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Farkas-type Results for Max-functions
and Applications
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Abstract. We present some Farkas-type results for inequality systems involv-
ing finitely many convex constraints as well as convex max-functions. There-
fore we use the dual of a minmax optimization problem. The main theorem
and its consequences allows us to establish, as particular instances, some set
containment characterizations and to rediscover two famous theorems of the
alternative.
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1. Introduction

In the paper [9], Mangasarian introduced a new approach in order to give dual
characterizations for different set containment problems. He succeeded to char-
acterize the containment of a polyhedral set in another polyhedral set and in a
reverse convex set defined by convex quadratic constraints and the containment
of a general closed convex set in a reverse convex set defined by convex nonlinear
constraints, respectively. By incorporating them as prior knowledge, these charac-
terizations can be very useful in the determination of knowledge-based classifiers,
the most famous example being here the so-called support vector machines classi-
fiers.

Motivated by the paper [9], Jeyakumar has established in [7] dual charac-
terizations for the containment of a closed convex set, defined by infinitely many
convex constraints, in an arbitrary polyhedral set, in a reverse convex set and
in another convex set, respectively. The characterizations are given in terms of
epigraphs of conjugate functions.

Recently, Boţ and Wanka have presented in [3] some new Farkas-type results
for inequality systems involving a finite as well as an infinite number of convex
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constraints. This approach bases on the theory of conjugate duality for convex opti-
mization problems, namely by using the so-called Fenchel and Fenchel-Lagrange
duality concepts (see also [1], [2], [10], [12]). Moreover the authors show how these
new Farkas-type results generalize some of the results obtained by Jeyakumar
in [7].

The aim of the present paper is to extend the results obtained in [3] by con-
sidering inequality systems involving finitely many convex constraints as well as
convex max-functions. Then we particularize them in order to obtain set contain-
ment characterizations and, on the other hand, to rediscover two famous theorems
of the alternative. Therefore we give an extended formulation of the Lagrange
dual of a minmax optimization problem, which leads to new Farkas-type results
employing the conjugates of the functions involved. Thus we succeed to under-
line the connections that exist between Farkas-type results and theorems of the
alternative and, on the other hand, the theory of the duality.

The paper is organized as follows. In section 2 we present definitions and
preliminary results that will be used later in the paper and we introduce the pri-
mal minmax optimization problem. In section 3 we construct its dual problem
by using the Lagrange duality. After proving the strong duality we formulate and
prove also the optimality conditions for these problems. Section 3 contains our
main results. By using the duality developed in the previous section we give a
Farkas-type theorem. Then we apply this theorem and its corollaries to three set
containment characterization problems. In the last section we rediscover Gale’s
and Motzkin’s theorems of the alternative by using the general results obtained in
section 3.

2. Preliminaries

In this section we describe the notations we use throughout this paper and present
some necessary preliminary results. All vectors will be column vectors. A column
vector will be transposed to a row vector by an upper index T . If A is a matrix, then
AT stands for its transpose. The inner product of two vectors x = (x1, . . . , xn)T

and y = (y1, . . . , yn)T in the n-dimensional real space R
n will be denoted by

xT y =
n∑

i=1

xiyi.

The following convention for inequalities will be used. If x, y ∈ R
n, n ≥ 2,

then

x � y ⇔ xi ≥ yi, i = 1, . . . , n,
x ≥ y ⇔ x � y and x �= y,
x > y ⇔ xi > yi, i = 1, . . . , n.

For x, y ∈ R = R ∪ {±∞} we write, as usual, x ≥ y and x > y if x is greater than
or equal to y and if x is strictly greater than y, respectively.



Vol. 10 (2006) Farkas-type Results for Max-functions and Applications 763

For a set X ⊆ R
n we shall denote the relative interior of X by ri(X). Fur-

thermore, let the indicator function of X be defined by δX : R
n → R,

δX(x) =
{

0, if x ∈ X,
+∞, otherwise.

Considering now a function f : R
n → R, we denote by

dom(f) = {x ∈ R
n : f(x) < +∞}

its effective domain. We say that f is proper if dom(f) �= ∅ and f(x) �= −∞ for
all x ∈ R

n.
When X is a nonempty subset of R

n we define for f the so-called conjugate
relative to the set X

f∗
X : R

n → R, f∗
X(p) = sup

x∈X
{pT x − f(x)}.

By taking X equal to the whole space R
n, the conjugate relative to the set X

becomes the classical conjugate function of f (the Fenchel-Moreau conjugate)

f∗ : R
n → R, f∗(p) = sup

x∈Rn

{pT x − f(x)}.

