) ∼ (δ(y))2−λ

|x − y|n−2(|x − y|2 + 4δ(x)δ(y))
.

and

|x − y|2 + 4δ(x)δ(y) � max(|δ(x) − δ(y)|2 + 4δ(x)δ(y), |x − y|2)
� max((δ(y))2, |x − y|2).

Hence, there exists C > 0 such that

1
(δ(y))λ

δ(y)

δ(x)
G(x, y) � C

(δ(y))2−λ

|x − y|n−2|x − y|λ(δ(y))2−λ

� C

|x − y|n−2+λ
.

Then we have

I =
∫

�∩B(x,α)

δ(y)

δ(x)
G(x, y)

dy

(δ(y))λ

� C

∫
�∩B(x,α)

dy

|x − y|n−2+λ

� C

∫ α

0
r1−λdr � Cα2−λ.

Thus I � Cα2−λ → 0 as α → 0.
The converse has been shown in Remark I.

Remark 2. We suppose that � contains 0. Let g be the function defined in
� by

g(x) = 1
(δ(x))λ|x|µ

Then g belongs to K(�) if and only if λ < 2 and µ < 2.
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Indeed, if g ∈ K(�), then by Corollary 1, we have

∫
�

G(0, y)g(y)dy < ∞.

This implies by (2.1) that λ < 2 and µ < 2. To prove sufficiency, let
λ < 2, µ < 2 and α > 0, r > 0 such that B(0, 2r) ⊂ �, then

I =
∫

�∩B(x,α)

δ(y)

δ(x)
G(x, y)

dy

(δ(y))λ|y|µ

�
∫

B(x,α)∩B(0,r)

δ(y)

δ(x)
G(x, y)

dy

(δ(y))λ|y|µ

+
∫

�∩B(x,α)∩Bc(0,r)

δ(y)

δ(x)
G(x, y)

dy

(δ(y))λ|y|µ
= I1 + I2.

Since B(0, 2r) ⊂ �, then δ(y) � r, for y ∈ B(0, r) and using (1.1), we
deduce that

I1 � C

∫
B(x,α)∩B(0,r)

dy

|x − y|n−2|y|µ .

Hence, if we choose n
n−µ

< p < n
n−2 , then we have by the Hölder inequality

that

I1 � C

(∫
(|x−y|�α)

dy

|x − y|(n−2)p

) 1
p

(∫
B(0,r)

dy

|y| µp

p−1

) p−1
p

� Cα
n
p
−(n−2)

r
n

p−1
p

−µ → 0 as α → 0.

Furthermore, we have

I2 � C

∫
�∩B(x,α)

δ(y)

δ(x)
G(x, y)

dy

(δ(y))λ
.

Thus, by Proposition 4, we have I2 → 0 as α → 0.

Remark 3. Let λ < 2 and q be the function defined in � by

q(x) = 1
(δ(x))λ

.
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Put v(x) = ∫
�

G(x, y)q(y)dy, x ∈ �. Since q ∈ K(�), then by (2.2) and
Corollary 1(b), we deduce that there exists C > 0 such that

1
C

δ(x) � v(x).

In fact, Mâagli [9] gives more precise estimates on the potential v of q.
We recall them in the next Proposition.

PROPOSITION 5. Let d = diam(�). Then there exists a constant C > 0
such that for each x in � we have

(i) 1
C
δ(x) � v(x) � C(δ(x))2−λ, if 1 < λ < 2.

(ii) 1
C
δ(x) � v(x) � Cδ(x) log (

√
5+1)d

2δ(x)
, if λ = 1,

(iii) 1
C
δ(x) � v(x) � Cδ(x), if λ < 1.

Remark 4. Let 1 � λ < 2 and q be the function defined in � by

q(x) = 1
(δ(x))λ

.

Then by Proposition 4, we have q ∈ K(�).

On the other hand, q /∈ Kn(�). Indeed, by [3] (Proposition 3.1), Kn(�) ⊂
L1(�), but using [8] (Lemma p. 726), we have for λ � 1,

∫
�

1
δ(x)λ

dx = ∞.

PROPOSITION 6. The class K(�) properly contains Kn(�).

Proof. The assertion follows from (1.1) and Remark 4.

Remark 5. We recall (see [1]) that a radial function ϕ in B(0, 1) is in Kn(�)

if and only if
∫ 1

0 r|ϕ(r)|dr < ∞.

