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Abstract
Smooth cycling can improve the competitiveness of bicycles. Understanding cycling speed 
variation during a trip reveals the infrastructure or situations which promote or prevent 
smooth cycling. However, research on this topic is still limited. This study analyses speed 
variation based on data collected in the Netherlands, using GPS-based devices, continu-
ously recording geographical positions and thus the variation in speeds during trips. Link-
ing GPS data to spatial data sources adds features that vary during the trip. Multilevel 
mixed-effects models were estimated to test the influence of factors at cyclist, trip and 
tracking point levels. Results show that individuals who prefer a high speed have a higher 
average personal speed. Longer trips and trips made by conventional electric bicycles and 
sport bicycles have a higher average trip speed. Tracking point level variables explain intra-
trip cycling speed variations. Light-medium precipitation and tailwind increase cycling 
speed, while both uphill and downhill cycling is relatively slow. Cycling in natural and 
industrial areas is relatively fast. Intersections, turns and their adjacent roads decrease 
cycling speed. The higher the speed, the stronger the influence of infrastructure on speed. 
Separate bicycle infrastructure, such as bike tracks, streets and lanes, increase speed. These 
findings are useful in the areas of cycling safety, mode choice models and bicycle accessi-
bility analysis. Furthermore, these findings provide additional evidence for smooth cycling 
infrastructure construction.
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Introduction

Cycling is emerging in countries without a strong cycling tradition and expanding in 
countries where the bicycle already has a solid position (Harms and Kansen 2018). Gov-
ernments promote cycling for its societal and individual benefits, related to the environ-
ment, health, urban liveability and mitigating traffic congestion, while also travel satis-
faction is often higher than for other modes (De Vos 2018). However, maximum cycling 
speeds are generally lower than for motorised transport, although short distances, par-
ticularly in urban areas, can sometimes be covered faster by bike than by car (Dill and 
Gliebe 2008). This means that, in most cases, cycling takes more time than driving. In 
addition, distances covered are typically shorter; thus in terms of travel times, the bicy-
cle often loses out to other modes of motorised transport.

Travel time is so important because travel choices highly depend on it. In travel 
demand models, where travel is considered as a derived demand, travel time is assumed 
to involve a disutility that should be minimised (Mokhtarian et al. 2001). In evaluation 
studies, the value of faster travel is that it induces travel time savings (Small 2012). In 
accessibility studies, travel time is an essential component as well (Geurs and Van Wee 
2004). Applied to cycling, it can be assumed that a smooth flow and reduction of delays 
will make cycling more competitive with other modes of transport (Hamilton and Wich-
man 2018). There are, moreover, other reasons why attention to cycling speed is impor-
tant. First, higher speeds also increase accident risks (Haustein and Møller 2016; Schep-
ers et al. 2014, 2017; Woodcock et al. 2014). Second, cycling speeds and the variety of 
speeds in everyday use tend to increase with the adoption of electric bicycles (Schleinitz 
et al. 2017). Furthermore, governments tend to build better infrastructure, such as bicy-
cle express paths (Rayaprolu et al. 2020), enabling cyclists to increase their speeds.

Not only do maximum and average cycling speeds matter, but also variations dur-
ing a trip. Cyclists prefer to cycle as smoothly as possible and to maintain their desired 
speed levels, taking into account safety. So, for planners, it is necessary to know to 
what extent speeds vary during trips. The average speed of cyclists says little about the 
obstacles they encounter on the route. Intra-trip speed measurement, however, provides 
insights into the locations where speed varies. By linking speed and characteristics of 
geographical positions, insights can be gained into the effect of infrastructure, urbanisa-
tion and traffic density on speed. Such insights help policymakers and road authorities 
to reduce or remove speed barriers.

However, remarkably little attention has been paid to the speed component of cycling 
in the literature (Strauss and Miranda-Moreno 2017). The research that does, typically 
measures speed at fixed locations (e.g. Eriksson et al. 2019; Opiela et al. 1980), or con-
siders the average speed of an entire ride (e.g. Schantz 2017; Schleinitz et  al. 2017; 
Stigell and Schantz 2015) or at best speeds per trip segment (El-Geneidy et  al. 2007; 
Flügel et al. 2019; Manum et al. 2017). Only a few studies have studied the factors that 
influence intra-trip speed variation (Arnesen et al. 2019; Clarry et al. 2019), and they 
only included a limited number of influencing factors. The background for a limited 
number of studies is highly likely that until recently, it was hardly possible to correctly 
register variation in cycling speed. GPS technology solved this problem (e.g. Bohte and 
Maat 2009), as it allows researchers to obtain accurate information about variation in 
speed and related positions; through innovations in GPS technology, data quality has 
improved in recent years, so reliable speed measurements are now available.
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The added value of this paper is that it aims to explain variations in cycling speeds 
on three levels. It departs from the promise that cycling speeds vary (1) between cyclists, 
referred to as inter-person variation, (2) between trips of the same cyclist, referred to as 
intra-person variation, and (3) during the trip, referred to as intra-trip variation. The cyclist 
represents the first level, with factors that vary between persons, such as gender, age, health 
condition and preferences or attitudes, explaining inter-person variation. At the second 
level, a person makes multiple trips, with characteristics that may vary between trips but 
remain stable during the trip, such as the bicycle type or trip motive (e.g. commuting, lei-
sure), which causes intra-person variation. The factors that are assumed to influence intra-
trip variation, the third level, are infrastructural features and the land use, as well as local 
wind conditions and precipitation circumstances. By measuring the speed continuously for 
each geographical position during the ride, we identify the factors that influence speeds 
and, consequently, the intra-trip variation in speed. For this purpose, GPS devices continu-
ously measure the so-called tracking points, i.e. the geo-positions and the corresponding 
clock times. We apply a multilevel approach, in which the independence of the observa-
tions, i.e. geopositions within trips and trips per respondent, is controlled for. This allows 
us to identify the contribution of each level and each factor. Data was collected in the Neth-
erlands using a survey and recording by standalone GPS devices.