Throughout the present paper we assume that X is a nonempty convex sub-
set of R

n and that fi : R
n → R, i = 1, . . . , k, are proper convex functions such that

k⋂

i=1

ri(dom(fi))
⋂

ri(X) �= ∅. Furthermore, let g = (g1, . . . , gm)T : R
n → R

m be a

vector-valued function with gj convex functions, for j = 1, . . . ,m. Using them we
introduce the following minmax optimization problem

(P ) inf
x

max
i=1,...,k

{fi(x)},

s.t. x ∈ X, g(x) � 0.

Let us notice that (P ) is a convex optimization problem, its objective func-
tion being convex. To (P ) we associate another optimization problem (P ′) with the
property that v(P ) = v(P ′), where v(P ) and v(P ′) represent the optimal objective
values of the problems (P ) and (P ′), respectively. We formulate (P ′), which is also
a convex optimization problem, in the following way (see for instance [11] and [1])

(P ′) inf
x,a

a,

s.t. x ∈ X, g(x) � 0, a ∈ R,
fi(x) − a ≤ 0, i = 1, . . . , k.

Proposition 1 states the equality between the optimal objective values of the
problems (P ) and (P ′).
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Proposition 1. It holds v(P ) = v(P ′).

Proof. Let x be feasible to (P ). If max
i=1,...,k

{fi(x)} = +∞, then max
i=1,...,k

{fi(x)} ≥
v(P ′). Assuming now that max

i=1,...,k
{fi(x)} < +∞ and taking a = max

i=1,...,k
{fi(x)},

we have that (x, a) is feasible to (P ′) and so max
i=1,...,k

{fi(x)} = a ≥ v(P ′). In both

cases the objective function of (P ) is greater than or equal to v(P ′) and this implies
that v(P ) ≥ v(P ′).

Conversely, let (x, a) be feasible to (P ′), namely x ∈ X, g(x) � 0, a ∈ R and
fi(x) ≤ a,∀i = 1, . . . , k. This implies the feasibility of x to problem (P ) and that
a ≥ max

i=1,...,k
{fi(x)} ≥ v(P ). This assures that the opposite inequality v(P ′) ≥ v(P )

also holds. In conclusion, v(P ) = v(P ′). �

3. Duality for the Minmax Optimization Problem

The aim of this section is to construct a dual problem to (P ′) and to give sufficient
conditions in order to achieve strong duality, namely that the optimal objective
values of the primal and the dual problems coincide and the dual problem has an
optimal solution. After that, we formulate and prove also the optimality conditions
for these problems.

Let us consider the well-known Lagrange dual problem to (P ′) with q1 ∈
R

k, q2 ∈ R
m, q1 � 0, q2 � 0 as dual variables

(D) sup
q1�0,

q2�0

inf
x∈X,
a∈R

{

a +
k∑

i=1

q1
i [fi(x) − a] + (q2)T g(x)

}

.

We can separate the variables in parentheses, so it follows

(D) sup
q1�0,

q2�0

{

inf
x∈X

[
k∑

i=1

q1
i fi(x) + (q2)T g(x)

]

+ inf
a∈R

[

a

(

1 −
k∑

i=1

q1
i

)]}

.

Since

inf
a∈R

[

a

(

1 −
k∑

i=1

q1
i

)]

=





0, if

k∑

i=1

q1
i = 1,

−∞, otherwise,

the dual follows to be

(D) sup
q1�0,q2�0,

k∑

i=1
q1
i =1

inf
x∈X

[
k∑

i=1

q1
i fi(x) + (q2)T g(x)

]

.
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The infimum concerning x ∈ X is rewritable as

inf
x∈X

[
k∑

i=1

q1
i fi(x) + (q2)T g(x)

]

= inf
x∈Rn

[
k∑

i=1

q1
i fi(x) + (q2)T g(x) + δX(x)

]

= − sup
x∈Rn

[

−
k∑

i=1

q1
i fi(x) − (q2)T g(x) − δX(x)

]

= −
(

k∑

i=1

q1
i fi + (q2)T g + δX

)∗

(0),

where δX is the indicator function of the set X.
The functions q1

i fi, i = 1, .., k, and (q2)T g + δX are proper and convex and
the intersection of the relative interiors of their effective domains fulfills

k⋂

i=1

ri(dom(q1
i fi))

⋂
ri(dom((q2)T g + δX)) ⊇

k⋂

i=1

ri(dom(fi))
⋂

ri(X),

which is a nonempty set. Therefore we can apply Theorem 16.4 in [10] and so
(

k∑

i=1

q1
i fi + (q2)T g + δX

)∗

(0)

= inf

{
k∑

i=1

(q1
i fi)∗(pi) +

(
(q2)T g + δX

)∗
(u) :

k∑

i=1

pi + u = 0

}

, (1)

where the infimum is attained. This leads to the following formulation for the dual
(D)

(D) sup
q1�0,

k∑

i=1
q1
i =1,q2�0,

pi∈Rn,i=1,..,k,u∈Rn,

k∑

i=1
pi+u=0

{

−
k∑

i=1

(q1
i fi)∗(pi) − ((q2)T g + δX

)∗
(u)

}

.