Also, if � := {x ∈ R
n : 0 < a < |x| < b < ∞}, then a radial function ϕ

in � is in Kn(�) if and only if
∫ b

a
|ϕ(r)|dr < ∞.

In the two next propositions, similarly as in Remark 5, we give a char-
acterization of the class K(�), in the case where � is invariant by rotation
and ϕ is radial. More precisely, we prove that ϕ is in K(�) if and only if
(2.7) is satisfied. For the proof, we need the next Lemma.
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LEMMA 2. (i) Let ϕ be a Borel radial function in B(0, 1). Then we have

sup
x∈B(0,1)

∫
B(0,1)

GB(x, y)|ϕ(y)|dy < ∞

if and only if

∫ 1

0
r(1 − r)|ϕ(r)|dr < ∞.

(ii) Let ϕ be a Borel radial function in � := {x ∈ R
n : 0 < a < |x| < b < ∞}.

Then we have

sup
x∈�

∫
�

G�(x, y)|ϕ(y)|dy < ∞

if and only if

∫ b

a

(b − r)(r − a)|ϕ(r)|dr < ∞.

Proof. We first remark the following elementary inequalities.

min
(

1,
µ

λ

)
(1 − tλ) � 1 − tµ � max

(
1,

µ

λ

)
(1 − tλ), (2.8)

for t ∈ [0, 1] and λ, µ ∈ (0, ∞).
(i) Since the function x → ∫

B
GB(x, y)|ϕ(y)|dy is radial, then by elemen-

tary calculus, we have

∫
B(0,1)

GB(x, y)|ϕ(y)|dy = 1
n − 2

∫ 1

0
rn−1

(
1

(t ∨ r)n−2
− 1

)
|ϕ(r)|dr,

where t = |x| and t ∨ r = max(t, r).
Hence, by (2.8) we conclude that

sup
x∈B(0,1)

∫
B(0,1)

GB(x, y)|ϕ(y)|dy = 1
n − 2

∫ 1

0
rn−1

(
1

rn−2
− 1

)
|ϕ(r)|dr

∼
∫ 1

0
r(1 − r)|ϕ(r)|dr.
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(ii) By elementary calculus, we have
∫

�

G�(x, y)|ϕ(y)|dy

= C

∫ b

a

rn−1((t ∨ r)2−n − b2−n)(a2−n − (t ∧ r)2−n)|ϕ(r)|dr,

where t = |x| and t ∧ r = min(t, r).
On the other hand, due to (2.8), we have

((t ∨ r)2−n − b2−n)(a2−n − (t ∧ r)2−n) ∼ (b − t ∨ r)(t ∧ r − a).

So sufficiency is clear.
To prove necessity, we take t = a+b

2 , then

∫ b

a

(b − r)(r − a)|ϕ(r)|dr

=
∫ a+b

2

a

(b − r)(r − a)|ϕ(r)|dr +
∫ b

a+b
2

(b − r)(r − a)|ϕ(r)|dr

�
∫ a+b

2

a

(b − a)(r − a)|ϕ(r)|dr +
∫ b

a+b
2

(b − r)(b − a)|ϕ(r)|dr

� 2
∫ b

a

(
b −

(
a + b

2
∨ r

))((
r ∧ a + b

2

)
− a

)
|ϕ(r)|dr < ∞.

This completes the proof.

PROPOSITION 7. Let ϕ be a radial function in B(0, 1). Then the following
assertions are equivalent.

(i) ϕ ∈ K(B(0, 1)).

(ii)
∫ 1

0 r(1 − r)|ϕ(r)|dr < ∞.

Proof. (i) ⇒ (ii) follows from Corollary 1(a) and Lemma 2.
(ii) ⇒ (i) Let α > 0, then by (2.8), we have for t = |x|,
∫

B(0,1)∩ B(x,α)

δ(y)

δ(x)
GB(x, y)|ϕ(y)|dy

� 1
n − 2

∫ (t+α)∧1

(t−α)∨0
rn−1 (1 − r)(1 − (t ∨ r)n−2)

(1 − t)(t ∨ r)n−2
|ϕ(r)|dr

� C

∫ (t+α)∧1

(t−α)∨0
r(1 − r)|ϕ(r)|dr.
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Hence, to prove that ϕ is in K(B(0, 1)), we need to show that

lim
α→0

(
sup

t∈[0,1]

∫ (t+α)∧1

(t−α)∨0
r(1 − r)|ϕ(r)|dr

)
= 0.