The paper is structured as follows. Sect. "Literature review" discusses the empirical lit-
erature, both methods and results, followed by the methodology in Sect. "Approach" and 
modelling results in Sect. "Result". Sect. "Conclusion" ends with conclusions, discussions 
and recommendations.

Literature review

In this section, we examine how previous research collected cycling speed data, analysed 
speed variation, and what findings emerged from it.

Speed data collection

Speed data is collected in three ways: (1) at fixed locations, (2) by measuring the start and 
end time of the ride, or (3) by continuously tracking the cyclist using GPS-technology. 
Fixed location methods vary in degree of advance, ranging from manual approaches, which 
require an observer during measurement (e.g. Thompson et  al. 1997), to semi-automatic 
methods that register automatically when a cyclist passes (Hunter et al. 2009) or use frame-
by-frame video camera analysis (Ling and Wu 2004), while full automatic measurement 
and data extraction is the case for video cameras using computer vision (Kassim et  al. 
2017). These methods measure cycling speed at fixed locations over a period of time, so 
they only include the situation at certain locations and do not follow cyclists with their 
characteristics.

These shortcomings of measuring at fixed locations can be avoided by collecting data 
from trips, including characteristics of these trips and the corresponding cyclist. The most 
basic method is calculating the average cycling speed by using the departure and arrival 
times and the distance travelled. However, this is an inaccurate method. In many travel 
behaviour surveys, departure and arrival times are imprecisely measured, often relying on a 
posteriori estimation by the traveller (Kelly 2013; Schantz 2017). A slightly better method 
is to ask respondents to keep a diary, preferably filled in directly while travelling (Arentze 
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et  al. 2001). Another disadvantage is that the route and the exact distance are unknown 
(Sun et al. 2017). Solutions like asking routes in questionnaires (Munshi 2016), calculating 
the shortest route assuming that this reflects the actual route to some extent (Dissanayake 
and Morikawa 2002), or asking participants to draw their travel routes (Schantz 2017) are 
not accurate.

The breakthrough in measuring speed came with the application of GPS-based devices. 
A GPS receiver determines its location by measuring the time that signals from at least 
four satellites reach it. GPS devices record position information, i.e. latitude, longitude, 
altitude and time stamps, every several seconds, so they are increasingly used to track the 
route and speed of travellers and their vehicles. In fact, the device produces a point trace 
of exact time–space stamps. For each point, the exact speed can be derived (Shen and Sto-
pher 2014), and infrastructure and environmental characteristics can be linked. Neverthe-
less, the satellite signal can be disturbed by environmental features, such as high buildings 
(Kassim et al. 2020), requiring preprocessing to remove noise. Also, detecting single trips 
from the raw GPS data involves intensive work and mistakes (Berjisian and Bigazzi 2022). 
In addition, the sample size of studies with data from GPS devices is generally relatively 
small. There are now a handful of studies testing the determinants of cycling speed using 
data from GPS devices, although they all have less than 100 participants (El-Geneidy et al. 
2007; Langford et al. 2015; Parkin and Rotheram 2010; Schleinitz et al. 2018).

Standalone GPS devices require logistics, as the researcher has to distribute and col-
lect them (Harding et  al. 2021), making them difficult to deploy on a large scale; also, 
the respondent has to charge and carry devices with them daily. The use of smartphone 
tracking apps prevents these problems. They are technically similar to GPS devices; smart-
phones are widely available, and apps can be applied at lower costs as no extra device is 
needed (Romanillos et al. 2016). Studies using smartphone apps typically have larger sam-
ples; Strauss and Miranda-Moreno (2017) recruited 1000 cyclists, and Flügel (2019) had 
709 participants. B-Riders is a Dutch bicycle promotional program with over 8,500 partici-
pants (Velo 2021; Romanillos et al. 2016), and the Fietstelweek (Dutch Bicycle Counting 
Week) collected more than a half-million trips over several years. However, also smart-
phone apps have drawbacks, such as using excessive power and possible privacy concerns 
(Kanarachos et  al. 2018; Tawalbeh et  al. 2016), and they are as sensitive as standalone 
devices to recording errors (Harding et al. 2021).

Variation in speed

GPS-based studies can be further divided into the analysis of full trips, segments and track-
ing points. In the full trip approach, the average speed for the entire trip is calculated (e.g. 
Schleinitz et al. 2018), so it is only suitable for research into the characteristics of trips and 
cyclists. Segment approaches divide the trip into segments based on research purposes. 
The segment average speed is derived from the segment distance and travel duration (El-
Geneidy et al. 2007; Flügel et al. 2019; Romanillos and Gutiérrez 2020). Compared to the 
trip average speed, the segment speed gives additional insights into the speed variation dur-
ing the trip. The division into segments is, however, often arbitrary.