Finally, because of
(
(q2)T g + δX

)∗ (u) =
(
(q2)T g

)∗
X

(u), we get

(D) sup
q1�0,

k∑

i=1
q1
i =1,q2�0,

pi∈Rn,i=1,..,k

{

−
k∑

i=1

(q1
i fi)∗(pi) − ((q2)T g

)∗
X

(

−
k∑

i=1

pi

)}

.

It is obvious from the construction of the dual that the weak duality assertion
between (P ′) and (D), i. e. the value of the primal objective function at any feasi-
ble point is greater than or equal to the value of the dual objective function at any
dual feasible point, always stands. This implies that v(P ′) ≥ v(D), where v(D)
is the optimal objective value of (D). Unlike weak duality, strong duality can fail
in the general case. To avoid this undesired situation, we introduce a constraint
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qualification that guarantees the validity of strong duality in case it is fulfilled.
First let us divide the index set {1, . . . , m} into two subsets,

L :=

{

j ∈ {1, . . . , m} : gj : R
n → R is an affine function

}

and N := {1, . . . , m}\L. The constraint qualification follows

(CQ) ∃x′ ∈
k⋂

i=1

ri(dom(fi))
⋂

ri(X) :
{

gj(x′) ≤ 0, j ∈ L,
gj(x′) < 0, j ∈ N.

We are ready now to formulate the strong duality assertion.

Theorem 1. (strong duality) Assume that v(P ) > −∞. Provided that the constraint
qualification (CQ) is fulfilled, the dual problem (D) has an optimal solution and
v(P ) = v(P ′) = v(D).

Proof. The constraint qualification (CQ) being fulfilled, Proposition 1 states that
v(P ) = v(P ′) ∈ R. On the other hand, we can write (P ′) equivalently as

(P ′) inf
x,a

a,

s.t. x ∈
k⋂

i=1

dom(fi)
⋂

X, g(x) � 0, a ∈ R,

fi(x) − a ≤ 0, i = 1, . . . , k.

By Theorem 6.5 in [10], (CQ) yields

x′ ∈
k⋂

i=1

ri(dom(fi))
⋂

ri(X) = ri

(
k⋂

i=1

dom(fi)
⋂

X

)

,

and so there exists
(

x′, max
i=1,...,k

{fi(x′)} + 1
)

∈ ri

((
k⋂

i=1

dom(fi)
⋂

X

)

× R

)

such

that





gj(x′) ≤ 0, j ∈ L,
gj(x′) < 0, j ∈ N,

fi(x′) −
(

max
i=1,...,k

{fi(x′)} + 1
)

< 0, i = 1, . . . , k.

Under the present hypotheses, Theorem 5.7 in [4] states the existence of q̄1 ∈
R

k, q̄1 � 0,
k∑

i=1

q̄1
i = 1 and q̄2 ∈ R

m, q̄2 � 0 such that strong duality for the



Vol. 10 (2006) Farkas-type Results for Max-functions and Applications 767

Lagrange dual holds, i. e.

v(P ′) = max
q1�0,q2�0,

k∑

i=1
q1
i =1

inf
x∈Rn

[
k∑

i=1

q1
i fi(x) + (q2)T g(x) + δX(x)

]

= inf
x∈Rn

[
k∑

i=1

q̄1
i fi(x) + (q̄2)T g(x) + δX(x)

]

= −
(

k∑

i=1

q̄1
i fi + (q̄2)T g + δX

)∗
(0).

Using the fact that the infimum which appears in relation (1) is always attained,
there exist p̄i ∈ R

n, i = 1, . . . , k, such that

v(P ′) = −
k∑

i=1

(q̄1
i fi)∗(p̄i) − ((q̄2)T g

)∗
X

(

−
k∑

i=1

p̄i

)

. (2)

In the right-hand term of (2) one may recognize the objective function of (D)
at (q̄1, q̄2, p̄1, . . . , p̄k). From weak duality it follows that the supremum of (D) is
attained, becoming maximum. The element (q̄1, q̄2, p̄1, . . . , p̄k) turns out to be an
optimal solution to (D) and therefore v(P ) = v(P ′) = v(D). �

Next we derive necessary and sufficient optimality conditions regarding the
problems (P ) and (D).