Let �(ζ) = ∫ ζ

0 r(1 − r)|ϕ(r)|dr, for ζ ∈ [0, 1]. By hypothesis, � is a
continuous function on [0, 1]. Which implies that

∫ (t+α)∧1

(t−α)∨0
r(1 − r)|ϕ(r)|dr = �((t + α) ∧ 1) − �((t − α) ∨ 0)

converges to zero as α → 0 uniformly for t ∈ [0, 1]. This completes the
proof.

PROPOSITION 8. Let ϕ be a radial function in � := {x ∈ R
n : 0 < a <

|x| < b < ∞}. Then the following assertions are equivalent.
(i) ϕ ∈ K(�).

(ii)
∫ b

a
(b − r)(r − a)|ϕ(r)|dr < ∞.

Proof. (i) ⇒ (ii) follows from Corollary 1(a) and Lemma 2.
To prove (ii) ⇒ (i), we first remark that for each x ∈ �,

δ(x) = min(b − |x|, |x| − a) ∼ (b − |x|)(|x| − a).

Now, let α > 0, then by (2.8), we have for t = |x|,

sup
x∈�

∫
�∩B(x,α)

δ(y)

δ(x)
G�(x, y)|ϕ(y)|dy

� C sup
t∈[a,b]

∫ (t+α)∧b

(t−α)∨a

rn−1 (b − r)(r − a)

(b − t)(t − a)

×((t ∨ r)2−n − b2−n)(a2−n − (t ∧ r)2−n)|ϕ(r)|dr

� C sup
t∈[a,b]

∫ (t+α)∧b

(t−α)∨a

(b − r)(r − a)|ϕ(r)|dr,

which converges to 0 as α → 0.

PROPOSITION 9. (i) Let p > n
2 . Then we have

LP (�) ⊂ Kn(�) ⊂ K(�) ∩ L1(�) ⊂ K(�) ⊂ L1(�, δ(x)dx) ⊂ L1
loc(�)

(ii) Let � = B(0, 1) and ϕ be a radial function in K(B(0, 1))∩L1(B(0, 1)).
Then ϕ ∈ Kn(B(0, 1)).
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Proof. (i) It has been shown in [1] and [3], that the classical Kato class
Kn(�) contains LP (�) for any p > n

2 and that it is contained in L1(�).
The rest of inclusions are clear from Proposition 6 and Corollary 1(b).

(ii) Since ϕ ∈ K(B(0, 1)), then by Proposition 7, ϕ satisfies

∫ 1

0
r(1 − r)|ϕ(r)|dr < ∞.

Also since ϕ ∈ L1(B(0, 1)), then

∫ 1

0
rn−1|ϕ(r)|dr < ∞.

Now we use the fact that 1 − r ∼ 1 − rn−2, to conclude that

∫ 1

0
r|ϕ(r)|dr < ∞.

Which implies by Remark 5, that ϕ ∈ Kn(B(0, 1)).

THEOREM 1. Let ϕ be a function in K(�). Then the function V ϕ defined
in � by

V ϕ(x) =
∫

�

G(x, y)ϕ(y)dy,

is in C0(�).

Proof. Let ϕ ∈ K(�), x0 ∈ � and x, x ′ ∈ B(x0, α)∩�, where α > 0. Then
we have

|V ϕ(x) − V ϕ(x ′)| �
∫

�

|G(x, y) − G(x ′, y)||ϕ(y)|dy

� 2 sup
ζ∈�

∫
�∩B(x0,2α)

G(ζ, y)|ϕ(y)|dy

+
∫

�∩(|x0−y|�2α)

|G(x, y) − G(x ′, y)||ϕ(y)|dy.

If |x0 − y| � 2α, |x − x0| � α and |x ′ − x0| � α, then |x − y| � α and
|x ′ − y| � α.
Hence it follows from (2.3) that

|G(x, y) − G(x ′, y)| � C

αn
δ(y).
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Using the continuity of G outside the diagonal, we deduce by the dominated
convergence theorem and Corollary 1(b) that

∫
�∩(|x0−y|�2α)

|G(x, y) − G(x ′, y)||ϕ(y)|dy → 0 as |x − x ′| → 0

So we deduce by (2.5), with h ≡ 1, that

|V ϕ(x) − V ϕ(x ′)| → 0 as |x − x ′| → 0.