The tracking point approach, however, is the most detailed in terms of 3D-geopositions 
and clock times, and is therefore the most accurate. Here, the speed at each tracking point 
is measured (Arnesen et al. 2019; Clarry et al. 2019). Since this approach is based on the 
travel time and distance between two tracking points, it is basically a segment approach 
with the shortest segments available, i.e. the segment between two tracking points. The 
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closer the tracking points, the shorter the segments, and consequently the more detailed 
speed variations are recorded. In addition, environmental and infrastructure factors can 
be derived from spatial data sources at the tracking point level. More importantly, vari-
ables that change (almost) continuously during the ride, such as the slope, can be measured 
accurately. Therefore, studies using speeds at the tracking point level have the potential to 
reveal detailed influences of determinants on cycling speed variation. However, such stud-
ies should pay more attention to data noise than segment-based and trip-based approaches, 
as errors are not attenuated by average values of multiple tracking points (e.g. Arnesen 
et al. 2019).

Analysis methods

Early studies often used descriptive analysis to analyse cycling speed, comparing the 
cycling speed of different groups, such as men versus women, city bicycles versus electric 
bicycles and bike paths versus shared roads (e.g. Jensen et al. 2010; Lin et al. 2008). Oth-
ers used OLS regression to estimate the impact of explanatory variables on speeds (Flügel 
et al. 2019). However, a fundamental assumption of OLS, namely independence of error 
terms, is unrealistic if a nested-data structure is assumed, which is the case with multi-
ple trips per respondent, and multiple tracking points per trip (Romanillos and Gutiérrez 
2020). Only a few recent studies considered the independence of observations. Clarry et al. 
(2019) used cycling data from 4317 trips made by 518 cyclists to analyse the determinates 
of cycling speed at tracking points. They assumed that tracking points and segments are not 
independent but share common unobserved factors influencing cycling speed. To account 
for these unobserved factors, they estimated three multilevel models with random inter-
cepts, i.e. a model with point and segment levels, a model with point, segment and cyclist 
levels, and a model with point, segment and trip levels. These models show the existence 
of common unobserved factors at each level (heterogeneity) and the importance of control-
ling for non-dependence of observations. However, due to the absence of cyclist and bicy-
cle characteristics, the heterogeneity of these levels has not been fully examined.

Factors determining cycling speed

Previous research has identified the effects of characteristics at different levels of aggre-
gation, although a multilevel approach has been rare. At the level of the cyclist, it was 
found that men tend to cycle faster than women. This applies both to the average trip speed 
(Schantz 2017) as well as the speed at every segment (El-Geneidy et al. 2007; Romanillos 
and Gutiérrez 2020; Strauss and Miranda-Moreno 2017). Age is negatively related to the 
trip average cycling speed (Schantz 2017; Schleinitz et al. 2017) and the segment average 
speed (Romanillos and Gutiérrez 2020). Cycling experience also plays a role, as shown by 
the higher speeds of frequent cyclists (Poliziani et al. 2022) and those with winter cycling 
experience (Strauss and Miranda-Moreno 2017). However, to the best of our knowledge, 
preferences like risk-taking, smooth cycling and health conditions have not been investi-
gated yet.

The trip level characteristics may vary between rides of one person but remain constant 
during a ride. The bicycle type influences clearly the speed, with trips using speed pedelecs 
and conventional electric bicycles being significantly faster than those with city bicycles 
(Eriksson et al. 2019; Jin et al. 2017; Lin et al. 2008; Mohamed and Bigazzi 2019; Schlein-
itz et  al. 2018; Shan et  al. 2015). Commute trips have higher speeds than non-commute 
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trips (Broach et  al. 2012; Jensen et  al. 2010). Current studies also regard weather con-
ditions as constant during a trip, although weather can change during a ride. Romanillos 
and Gutiérrez (2020) found that speeds are higher on sunny days than on cloudy and rainy 
days, and Strauss and Miranda-Moreno (2017) found a positive effect of temperature on 
cycling speed. By contrast, a Dutch dataset indicated a higher cycling speed (17.8 km/h) in 
foggy or rainy weather compared to 17 km/h for all trips (Fietstelweek 2017).

At the segment or point level, factor values depend on geo-positions. Land use usu-
ally varies during the ride and is considered as an independent characteristic or a bundle 
of characteristics. Cycling speeds in city centres are lower (Flügel et al. 2019; Gustafsson 
and Archer 2013; Schantz 2017), as higher densities of road users result in more interac-
tions (Flügel et al. 2019; Gustafsson and Archer 2013), and higher intersection densities 
cause more stops and delays (Plazier et  al. 2017). Infrastructure also influences cycling 
speeds. Separated bicycle paths protect cyclists from other traffic, allowing cyclists to cycle 
faster (Clarry et al. 2019; El-Geneidy et al. 2007; Flügel et al. 2019; Kassim et al. 2019; 
Romanillos and Gutiérrez 2020; Strauss and Miranda-Moreno 2017), although two studies 
found the opposite (Bernardi and Rupi 2015; Poliziani et  al. 2022). Studies focusing on 
speeds at segments between intersections found that cycling speed at longer segments is 
higher than at shorter segments (Poliziani et al. 2022; Strauss and Miranda-Moreno 2017), 
since cyclists can more easily cycle at their desired speeds. Wide bicycle lanes (Boufous 
et al. 2018; Garcia et al. 2015; Li et al. 2015), a smooth surface (Manum et al. 2017; Vis-
ser 2019), and straight roads are positively related to cycling speed (Arnesen et al. 2019; 
Flügel et al. 2019). Intersections or traffic lights involve deceleration or stops, so trip seg-
ments (Manum et al. 2017; Strauss and Miranda-Moreno 2017) and points (Arnesen et al. 
2019) close to intersections have lower speeds. Variations in slope show that cycling down-
hill is faster than uphill, an obvious result, while speed loss uphill is greater than speed 
gain downhill (Arnesen et al. 2019; Flügel et al. 2019; Parkin and Rotheram 2010). Traffic 
intensity and the density of bicycles appear to be negatively related to speed (Li et al. 2015; 
Shan et al. 2015). This influence is greater for electric bicycles than city bicycles (Jin et al. 
2017). Also, the presence of pedestrians reduces cycling speed (Bernardi and Rupi 2015; 
Boufous et al. 2018).