Theorem 2. (optimality conditions)

(a) If the constraint qualification (CQ) is fulfilled and x̄ is an optimal solution
to (P ), then there exists (q̄1, q̄2, p̄1, . . . , p̄k), an optimal solution to (D), sat-
isfying the following optimality conditions
(i) fi(x̄) = max

i=1,...,k
{fi(x̄)}, if q̄1

i > 0, i = 1, . . . , k,

(ii) (q̄2)T g(x̄) = 0,
(iii) (q̄1

i fi)∗(p̄i) + q̄1
i fi(x̄) = p̄T

i x̄, i = 1, . . . , k,

(iv)
(
(q̄2)T g

)∗
X

(

−
k∑

i=1

p̄i

)

+ (q̄2)T g(x̄) =
(

−
k∑

i=1

p̄i

)T

x̄.

(b) Let x̄ be feasible to (P ) and (q̄1, q̄2, p̄1, . . . , p̄k) be feasible to (D) such that
(i)−(iv) are satisfied. Then x̄ is an optimal solution to (P ), (q̄1, q̄2, p̄1, . . . , p̄k)
is an optimal solution to (D) and v(P ) = v(D).

Proof. By Theorem 1 follows that the dual problem (D) has an optimal solution
(q̄1, q̄2, p̄1, . . . , p̄k) which fulfills

max
i=1,...,k

{fi(x̄)} = v(P ) = v(P ′) = v(D) = −
k∑

i=1

(q̄1
i fi)∗(p̄i) − ((q̄2)T g

)∗
X

(

−
k∑

i=1

p̄i

)
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or, equivalently,

0 = max
i=1,...,k

{fi(x̄)} +
k∑

i=1

(q̄1
i fi)∗(p̄i) +

(
(q̄2)T g

)∗
X

(

−
k∑

i=1

p̄i

)

= max
i=1,...,k

{fi(x̄)} −
k∑

i=1

q̄1
i fi(x̄)

+
k∑

i=1

[
(q̄1

i fi)∗(p̄i) + q̄1
i fi(x̄) − p̄T

i x̄
]

+
(
(q̄2)T g

)∗
X

(

−
k∑

i=1

p̄i

)

+ (q̄2)T g(x̄) −
(

−
k∑

i=1

p̄i

)T

x̄ − (q̄2)T g(x̄). (3)

On the other hand, by the so-called Young inequality we have

(q̄1
i fi)∗(p̄i) + q̄1

i fi(x̄) − p̄T
i x̄ ≥ 0,∀i = 1, . . . , k

and

(
(q̄2)T g

)∗
X

(

−
k∑

i=1

p̄i

)

+ (q̄2)T g(x̄) −
(

−
k∑

i=1

p̄i

)T

x̄ ≥ 0.

In addition, −(q̄2)T g(x̄) ≥ 0 and max
i=1,...,k

{fi(x̄)} −
k∑

i=1

q̄1
i fi(x̄) ≥ 0. Therefore the

terms of the sum in (3) are greater than or equal to zero. This implies that all of
them must be equal to zero and, in conclusion, the optimality conditions (i)− (iv)
must be fulfilled.

All the calculations done before carried out in the reverse direction prove
that assertion (b) also holds. �

4. A New Farkas-type Result and Its Applications in Set
Containment Characterization

In the following we give a new Farkas-type result for inequality systems involving
finitely many convex constraints as well as convex max-functions. The main the-
orem yields a new dual characterization for this kind of inequality systems and
bases on the duality concepts introduced in the previous section. In the last part
of this section we give some applications of this new result and its consequences by
the characterization of three set containment problems. Two of them allow us to
rediscover some results proved by Mangasarian in [9] and the last one characterizes
the containment of a polyhedral set in a reverse open polyhedral set.

We assume that all the hypotheses introduced in section 2 are fulfilled, so we
can formulate the main result of this paper.

Theorem 3. Let the constraint qualification (CQ) be fulfilled. Then the following
statements are equivalent



Vol. 10 (2006) Farkas-type Results for Max-functions and Applications 769

(i) x ∈ X, g(x) � 0 ⇒ max
i=1,...,k

{fi(x)} ≥ 0.

(ii) There exist q1 ∈ R
k, q1 � 0,

k∑

i=1

q1
i = 1, q2 ∈ R

m, q2 � 0 and pi ∈ R
n, i =

1, . . . , k, such that

k∑

i=1

(q1
i fi)∗(pi) +

(
(q2)T g

)∗
X

(

−
k∑

i=1

pi

)

≤ 0.