Now, since for all y ∈ �, limx→∂� G(x, y) = 0, then by the same argument
as above, we get

lim
x→∂�

V ϕ(x) = 0

Thus V ϕ ∈ C0(�).

PROPOSITION 10. Let ϕ be a function in K(�). Then the function

x →
∫

�

δ(y)

δ(x)
G(x, y)ϕ(y)dy

is continuous in �̄.

Proof. First, we remark that for y ∈ �, the function x → G(x,y)

δ(x)
is con-

tinuous in �̄. So the result holds by an argument similar to that used in
the proof of (2.5).

3. Positive Singular Solutions of the Equation �u + f (·, u) = 0

In this section we suppose that � contains 0. So, we are interested in the
existence of positive singular solutions for the problem (P ). We present in
the next Theorem the main result of this section.

THEOREM 2. Assume (H1)–(H3). Then the problem (P ) has infinitely
many solutions. More precisely, there exists b0 > 0 such that for each
b ∈ (0, b0], there exists a solution u of (P ) continuous on �\{0} and satis-
fying

u(x) ∼ δ(x)

|x|n−2
, f or all x ∈ �\{0}
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and

lim
|x|→0

u(x)|x|n−2 = bcn,

where cn = �( n
2 −1)

4π
n
2

.

For the proof, we put F := {w ∈ C+(�) : ||w||∞ � 1}, where || · ||∞ is
the uniform norm. So we have the following result:

LEMMA 3. Assume (H1)–(H3). We define the operator T on F by

T ω(x) = 1
G(x, 0)

∫
�

G(x, y)f (y, ω(y)G(y, 0))dy, x ∈ �.

Then the family of functions T (F ) is relatively compact in C(�).

Proof. By (H2), we have for all ω ∈ F

|T ω(x)| � 1
G(x, 0)

∫
�

G(x, y)G(y, 0)θ(y)dy.

Since θ(x) = q(x, G(x, 0)) belongs to the class K(�), then by (2.4), we
deduce that

‖T ω‖∞ � 2C0‖θ‖�.

Hence, the family T (F ) is uniformly bounded. Now, we propose to prove
the equicontinuity of T (F ) in �. Let x0 ∈ � and α > 0. Let x, x ′ ∈ B(x0, α)∩
� and ω ∈ F , then

|T ω(x) − T ω(x ′)|
�
∫

�

∣∣∣∣G(x, y)

G(x, 0)
− G(x ′, y)

G(x ′, 0)

∣∣∣∣G(y, 0)θ(y)dy

� 2 sup
x∈�

1
G(x, 0)

∫
�∩B(0,2α)

G(x, y)G(y, 0)θ(y)dy

+2 sup
x∈�

1
G(x, 0)

∫
�∩B(x0,2α)

G(x, y)G(y, 0)θ(y)dy

+
∫

�∩Bc(0,2α)∩Bc(x0,2α)

∣∣∣∣G(x, y)

G(x, 0)
− G(x ′, y)

G(x ′, 0)

∣∣∣∣G(y, 0)θ(y)dy.
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If |x0 − y| � 2α and |x − x0| � α, then |x − y| � α. Hence, it follows from
(1.6) and (2.3), that for all x ∈ B(x0, α) ∩ � and y ∈ �0 := Bc(0, 2α) ∩
Bc(x0, 2x) ∩ �, we have

G(x, y)

G(x, 0)
G(y, 0) � Cδ2(y).

Moreover, when y ∈ �0, the function x → G(x,y)

G(x,0)
is continuous in B(x0, α)∩

�. Then, we deduce by Lemma 1 and the dominated convergence theorem
that

∫
�∩Bc(0,2α)∩Bc(x0,2α)

∣∣∣∣G(x, y)

G(x, 0)
− G(x ′, y)

G(x ′, 0)

∣∣∣∣G(y, 0)θ(y)dy → 0,

as |x − x ′| → 0.
By (2.5), we deduce that

|T ω(x) − T ω(x ′)| → 0, as |x − x ′| → 0.

uniformly for all w ∈ F .

The result follows by Ascoli’s Theorem.