Gaps and conceptual framework

Summarising Sects. "Speed data collection" to "Factors determining cycling speed", recent 
studies on cycling speed used data collected through GPS devices or smartphone apps. The 
unit of analysis for which the speed was calculated varied between the entire trip, segments 
within the trip, and tracking points. The latter two make it possible to analyse the intra-trip 
speed variation, but this has been rarely done and is considered a clear research gap. Fur-
thermore, the influence of factors that determine speed should be distinguished on different 
levels: characteristics of the cyclist; characteristics of the trip, including the bicycle type; 
and route characteristics at different geopositions (tracking points), such as infrastructure 
characteristics, the environment and other traffic. The nested data structure is hardly con-
sidered in the literature, making it a second gap. Finally, except for age and gender, other 
cyclist characteristics, including cycling related preferences, were hardly examined.

This study departs from the gaps above. Cycling speed is assumed to be determined 
at three levels, as shown in the conceptual model (Fig. 1). The model shows a multilevel 
structure and assumes that factors at each level explain a speed variation, i.e. between per-
sons (inter-personal variation), between trips (intra-personal variation) and within trips 
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(intra-trip variation). Both the multilevel structure and the intra-trip speed variation have 
hardly been applied to cycling, certainly not in combination. This study limits itself to 
three levels, though the bicycle used is in principle an independent level.

Approach

Data collection

Data was collected in the Netherlands during the Covid-19 pandemic. Because random 
sampling or using panels was virtually impossible during the pandemic, we had to follow 
a less formal approach to recruit participants. Three graduate students recruited their rela-
tives and friends for this purpose. Participants received an information letter outlining the 
study objectives, data pseudonymisation, and data safety. Along with the letter, they also 
received a standalone GPS device (Prime AT PLT) and a charging cable. They were asked 
to carry the GPS device, keep it in their bags or pockets, and charge it daily. The device 
was tested before collecting data and showed superior receiving sensitivity and high posi-
tion accuracy. It records a timestamp every five seconds, including its geographical posi-
tion (latitude, longitude and altitude) and speed. The respondents held this device for seven 
consecutive days between the end of November 2020 and the start of January 2021, and 
some of them also made a few trips (14%) during the Christmas and New Year holidays 
(23rd December to 3rd January). In addition, participants were invited to fill out a survey 
on their socio-demographics, bicycle ownership, cycling experience and preferences about 
cycling safety, smooth cycling and green areas. The changes in their cycling behaviour dur-
ing the Covid-19 pandemic were also asked. 64 participants joined the study, resulting in 
64 GPS data logs and 255,228 tracking points.

The sample shows an overrepresentation of students. Correspondingly, a large group of 
participants are young, healthy, have a high education level, a lower household income and 
limited access to cars. Females are also overrepresented. More than 80% of participants 
have commuting cycling experiences, and around half have cycled for leisure and exercise. 
They prefer safety, smooth cycling conditions and green areas. The Covid-19 pandemic 
caused a decrease in commuting cycling (work/study) and a slight increase in recreational 

Fig. 1   Conceptual model: the three-level multilevel model for cycling speed variation
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cycling (leisure and exercise). The participants hardly intentionally avoided busy roads to 
reduce infection risks.

Participants cycled in 40 cities and towns, mainly in the city of Utrecht and its surround-
ing areas. The city of Utrecht, with a dense population of 3709 inhabitants∕km2 , is cen-
trally located in the Netherlands. It has one of the best bicycle infrastructure systems in the 
Netherlands (Schering et al. 2022), resulting in a high bicycle modal share. In 2019, more 
than 46% of trips in Utrecht were made by bicycles (Haas and Hamersma 2020). Utrecht 
has a maritime climate with a mild and wet winter. The average temperature in December 
is 3.7℃, and the average cumulative precipitation is 76 mm. However, December 2020 was 
relatively warm (5.5℃) and rainy (107 mm), and no ice days occurred (KNMI 2021).

Preprocessing

Raw data described all movements of the respondents during the data collection period. 
The preprocessing first detected bicycle trips from raw data, and then these trips were map-
matched to the most likely routes.