Proof. (ii) ⇒ (i). Choose q1 ∈ R
k, q1 � 0,

k∑

i=1

q1
i = 1, q2 ∈ R

m, q2 � 0 and

pi ∈ R
n, i = 1, . . . , k, such that

k∑

i=1

(q1
i fi)∗(pi) +

(
(q2)T g

)∗
X

(

−
k∑

i=1

pi

)

≤ 0 or,

equivalently, −
k∑

i=1

(q1
i fi)∗(pi) − ((q2)T g

)∗
X

(

−
k∑

i=1

pi

)

≥ 0. The optimal objective

value v(D) of the dual optimization problem (D) is greater than or equal to zero.
This implies that the optimal objective value v(P ) of the problem

(P ) inf
x

max
i=1,...,k

{fi(x)},

s.t. x ∈ X, g(x) � 0

fulfills v(P ) = v(P ′) ≥ v(D) ≥ 0. We recall that by weak duality the inequality
v(P ′) ≥ v(D) is true. Therefore for all x ∈ X, g(x) � 0, we have max

i=1,...,k
{fi(x)} ≥ 0

and so (i) is fulfilled.
(i) ⇒ (ii). Assuming now that (i) is true, it follows that the optimal objective

value of the problem (P ) is greater than or equal to zero. On the other hand, the
constraint qualification (CQ) being fulfilled, we obtain by Theorem 2 that there
exists an optimal solution to (D) (q1, q2, p1, . . . , pk) such that

v(P ) = v(P ′) = v(D) = −
k∑

i=1

(q1
i fi)∗(pi) − ((q2)T g

)∗
X

(

−
k∑

i=1

pi

)

≥ 0.

This proves the validity of (ii). �

Remark. For the implication (ii) ⇒ (i) the constraint qualification (CQ) is not
necessary. �

As an immediate consequence of Theorem 3 we get the following theorem of
the alternative.

Corollary 1. Let the constraint qualification (CQ) be fulfilled. Then either the
inequality system

(I) x ∈ X, g(x) � 0, max
i=1,...,k

{fi(x)} < 0
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has a solution or the system

(II)






k∑

i=1

(q1
i fi)∗(pi) +

(
(q2)T g

)∗
X

(

−
k∑

i=1

pi

)

≤ 0,

q1 � 0,
k∑

i=1

q1
i = 1, q2 � 0, pi ∈ R

n, i = 1, . . . , k

has a solution, but never both.

For k = 1, Theorem 3 and Corollary 1 imply the following results.

Theorem 4. Let X ⊆ R
n be a nonempty convex set, f : R

n → R be a proper
convex function and g = (g1, . . . , gm)T : R

n → R
m be a vector-valued function

with gj convex, for j = 1, . . . ,m. If there exists x′ ∈ ri(dom(f)) ∩ ri(X) such
that gj(x′) ≤ 0,∀j ∈ L and gj(x′) < 0,∀j ∈ N , then the following statements are
equivalent:
(i) x ∈ X, g(x) � 0 ⇒ f(x) ≥ 0.
(ii) There exist q ∈ R

m, q � 0 and p ∈ R
n such that

f∗(p) + (qT g)∗
X(−p) ≤ 0.

Corollary 2. Let the assumptions of Theorem 4 be fulfilled. Then either the inequal-
ity system

(I) x ∈ X, g(x) � 0, f(x) < 0

has a solution or the system

(II) f∗(p) + (qT g)∗
X(−p) ≤ 0, p ∈ R

n, q � 0

has a solution, but never both.

Remark. Let us notice that Theorem 4 and Corollary 2 have been obtained by
Boţ and Wanka in [3]. This article is devoted to the presentation of new Farkas-
type results for inequality systems involving a finite as well as an infinite number
of convex constraints. The approach used in [3] bases on the theory of conjugate
duality for convex optimization problems, the so-called Fenchel and Fenchel-Lag-
range dual problems playing an important role. The results formulated and proved
in [3] generalize some recently published results due to Jeyakumar in [7]. �

Next we give some applications of Theorem 3 in order to characterize the
containment of a nonempty polyhedral set in an arbitrary polyhedral set and in a
reverse-convex set determined by convex quadratic constraints, respectively, in a
different manner than Mangasarian in [9].

Proposition 2. (polyhedral set containment in another polyhedral set) Let A ∈
R

p×n, B ∈ R
m×n, a ∈ R

p, b ∈ R
m and the sets A := {x ∈ R

n : Ax � a} and
B := {x ∈ R

n : Bx � b} be such that B is not empty. Then the following state-
ments are equivalent:

(i) B ⊆ A.
(ii) There exists Q ∈ R

p×m, Q � 0 such that a + Qb � 0 and A + QB = 0.
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Proof. In order to apply Theorem 4, let be X = R
n, g : R

n → R
m, g(x) = Bx − b

and fi : R
n → R, fi(x) = AT

i x − ai, for i = 1, . . . , p. Let Ai ∈ R
n and ai ∈ R

be such that AT
i , i = 1, . . . , p, are the row vectors of the matrix A ∈ R

p×n and
ai, i = 1, . . . , p, are the components of the vector a ∈ R

p, respectively.
The statement (i) can be equivalently written as

(i) x ∈ R
n, g(x) � 0 ⇒ fi(x) ≥ 0, ∀i = 1, . . . , p.

