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On Order Convergence of Nets
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Abstract. In this paper we show that any order continuous operator between two Riesz
spaces is automatically order bounded. We also investigate different types of order
convergence.

1. Order Convergent Nets

First part of this paper deals with two modes of convergence of nets in
Riesz paces. For terminology and elementary properties of Riesz spaces
not explained in this paper the reader can consult either of the following
sources [1,2,7,8], or [11].

A number of authors have attached various meanings to the statement
“Net xα order converges to the element x.” In the literature on the Riesz
space theory the order convergence of nets is defined in one of the follow-
ing two ways.

DEFINITION 1.1. ([2,7,8,11]) A net (xα)α∈A is order convergent to x, if
there exists a net (yα)α∈A such that:

1. yα ↓ 0, and
2. |xα − x| � yα for all α ∈ A.

DEFINITION 1.2. ([1,11]) A net (xα)α∈A is order convergent to x, if there
exists a net (yβ)β∈B such that:

1. yβ ↓ 0, and
2. for each β ∈ B there exists some α0 ∈ A satisfying |xα − x| � yβ for

all α � α0.

In the book of Schaefer [11] the latter definition is referred to as order con-
vergence of the section filter of the net (xα)α∈A.

† Deceased
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It should be noticed that the first definition does not satisfy our
understanding of the word “convergence”. A converging net must remain
converging even if we attach additional terms at the “beginning” of the
net. The following simple example demonstrates that this is not true for the
convergence described by Definition 1.1.

EXAMPLE 1.3. For any positive element b in an Archimedean vector
lattice E a net (xn)n∈N defined by xn = 1

n
b is order convergent to zero.

On the other hand let us attach negative integers but place them between
1 and 2 of the original index set. Define the elements of the extended net
by xn = |n|b for each negative integer n. Then xn is not order convergent
in the sense of Definition 1.1. It should be noticed that the extended net
xn is still converging to zero by Definition 1.2.

We fix Definition 1.1 by changing
2. |xα − x| � yα for all α ∈ A to
2′. |xα − x| � yα for all α ∈ A satisfying α � α0 for some α0 ∈ A.

This corrected version of Definition 1.1 seems to originate from [4].
Similarly to Anderson and Mathews [3] we will call a net 1-converg-

ing if it is order convergent in the sense of corrected Definition 1.1 and
2-converging if it is convergent in the sense of Definition 1.2. If lattice E

is Dedekind complete, then two definitions above become equivalent. How-
ever, if E is not Dedekind complete they define two different convergences.

EXAMPLE 1.4. (Fremlin [11], p. 141). Consider the one-point compactifi-
cation K of an uncountable discrete space, and let E = C(K). If (xn)n∈N
denotes the characteristic functions of a sequence of distinct singletons in
K, the sequence (xn) is 2-convergent but not 1-convergent to zero.

Despite the last example, there is very intimate relation between these
two convergence in any vector lattice. Namely, the following proposition
holds.

PROPOSITION 1.5. Let (xα)α∈A be a net in a Riesz space E and x ∈ E.
Denote a Dedekind completion of E by Eδ. Then the following are equivalent.

1. The net (xα)α∈A 2-converges to x in E;
2. The net (xα)α∈A 1-converges to x in Eδ.

Proof. Since the lattice Eδ is Dedekind complete the implication
(1) ⇒ (2) is trivial. Let us prove the reverse implication. Let net (xα)α∈A

1-converge to x in Eδ. Then there exists a net (zα)α∈A ⊂ Eδ and some index
α0 ∈ A such that zα ↓ 0 and |xα − x| � zα for all α ∈ A satisfying α � α0.
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Consider a set B defined by B = {β ∈ E : ∃α � α0 such that β � zα} and
ordered by β1 � β2 in B ⇔ β1 � β2 in E. Since zα ↓ the set B is directed.
So, we consider a net on B defined by yβ = β. Since E is order dense in
Eδ it follows that yβ ↓ 0 in E. Moreover, for each β ∈ B there exists some
α1 ∈ A such that zα1 � β = yβ . Therefore, for all α � α1 we have

|xα − x| � zα � zα1 � yβ.

Thus, the net (xα)α∈A 2-converges to x in E.

Since the theory of vector spaces is first of all theory of linear operators,
it is important to compare two convergences from the point of view of
operators. Namely, are the operators preserving 1-convergence different
from operators preserving 2-convergence? Although these operators are
different, there are many similarities. It should be noticed that all results
about order-continuous operators from [2,7,8,11] which are proved for
Definition 1.1 remain valid for the operators preserving 1-convergence.
Keeping this in mind let us prove the following connection.

PROPOSITION 1.6. Let T : E → F be an operator between two Riesz
spaces. If T preserves 1-convergence, then T preserves 2-convergence.

Proof. Let T : E → F be an operator that preserves 1-convergence.
It follows from our Theorem 2.1 that T is order bounded. Consider T as
an operator acting from E into a Dedekind completion F δ. Then operator
|T |:E → F δ exists and preserves 1-convergence (see for instance Theo-
rem 4.3 in [2]). By an extension theorem which is due to A. I. Veksler and
can be found, for instance, in [2] (Theorem 4.12) there is a unique exten-
sion |T |δ of operator |T | which acts between two Dedekind completions
|T |δ:Eδ → F δ and preserves 1-convergence.