The bicycle trip detection includes four steps, namely trip segmentation, potential bicy-
cle trip detections, bus/tram trip removal and bicycle type confirmation. By employing trip 
segmentation, the raw data was split to derive separate single-mode trips (excluding walk-
ing). In a day, people may make many single-mode trips, between which they walk or par-
ticipate in non-travel activities. So, a whole GPS log can be divided into single-mode trips 
after removing walking and non-travel activity points. We define walking points as contin-
uous points with speeds between 1 and 7 km/h with a total distance over 50 m. Points that 
remain within a circular area with a 50-m radius for more than three minutes were regarded 
as non-travel activity points. Second, we define city or conventional electric bicycle trips 
as trips with average speeds between 10 and 25 km/h and the 95th percentile speed below 
30 km/h. Trips with average speeds ranging from 25 to 45 km/h and the 95th percentile 
speed below 45  km/h were assumed to be made by sport bicycles (racing bicycles and 
mountain bicycles) or speed pedelecs. Conventional electric bicycles can support pedalling 
up to 25 km/h, while speed pedelecs support up to 45 km/h. The 95th percentile speed was 
used to distinguish bicycle trips from bus/tram trips, as their average speeds can be simi-
lar in urban areas. Although conventional electric bicycles and speed pedelecs may occa-
sionally exceed their designed maximum speeds, this happens infrequently. As observed 
by Herteleer et  al. (2022), the average 95th percentile speed for speed pedelecs trips is 
40 km/h. In contrast, buses and trams have frequent stops but can maintain relatively high 
speeds between stops. Third, considering that buses and trams may have a similar 95th per-
centile speed to bicycles in some urban areas and during congestion, we further detected 
possible bus/tram trips with their stop positions during trips and removed these trips from 
the result of the previous step. A stop was assumed to be made if the speed of a point is 
lower than 7 km/h, at which cyclists are unlikely to maintain balance. Multiple adjacent 
points with speeds below 7  km/h were recognised as one stop. After excluding stops at 
intersections, the remaining stops were compared with the positions of bus/tram stations. 
Trips with a high share of stops at bus/tram stations were recognised as bus/tram trips. 
However, none of the trips fell into this category. Fourth, the bicycle types for all potential 
bicycle trips were confirmed by additional survey data, including bicycle ownership data 
(most participants only own one type), the usage of bicycle types for different purposes, 
the home address and the work/study place address. Trip purposes (commuting to work or 
study/leisure/others) were derived from the locations of the trip origins and destinations. 
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This information was combined to allocate the bicycle types to each trip. Occasionally, 
trips initially categorised as city bicycles/conventional electric bicycle trips were reas-
signed as sportive bicycles, as the participant only owns a mountain bicycle.

In total, 550 bicycle trips were detected, from which 42 trips shorter than 500 m were 
removed, resulting in 58,979 tracking points from 508 trips made by 60 cyclists. No valid 
bicycle trips were recognised from the GPS data logs of four participants, and they were 
excluded from the analysis. Of these 508 trips, 454 are city bike trips, 24 are conventional 
electric bicycle trips, 30 are sportive bicycle trips and none of the trips are speed pedelec 
trips. Conventional electric bicycles account for 5% of all bicycle trips, lower than the 
Dutch average percentage of 18% (Haas and Hamersma 2020). This can be attributed to the 
overrepresentation of students and young cyclists in our sample, who are less likely to have 
electric bicycles (Boonstra et al. 2021).

Map matching is the process of finding the most likely route taken by cyclists based 
on tracking point locations (Romanillos and Gutiérrez 2020). Its purpose is to link the 
infrastructure attributes from route maps to every tracking point. The method developed 
by Scheider (2017) was adopted to map match tracking points to the Fietsersbond net-
work data (2018 version). First, all road segments within a threshold distance (25  m in 
the present study) from tracking points were regarded as segment candidates. The match 
probability of a candidate decreases with its distance from tracking points. Second, the 
shortest path connecting segment candidates of two continuous points was found. If two 
continuous tracking points have 4 and 5 segment candidates respectively, there are at most 
20 (4 × 5) possible paths. Similarly, shorter paths have higher match probabilities. Then, 
the overall match probability for a complete route was calculated by multiplying the match 
probabilities of its segment candidates and the paths connecting them. The route with the 
highest probability was chosen as the map-matched route, representing the most likely path 
taken by cyclists. The final step is the manual examination and correction of evident errors, 
which resulted in only a few corrections.

Variables

Speed and distance

Cycling speed at every tracking point is directly measured by the GPS device (the calcu-
lation method is not provided by its manual), and it can also be measured with locations 
and time stamps of two continuous points. In two previous studies which analysed cycling 
speed at tracking points, Arnesen et al. (2019) calculated speed with points’ locations and 
time stamps, while Clarry et al. (2019) used speed from GPS devices. However, it is uncer-
tain which method is more accurate for our study, so speed was measured with different 
methods and compared.

In our study, we compared three speed measurement methods: (1) the speed reported 
by the GPS device, (2) by dividing the Euclidean distance between consecutive tracking 
points by their time interval, and (3) by dividing the network distance and time inter-
val. The network distance is the distance between two tracking points along the map-
matched route in the digital road network. It is used because most raw tracking points 
are not precisely located on the digital road network due to GPS inaccuracies and map 
abstraction, so the line connecting the points may deviate a few meters and not perfectly 
reflect curved routes and turns. The three speeds are denoted as VDi , VPi and VNi respec-
tively, where VD refers to the speed measured by GPS devices, VP is the speed measured 
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by Euclidean distance, VN is the speed measured by network distance and i is the point 
order in a trip. The measurement of VPi and VNi is:

where DP(i,i−1) is the Euclidean distance between points i − 1 and i , and T(i,i−1) is the dura-
tion between these two points, and

where DN(i,i−1) is the network distance between points i − 1 and i.
Table 1 and Fig. 2 compare three ways of speed measuring. Table 1 shows that the 