The set B being nonempty, yields that the constraint qualification which appears
in Theorem 4 is fulfilled. As a consequence of this theorem we have that B ⊆ A if
and only if

(ii) ∀i = 1, . . . , p there exist qi ∈ R
m, qi � 0 and pi ∈ R

n such that

f∗
i (pi) +

(
(qi)T g

)∗
(−pi) ≤ 0

or, equivalently,

sup
x∈Rn

{(pi)T x − AT
i x + ai} + sup

x∈Rn

{−(pi)T x − (qi)T Bx + (qi)T b}

= sup
x∈Rn

{(pi − Ai)T x} + ai + sup
x∈Rn

{(−pi − BT qi)T x} + (qi)T b ≤ 0. (4)

It is obvious that (4) is true just if pi = Ai,−pi = BT qi and ai + (qi)T b ≤ 0, for
i = 1, . . . , p. Therefore (ii) is rewritable as

(ii) ∀i = 1, . . . , p there exists qi ∈ R
m, qi � 0 such that Ai + BT qi = 0 and

ai + (qi)T b ≤ 0.

Considering Q ∈ R
p×m, the matrix with the row vectors (qi)T , i = 1, . . . , p,

we get the desired result.

(ii) There exists Q ∈ R
p×m, Q � 0 such that a + Qb � 0 and A + QB = 0.

This finishes the proof. �

Proposition 3. (polyhedral set containment in a reverse-convex quadratic set) Let
be B ∈ R

m×n, b ∈ R
m, Ai ∈ R

n, ai ∈ R, i = 1, . . . , p, and the symmetric positive
semidefinite matrices Ui ∈ R

n×n, i = 1, . . . , p. We consider the sets A := {x ∈
R

n : 1
2xT Uix + AT

i x ≥ ai, i = 1, . . . , p} and B := {x ∈ R
n : Bx � b} such that B

is not empty. Then the following statements are equivalent:

(i) B ⊆ A.
(ii) For i = 1, . . . , p there exist xi ∈ R

n and qi ∈ R
m, qi � 0 such that

AT
i + (qi)T B + (xi)T Ui = 0 and ai + (qi)T b +

1
2
(xi)T Uix

i ≤ 0.
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Proof. We apply again Theorem 4. Therefore let be X = R
n, g : R

n → R
m, g(x) =

Bx − b and fi : R
n → R, fi(x) = 1

2xT Uix + AT
i x − ai, i = 1, . . . , p. The statement

(i) can be equivalently written as

(i) x ∈ R
n, g(x) � 0 ⇒ fi(x) ≥ 0, ∀i = 1, . . . , p.

The set B is nonempty and so the constraint qualification in Theorem 4 is ful-
filled. For this reason, B ⊆ A if and only if

(ii) ∀i = 1, . . . , p there exist qi ∈ R
m, qi � 0 and pi ∈ R

n such that

f∗
i (pi) +

(
(qi)T g

)∗
(−pi) ≤ 0. (5)

We can write now (5) equivalently as follows

f∗
i (pi) + ((qi)T g)∗(−pi) ≤ 0

⇔ f∗
i (pi) + sup

x∈Rn

{−(pi)T x − (qi)T Bx + (qi)T b
} ≤ 0

⇔ f∗
i (pi) + (qi)T b + sup

x∈Rn

{(−pi − BT qi
)T

x
}

≤ 0

⇔ f∗
i (pi) + (qi)T b ≤ 0 and pi + BT qi = 0.

In order to calculate the conjugate of fi, let hi : R
n → R be defined by hi(x) =

1
2xT Uix + AT

i x = fi(x) + ai, i = 1, . . . , p. We have f∗
i (pi) = h∗

i (p
i) + ai, for

i = 1, . . . , p. On the other hand, the conjugate of hi, i = 1, . . . , p, can be calculated
by using the Moore-Penrose pseudo-inverse U−

i (see [5], [6])

h∗
i (p

i) =
{

1
2 (pi − Ai)T U−

i (pi − Ai), if pi ∈ Ai + ImUi,
+∞, otherwise.

Relation (ii) becomes

(ii) ∀i = 1, . . . , p there exist pi ∈ R
n and qi ∈ R

m, qi � 0 such that

pi ∈ Ai + ImUi, ai +
1
2
(pi − Ai)T U−

i (pi − Ai) + (qi)T b ≤ 0, pi + BT qi = 0.