Proof of Theorem 2. We aim to show that there exists b0 > 0 such that
for each b ∈ (0, b0], there exists a continuous function u in �\{0} satisfying
the following integral equation

u(x) = bG(x, 0) +
∫

�

G(x, y)f (y, u(y))dy, x ∈ �. (3.1)

Let β ∈ (0, 1). Then by Lemma 3, the function

Tβ(x) = 1
G(x, 0)

∫
�

G(x, y)G(y, 0)q(y, βG(y, 0))dy

is continuous in �. Moreover, by (H2), (H3) and (2.4), we deduce by the
dominated convergence theorem that

∀x ∈ �, lim
β→0

Tβ(x) = 0.

Since the function β → Tβ(x) is nondecreasing in (0, 1), then, by Dini
Lemma, we have

lim
β→0

(
sup
x∈�

1
G(x, 0)

∫
�

G(x, y)G(y, 0)q(y, βG(y, 0))dy

)
= 0.
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Thus, there exists β ∈ (0, 1) such that for each x ∈ �,

1
G(x, 0)

∫
�

G(x, y)G(y, 0)q(y, βG(y, 0))dy � 1
3
.

Let b0 = 2
3β and b ∈ (0, b0]. We shall use a fixed point argument. Let

S =
{
w ∈ C(�) :

b

2
� w(x) � 3b

2

}
.

Then, S is a nonempty closed bounded and convex set in C(�). We define
the operator � on S by

�w(x) = b + 1
G(x, 0)

∫
�

G(x, y)f (y, w(y)G(y, 0))dy, x ∈ �.

By Lemma 3, �S ⊂ C(�). Moreover, let w ∈ S, then for any x ∈ �, we
have

|�w(x) − b| � 3b

2
1

G(x, 0)

∫
�

G(x, y)G(y, 0)q(y, βG(y, 0))dy � b

2
.

It follows that b
2 � �w(x) � 3b

2 and so �S ⊂ S.
Next, we shall prove the continuity of � in the supermum norm. Let

(wk)k be a sequence in S which converges uniformly to w ∈ S, then since f

is continuous with respect to the second variable, we deduce by the domi-
nated convergence theorem that

∀x ∈ �, �wk(x) − �w(x) → 0 as k → ∞.

Now, since �S is a relatively compact family in C(�), then

‖�wk − �w‖∞ → 0 as k → ∞.

So, the Schauder fixed point theorem implies the existence of w ∈ S such
that �w = w.

For all x ∈ �, put u(x) = w(x)G(x, 0). Thus, u is a continuous function
in �\{0} satisfying (3.1). On the other hand, by (2.1) we have

G(x, 0) ∼ δ(x)

|x|n−2
, for all x ∈ �\{0}.
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Then it is clear that u is a solution of (P ) such that

u(x) ∼ δ(x)

|x|n−2
for all x ∈ �\{0}

and

lim
|x|→0

u(x)

G(x, 0)
= b.

Furthermore, since lim|x|→0 |x|n−2G(x, 0) = cn, then we have

lim
|x|→0

u(x)|x|n−2 = bcn.

This ends the proof.

EXAMPLE 1. Let � = B(0, 1), and Q(r, t) = max|x|=r q(x, t), 0 � r � 1. If

∫ 1

0
r(1 − r)Q

(
r,

1 − r

rn−2

)
dr < ∞,

then there exists b0 > 0 such that for each b ∈ (0, b0], the problem
{

	u(x) + f (x, u(x)) = 0, in �\{0} (in the sense of distributions)
u|∂� = 0.

has a positive solution which is continuous in �\{0} and satisfies

u(x) ∼ 1 − |x|
|x|n−2

, for all x ∈ �\{0}

and

lim
|x|→0

u(x)|x|n−2 = bcn.

EXAMPLE 2. Let p > 1, λ < 2 and µ < 2. Let V ∈ B(�) such that

∀x ∈ �, |V (x)| � C
|x|(n−2)(p−1)−µ

(δ(x))p−1+λ
.

Then there exists b0 > 0 such that for each b ∈ (0, b0], the problem
{

	u(x) + V (x)up(x) = 0, in �\{0} (in the sense of distributions)
u|∂� = 0.
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has a positive solution which is continuous in �\{0} and satisfies

u(x) ∼ δ(x)

|x|n−2
, for all x ∈ �\{0}

and

lim
|x|→0

u(x)|x|n−2 = bcn.
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