maximum speed for VPi is 80.43 km/h, and 117.75 km/h for VNi , which are impossible 
in daily cycling. By contrast, VDi ranges from 0 to 43 km/h, which is reasonable. Fig-
ure 2 compares one random ride as an example, showing a similar trend among the three 
speeds, especially at points with low or medium speeds. The main difference occurs at 
some points with a high speed, where VPi and VNi have evident outliers, consistent with 
the results in Table 1. In addition, VPi , and especially VNi have several points with speed 
increasing by more than 20 km/h from the previous point, which is hardly achieved in 
daily cycling. The substantial speed increase of VNi is partially due to the map abstrac-
tion in certain turns, where curve turns are represented with two tangent lines. There-
fore, tracking points at these turns have a larger network distance than the actual situa-
tion, resulting in a higher VNi . In contrast, the highest speed and speed variation of VDi 
are reasonable. All things considered, the speed measured by GPS devices ( VDi ) was 
used in modelling.

(1)VPi = DP(i,i−1)∕T(i,i−1)

(2)VNi = DN(i,i−1)∕T(i,i−1)

Table 1   Speed calculation methods and speed summary

Name Mean (km/h) Min (km/h) Max (km/h) Std. dev

Speed from devices ( VD
i
) 16.22 0 43.00 5.79

Speed measured by Euclidean distance ( VP
i
) 18.01 0.37 80.43 5.48

Speed measured by network distance ( VN
i
) 18.43 0.24 117.75 6.27

Fig. 2   A sample of speed calculation methods comparison
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The trip length is the network distance between the first and last tracking points, equal 
to the sum of the network distance between each consecutive pair of tracking points within 
the trip.

Turn and slope

Turns were derived from the direction change of the map-matched route segments, dis-
played in degrees of curvature, ranging from -180° to 180°. A turn is recognised if two 
consecutive segments formulate an angle greater than 80° (right turn) or lesser than -80° 
(left turn). Points within 30 m of turns were then labelled as the part before or after right/
left turns.

The road slope was calculated for each tracking point based on their altitudes and posi-
tions. Point altitudes were derived from a digital altitude map of the Netherlands (AHN 
2020) based on its coordinates. First, the tangent value of the slope gradient at tracking 
points i ( Ti ) was measured as:

where Hp(i,i−1) is the altitude of points i minus the altitude of point i − 1 , and Dp(i,i−1) is the 
network distance between these two points. Then, this value was converted to a degree. 
Considering that roads only with a gradient exceeding 3% (1.7°) can strongly influence 
cycling speed (Flügel et al. 2019), slopes were categorised into uphill (slope > 2°), flat road 
(− 2° <  = slope <  = 2°), downhill (slope < − 2°).

Infrastructures and land‑use

Infrastructure attributes were taken from the Fietsersbond, which includes detailed road 
attributes. Different bicycle lane types are distinguished. Bike tracks refer to on-road bicy-
cle lanes that do not have a physical transition between the road space for cyclists and 
motorised traffic; they may have different pavements or pavement colours. Bike paths 
along roads are physically separated bike lanes along main roads. Solitary bike paths are 
routes independent from main roads. Bike streets are a relatively new road type, designed 
as a  street where bicycles have priority; motor vehicles are allowed but have to adapt to 
bicycles (Olsson and Elldér, 2023). Intersection types include signalised intersections, non-
signalised intersections and roundabouts; the number of legs is not considered. The parts 
before and after signalised/non-signalised intersections are also recognised as a separate 
category.

Land-use types were calculated based on tracking point locations. The dominant land-
use type within the circular buffer of a tracking point was considered as its land-use type. 
There are 13 land-use types in Bestand Bodemgebruik 2015, and they were categorised 
into five types: built-up (the area in use for residents, work, shopping, cultural facilities and 
public amenities), semi built-up (the area with a certain amount of paving, not in use as 
transport area or built-up area), transport (including airports, railways, the main road net-
work, parking lots and bus stations), industry and nature area. Different buffer radii were 
used to calculate the dominant land-use type, with similar outcomes; finally, a 50-m buffer 
was chosen.

(3)Ti = Hp(i,i−1)∕Dp(i,i−1)
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Weather and night trip

Weather conditions, including temperature, precipitation, humidity, wind speed and wind 
direction, are recorded by the Royal Netherlands Meteorological Institute (KNMI) every 
10 min for 33 weather stations in the study area. We took values from the nearest station. 
Temperature and humidity are regarded as trip-level variables since they hardly change 
during a short period. The temperature and humidity at the trip mid-time were regarded 
as the trip value. Wind and precipitation are likely to change constantly, and are point-
level variables. Wind speed was classified as strong ( > 5.5m∕s ), light (1.5–5.5  m/s)and 
no wind ( <= 1.5m∕s ), and directions as tailwind (direction difference < 67.5°), side wind 
(67.5° <  = direction difference <  = 112.5°) and headwind (direction difference > 112.5°), 
combining into seven categories: no wind, strong headwind, strong side-wind, strong tail-
wind, light headwind, light side-wind and light tailwind. Precipitation was divided into 
heavy rain ( > 5mm∕h ), light to medium rain (0–5 mm/h) and no rain.

The night, the period without sunlight, was defined as the period between astronomical 
dusk and astronomical dawn. It changes daily. Trips that start at daytime but end at night-
time or vice versa, are allocated to the period with the longest duration.