By taking pi − Ai = Uix
i, i = 1, . . . , p, we get the following assertion

(ii) ∀i = 1, . . . , p there exist xi ∈ R
n and qi ∈ R

m, qi � 0 such that

ai +
1
2
(xi)T UT

i U−
i (Uix

i) + (qi)T b ≤ 0, Ai + Uix
i + BT qi = 0.

Because of the symmetry of Ui and the fact that UiU
−
i (y) = y,∀y ∈ ImUi, we get

UT
i U−

i (Uix
i) = UiU

−
i (Uix

i) = Uix
i, i = 1, . . . , p.

Finally, relation (ii) can be written as
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(ii) ∀i = 1, . . . , p there exist xi ∈ R
n and qi ∈ R

m, qi � 0 such that

AT
i + (qi)T B + (xi)T Ui = 0 and ai + (qi)T b +

1
2
(xi)T Uix

i ≤ 0. �

The last result of this section provides a characterization of the containment
of a polyhedral set in a reverse open polyhedral set and can be obtained as a direct
consequence of Theorem 3. One should notice that the methods used by Manga-
sarian in [9], which uses the duality theory for differentiable convex optimization
problems, fail in case of Proposition 4.

Proposition 4. (polyhedral set containment in a reverse open polyhedral set) Let
A ∈ R

k×n, B ∈ R
m×n, a ∈ R

k, b ∈ R
m and the sets A := {x ∈ R

n : Ax > a}
and B := {x ∈ R

n : Bx � b} be such that B is not empty. Then the following
statements are equivalent:

(i) B ⊆ R
n \ A.

(ii) There exist q1 ∈ R
k, q1 ≥ 0 and q2 ∈ R

m, q2 � 0 such that BT q2 = AT q1 and
bT q2 ≤ aT q1.

Proof. Let be X = R
n, g : R

n → R
m, g(x) = Bx − b and fi : R

n → R, fi(x) =
ai − AT

i x, for i = 1, . . . , k. Then the statement (i) is nothing else than

(i) x ∈ R
n, g(x) � 0 ⇒ max

i=1,...,k
{fi(x)} ≥ 0.

Because B is a nonempty set it follows that the constraint qualification (CQ)
is fulfilled. So, by Theorem 3, B ⊆ R

n \ A if and only if

(ii) there exist q1 ∈ R
k, q1 � 0,

k∑

i=1

q1
i = 1, q2 ∈ R

m, q2 � 0 and pi ∈ R
n, i =

1, . . . , k, such that

k∑

i=1

(q1
i fi)∗(pi) +

(
(q2)T g

)∗
(

−
k∑

i=1

pi

)

≤ 0

or, equivalently,

k∑

i=1

sup
x∈Rn

{(pi)T x − q1
i ai + q1

i AT
i x}+ sup

x∈Rn






(

−
k∑

i=1

pi

)T

x − (q2)T Bx + (q2)T b






=
k∑

i=1

sup
x∈Rn

{(pi + q1
i Ai)T x}

−
k∑

i=1

q1
i ai + sup

x∈Rn






(

−
k∑

i=1

pi − BT q2

)T

x





+ (q2)T b ≤ 0.
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Therefore (i) is true if and only if

(ii) there exist q1 ∈ R
k, q1 � 0,

k∑

i=1

q1
i = 1, q2 ∈ R

m, q2 � 0 and pi ∈ R
n, i =

1, . . . , k, such that pi = −q1
i Ai, i = 1, .., k, −

k∑

i=1

pi = BT q2 and −aT q1 + bT q2 ≤ 0,

which is rewritable as

(ii) there exist q1 ∈ R
k, q1 � 0,

k∑

i=1

q1
i = 1 and q2 ∈ R

m, q2 � 0 such that

BT q2 − AT q1 = 0 and bT q2 − aT q1 ≤ 0.

We conclude the proof by remarking that (ii) is true if and only if

(ii) there exist q1 ∈ R
k, q1 ≥ 0 and q2 ∈ R

m, q2 � 0 such that BT q2 = AT q1

and bT q2 ≤ aT q1. �

5. Rediscovering Two Famous Theorems of the Alternative

In the last section of this paper we give other applications for the general results
presented above, namely by getting two famous theorems of the alternative as con-
sequences of the Corollaries 1 and 2. The results we deal with are the theorems of
Gale and Motzkin. Further theorems of the alternative, including the nonhomoge-
neous theorem of Farkas and the theorems of Tucker, Stiemke, Gordan and Slater,
can be obtained from the results we mentioned above. For a detailed presentation
of theorems of the alternative we invite the reader to consult Mangasarian’s book
[8].