If net xα 2-converges to x in E, then, by Proposition 1.5, xα 1-converges
to x in Eδ. Therefore, |T ||xα −x| 1-converges to 0 in F δ since |T | preserves
1-convergence. So, since |T xα − T x| � |T ||xα − x| we obtain 1-convergence
T xα → T x in F δ and, therefore, 2-convergence T xα → T x in F again by
Proposition 1.5.

For positive operators the picture is even better.

THEOREM 1.7. Let T :E → F be a positive operator between two Riesz
spaces, then the following are equivalent.

1. Operator T preserves 1-convergence;
2. Operator T preserves 2-convergence.

Proof. Consider a positive operator T :E → F between two Riesz
spaces. The implication (1) ⇒ (2) follows from Proposition 1.6. For the
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reverse implication, assume that T preserves 2-convergence and consider a
1-convergent net xα → 0. Then there is a net yα ↓ 0 and α0 such that
yα � |xα| for all α � α0. Since T is positive the net Tyα is directed down
and consists of positive elements. Since yα is 2-convergent to zero, Tyα is
also 2-convergent to zero and, therefore, Tyα ↓ 0. It remains to notice that
due to positiveness of T we have Tyα � |T xα| for all α � α0. Hence, T xα

1-converges to zero.

Let us use Example 1.4 to show that the implication (2) ⇒ (1) of
Theorem 1.7 does not work in general.

EXAMPLE 1.8. Let E be the vector lattice of sequences of real numbers
that are constant except for finitely many terms and let F = C(K) be from
Example 1.4. Consider vectors un ∈ E which have first n − 1 zero terms
and all the other terms equal one. Notice that vectors un form an algebraic
basis of E. Let vn = χ{tn} ∈ F be the characteristic functions from Exam-
ple 1.4 above. Then operator T :E → F which maps T (un) = vn preserves
2-convergence but not 1-convergence.

Proof. The fact that T does not preserve 1-convergence follows from the
fact that the net un 1-converges to zero while vn = T un does not.

On the other hand, let xα 2-converges to zero in E. Observe that if
yβ ↓ 0 in E, then yβ ↓ 0 coordinatewise. It follows that yβ satisfying Defi-
nition 1.2 can be chosen to be a sequence yn defined by

yn =




1
n
, . . . ,

1
n︸ ︷︷ ︸

n terms

, A, A, . . .




for some A > 1. Next we consider the index set I = {(n, U) : n ∈
N, U ⊂ K\{ti}∞i=1, U is finite} with natural order (n, U) � (m, V ) ⇔
(n � m and U ⊂ V ) and define zn,U (t) ∈ F by

zn,U (t) =
{

2
n
, if t ∈ U ∪ {ti :1 � i � n}.

2A, otherwise.

Then zn,U ↓ 0 and for every pair n, U by Definition 1.2 there is α0 such
that |xα| � yn for every α � α0. Notice that the explicit formula for T is:

T (a1, a2, . . . , ak, ak, ak, . . . ) = a1v1 +
k∑

i=2

vi(ai − ai−1)
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where the sum is finite because the sequence of numbers (ai) is eventually
constant. Therefore, if xα satisfies |xα| � yn, then by the formula above, for
some k > n we have

|T xα| �
n∑

i=1

2
n
vi +

k∑
i=n+1

2Avi � zn,U .

This implies that T xα 2-converges to zero.

2. Order Continuous Operators

In this part we show that every operator preserving order convergence is
order bounded. The approach to the relation between two basic classes of
operators between Riesz spaces, namely, order bounded and order contin-
uous operators, differs from paper to paper. Some authors include order
boundedness as a part of the definition of an order continuous operator.
Others simply consider these two classes as distinct entities. So unexpected
is the following theorem.

THEOREM 2.1. Any order continuous operator between two Riesz spaces
is automatically order bounded.

Proof. Let T :E → F be an order continuous operator between two
Riesz spaces. We should emphasize that it does not matter whether T

preserves 1- or 2- convergence. Consider an arbitrary order interval [0, b] ⊂
E. Let I = N × [0, b] be an index set with the lexicographical order.
Namely, (n, x) > (m, y) if and only if either one of the following holds true.

1. n > m.
2. n = m and x > y.

It is easy to check that I is a directed set, so we may consider a net
indexed by I. Let us set x(n,y) = 1

n
y. Then we have 0 � x(n,y) � r(n,y) = b

n
.

It follows that x(n,y) 1-converges (hence, 2-converges) to zero.
If T preserves 2-convergence, then there exists a net (zα)α∈A such that

zα ↓ 0 and for every α ∈ A there exists (n, y) satisfying

|T x(m,u)| � zα for all (m, u) � (n, y).

If T preserves 1-convergence, then there exists a net (zα=(n,y)) such that
zα ↓ 0 and for every α there exists (n, y) = α satisfying

|T x(m,u)| � z(m,u) � zα for all (m, u) � (n, y) = α.
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Let us pick any zα and find corresponding index (n, y). Then, in partic-
ular, |T x(n+1,u)| � zα for all u ∈ [0, b]. It follows that |T u| � (n + 1)zα for
every u ∈ [0, b]. Thus, operator T is order bounded.

REMARK 2.2. Theorem 2.1 is not valid for operators preserving order
convergence of sequences. The “Fourier coefficients” operator is σ−order
continuous but not order bounded operator. This example is due to
G. Ya. Lozanovskii and can be found in [6] or in [2] on page 281.
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