Modelling method

Multilevel linear mixed-effects models are estimated in this study using the mixed com-
mand of Stata 17. It is a generalisation of linear regression in nested-data situations (Searle 
et  al. 2009), allowing for the inclusion of fixed effects and random deviations (effects) 
other than those associated with the overall error term.

The present study uses a three-level nested data structure (cyclists, trips and points), and 
a three-level mixed-effect model can be expressed as:

where yptc is cycling speed at point p in trip t of cyclist c . The fixed part is 
β0 +

∑d

g=1
βgxgc +

∑b

j=1
βjxjtc +

∑a

i=1
βixiptc , which specifies the overall mean influence of  d 

cyclist-level, b trip-level and a point-level predictors on the cycling speed. Among these 
parameters, xgc refers to the cyclist-level variables with slope βg , xjtc refers to the trip-level 
variables with slope βj and xiptc refers to the tracking point-level variables with slope βi . The 
random part is expressed as vc + utc + eptc and assumed to be uncorrelated with independ-
ent variables. vc ∼ N

(

0, �2
v

)

 is the random effect of cyclist c , and the interpretation of �2
v
 is 

the between-cyclist variance, adjusting for the predictors. This variance therefore measures 
the extent to which cyclist c varies from the fixed part. utc ∼ N

(

0, �2
u

)

 and eptc ∼ N
(

0, �2
e

)

 
have parallel interpretations.

Based on this, we first estimate a null model (Model 1) to check the speed variance com-
ponents at different levels and the existence of cyclist and trip heterogeneity. Then cyclist-
level and trip-level variables are added to Model 2 to explain inter-person and intra-person 
cycling speed variation, namely the cyclist and trip heterogeneity. Based on it, precipitation, 
wind, road slope and land-use are added to Model 3, and land-use is replaced by bicycle 
infrastructures in Model 4. These two models mainly explain intra-trip cycling speed vari-
ation. Land-use and bicycle infrastructures are modelled separately because of collinearity; 

(4)yptc = β0 +
∑d

g=1
βgxgc +

∑b

j=1
βjxjtc +

∑a

i=1
βixiptc + vc + utc + eptc
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for example, intersections are denser in built-up areas. Model 4 also introduces random 
slopes of some infrastructure variables across trips, i.e. before signalised, before left turns, 
before right turns, signalised intersections and pedestrian areas, since the influence of these 
variables is expected to vary across trips. For example, a racing bicycle may decelerate more 
than a city bicycle before a red light. The random slope model can help understand the dif-
ferences in intra-trip speed variations between trips. Equation (5) is an example of the ran-
dom slope model, allowing the coefficient of x1ptc to be random at the trip level:

where u1tc×x1ptc is a new term compared to Eq.  (4). Now the grand mean slope of x1ptc 
is β1 , and the slope for the trip tc is β1 + u1tc . The covariance between the trip intercept 
( β0 + u0tc ) and the trip slope ( β1 + u1tc ) is also calculated. It can describe how the influence 
of tracking point level variables changes across trips.

Result

Sample frequency

Participants show various trip frequencies and lengths (Table  2), therefore contributing 
differently to the dataset. This reflects the natural variation of cyclists in cycling behav-
iours. Table 2 classifies participants into four groups based on their trip frequencies. Most 
cyclists made fewer than ten bicycle trips, and a small number of participants made up to 
24 trips. The average trip length of cyclists tends to decrease with their trip frequency. So, 
the difference in tracking point number between cyclists is smaller than the trip frequency. 
Those cyclists with frequent trips show a lower speed at tracking points.

Descriptive analysis

Table 3 describes all variables included in the final models, distinguishing the cyclist, trip 
and tracking point levels. It reports the mean tracking point speed from the GPS device 
for all dummy variables. Self-evaluated health conditions, preference for separate paths for 
safety and preference for high speed are continuous variables, using a scale ranging from 
‘strongly disagree’ to ‘strongly agree’ (1 – 5). Around 60% of participants self-report a 
good health condition (Fig. 3). Most cyclists prefer separate paths for safety, and even more 
cyclists try to maintain a high speed.

(5)yptc = β0 +
∑d

g=1
βgxgc +

∑b

j=1
βjxjtc +

∑a

i=1
βixiptc + vc + u0tc + u1tc×x1ptc + eptc

Table 2   Sample frequency

Trip frequency No. of cyclists No. of trips 
per cyclist

Average 
trip length

No. of tracking 
points per cyclist

Average tracking 
point speed (km/h)

1–5 21 3.3 5.2 548 19.6
6–10 22 8.2 3.1 931 16.8
11–15 12 13.3 3.1 1653 14.5
16–24 5 19.8 1.7 1429 13.6
Total 60 8.5 3.1 983 16.2
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Model outcomes

Multilevel structure

We applied multilevel mixed-effects linear regression models for cycling speeds 
(Table 4). The final model is constructed step by step, with the columns showing the 
effect of adding levels, starting with the null model (1) followed by the cyclist and the 
trip level (2) and the tracking point level; the latter has been divided into land use (3) 
and infrastructure (4). The reported coefficients represent the estimated changes in 
cycling speed (km/h) for a one-unit change in independent variables when holding other 
variables constant. For example, the coefficient of the preference for separated paths in 
model 2 is −0.445 , meaning that cycling speeds decrease by 0.445km∕h with one level 
of growth in this preference. Similarly, for categorical variables, 0.891 for light-medium 
rain in model 3 means that cyclists tend to cycle 0.891 km/h faster in light to medium 
rain compared to no rain. Log-likelihood (LL) and Akaike information criterion (AIC) 
are two parameters to compare the model fits of different models, with higher LL and 
lower AIC meaning a better goodness of fit. Model 1 to model 4 show increasing model 
fits, where the effects of the variables are fairly stable, suggesting the robustness of 
these models.