Throughout this section the set X will be the whole space R
n and all the

functions involved will be affine.

Theorem 5. (Gale’s theorem for linear inequalities) Let A ∈ R
k×n and c ∈ R

k be
given. Then either the inequality system

(I) Ax � c

has a solution x ∈ R
n or the system

(II) AT y = 0, cT y < 0, y � 0

has a solution y ∈ R
k, but never both.

Proof. Let be g : R
k → R

n × R
n × R

k, g(y) = (AT y,−AT y,−y)T and f : R
k →

R, f(y) = cT y. Then (II) is rewritable as

(II) y ∈ R
k, g(y) � 0, f(y) < 0.
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The constraint qualification (CQ) is fulfilled. By Corollary 2, (II) has a solution
or the system

(I) f∗(p) + (qT g)∗(−p) ≤ 0, p ∈ R
k, q � 0

has a solution, but never both. The system (I) becomes

(I)

{
sup
y∈Rk

{
(p − c)T y

}
+ sup

y∈Rk

{
(−p + Aq1 − Aq2 + q3)T y

} ≤ 0,

p ∈ R
k, q1 ∈ R

n, q1 � 0, q2 ∈ R
n, q2 � 0, q3 ∈ R

k, q3 � 0

or, equivalently,

(I) p = c, p = Ax + q3, p ∈ R
k, x ∈ R

n, q3 ∈ R
k, q3 � 0

which is nothing else than

(I) Ax � c, x ∈ R
n.

This concludes the proof. �

The last theorem of this section, known as Motzkin’s theorem of the alterna-
tive, characterizes the existence of solutions for homogeneous systems containing
equalities as well as inequations.

Theorem 6. (Motzkin’s theorem) Let A ∈ R
k×n, C ∈ R

s×n and D ∈ R
t×n be

given with A �= 0. Then either the inequality system

(I) Ax > 0, Cx � 0,Dx = 0

has a solution x ∈ R
n or the system

(II) AT y1 + CT y3 + DT y4 = 0, y1 ≥ 0, y3 � 0

has a solution y1 ∈ R
k, y3 ∈ R

s, y4 ∈ R
t, but never both.

Proof. The system (I) can be rewritten as

(I) − Cx � 0,Dx = 0, max
i=1,...,k

{−AT
i x} < 0,

AT
i , i = 1, . . . , k, being the row vectors of the matrix A. If g : R

n → R
s × R

t ×
R

t, g(x) = (−Cx,Dx,−Dx)T and fi : R
n → R, fi(x) = −AT

i x, i = 1, .., k, then (I)
is nothing else than

(I) x ∈ R
n, g(x) � 0, max

i=1,...,k
{fi(x)} < 0.

By Corollary 1, using the fact that the constraint qualification (CQ) is fulfilled for
x′ = 0, we get that either (I) has a solution or the system

(II)






k∑

i=1

(q1
i fi)∗(pi) +

(
(q2)T g

)∗
(

−
k∑

i=1

pi

)

≤ 0,

q1 � 0,
k∑

i=1

q1
i = 1, q2 � 0, pi ∈ R

n, i = 1, . . . , k,
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has a solution, but never both. The last inequality system becomes

(II)






k∑

i=1

sup
x∈Rn

{
(pi + q1

i Ai)T x
}
+ sup

x∈Rn

{(

−
k∑

i=1

pi + CT q2′
+ DT q2′′

)T

x

}

≤0,

q1 � 0,
k∑

i=1

q1
i = 1, q2′ ∈ R

s, q2′ � 0, q2′′ ∈ R
t, pi ∈ R

n, i = 1, . . . , k,

which is the same as

(II)






pi = −q1
i Ai, C

T q2′
+ DT q2′′

=
k∑

i=1

pi,

q1 � 0,
k∑

i=1

q1
i = 1, q2′ ∈ R

s, q2′ � 0, q2′′ ∈ R
t, pi ∈ R

n, i = 1, . . . , k.

(6)

We conclude the proof by remarking that (6) has a solution if and only if

(II) AT q1 + CT q2′
+ DT q2′′

= 0, q1 ≥ 0, q2′ � 0

has a solution q1 ∈ R
k, q2′ ∈ R

s, q2′′ ∈ R
t. �

6. Conclusion

In this paper we present some Farkas-type results for inequality systems involv-
ing finitely many convex constraints as well as convex max-functions. Therefore
an important role is played by the dual of a minmax optimization problem. The
approach we use here leads to Farkas-type formulations by employing the conju-
gates of the functions involved. The main theorem is a generalization of a another
recent Farkas-type theorem formulated by Boţ and Wanka in [3]. Moreover, it
allows us to establish some results concerning set containment characterization
and to rediscover two famous theorems of the alternative.
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