The null model shows variance components (Random intercept in Table  4) of the 
cyclist (7.864), trip (5.474) and tracking point (13.132) levels. It shows that 29.7% 
( 7.864∕(7.864 + 5.474 + 13.132) and 20.7% of the total variance in cycling speed are 
due to between-cyclist differences and between-trip differences respectively, while 
within-trip differences account for about half of the total variance (49.6%). Substantial 
variances at the cyclist and trip levels also illustrate the existence of cyclist heteroge-
neity and trip heterogeneity. With additional variables added, this variance is partially 
explained, and the remaining speed variance decreases as expected.

The influence of cyclist level and trip level variables

Cyclist characteristics influence the average personal speed, explaining the inter-per-
son variation and the heterogeneity of cyclists. Two preferences significantly influence 
cycling speed. Cyclists who prefer high-speed cycle faster, while those who prefer sepa-
rated bicycle paths because of safety concerns tend to cycle slower. Gender becomes 
insignificant after considering the land use and bicycle infrastructure.

Strongly disagree Disagree Neutral
Agree Strongly agree

Fig. 3   Opinions on statements about preferences and health conditions
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Similarly, trip conditions influence the average trip speed and explain intra-person 
variation. Conventional electric bicycles are 3 km/h faster than city bicycles, and sport 
bicycles are 4 km/h faster. Longer trips tend to have a higher speed, but this effect is 
negligible. Dark conditions hardly influence cycling speed. Humidity and temperature 
have no influence.

The influence of tracking point level variables

Most tracking point level variables significantly influence intra-trip speed variation with 
intuitive effects. Slope, precipitation and wind are included in both Models 3 and 4. Results 
show that cycling uphill is 1.7km∕h slower than on flat roads. Unexpectedly, cycling down-
hill also decreases speed by 0.6km∕h . Cycling during light to medium rain is 0.9km∕h 
faster than in dry episodes, while heavy rain does not influence cycling speeds. Cycling 
with tailwinds and side-winds, especially the strong tailwind, is faster, while headwinds 
were found indifferent.

Land-use is added in Model 3, and bicycle infrastructures are added in Model 4. Com-
pared to built-up areas, speeds are higher in natural and industrial areas, and lower in trans-
port areas. Cycling on all types of bike lanes is faster than on residential roads; by contrast, 
cycling in pedestrian areas is slower. Bridges and tunnels are negatively related to speed. 
All three kinds of intersections decrease cycling speed, and signalised intersections have 
the greatest effect, reducing cycling speed by 3.6km∕h . Cycling before intersections and 
turns is over 2km∕h slower, while only about 1km∕h slower after the intersections/turns.

The random slope effect

The random slope for the variable “before signalised” is considered for each trip in Model 
4. The covariance between the trip intercept and the trip slope of “before signalised” is 
−2.493 , showing that the slope tends to be smaller with the increase in the trip intercept. 
In other words, high-speed trips decelerate more before signalised intersections. This effect 
also applies to signalised intersections, pedestrian areas and before/after intersections/
turns, meaning their negative effects on cycling speed are stronger for trips with higher 
speeds. Also, the effect of after-turns and intersections is lesser than before.

Conclusion

Conclusions and discussion

This paper aims to explain variations in cycling speeds on three levels, i.e. (1) between 
cyclists, referred to as inter-person variation, (2) between trips of the same cyclist, referred 
to as intra-person variation, and (3) during the trip, referred to as intra-trip variation. The 
null model shows the existence of heterogeneity between the levels. About 30% of the 
speed variance is attributed to the heterogeneity between cyclists, 21% to the trips, and 
49% to differences within trips.

The cyclist-level variables explain the variation in speed between cyclists and the het-
erogeneity between them. As in other studies (Boufous et al. 2018; El-Geneidy et al. 2007), 
women cycle more slowly than men. Remarkably, however, this difference disappears after 
controlling for wind, precipitation, land use and bicycle infrastructures, suggesting that 
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women may have different route choices, and respond differently to weather, thus avoiding 
speed reduction. Additionally, unlike most existing studies (Schleinitz et al. 2017; Vlakveld 
et al. 2015), age does not influence cycling speed. A possible reason is that older people 
tend to use electric bicycles more often, which compensates for the decline in physical 
abilities. It is worth noting that the absence of an age and gender effect is also possibly 
due to the relatively small and less representative dataset. A novel finding is that personal 
preferences clearly play a role, as expressed by the correlation between the preference for 
separate, thus safer tracks and lower speeds, and the finding that the preference for high 
speed correlates with an actual higher speed.

The trip-level variables show that electric bicycles appear to be faster than city bicy-
cles, which was also found by Schleinitz et  al. (2017), Eriksson et  al. (2019), Jin et  al. 
(2017); sport bicycles are even faster, as these bicycles are designed for a high speed and 
often used for exercise. Contrary to previous studies suggesting an influence of temperature 
(Strauss and Miranda-Moreno 2017) and humidity (Liu et al. 2017) on cycling speeds and 
bicycle trip generation, our findings indicate that humidity and temperature did not affect 
cycling speed. A possible reason is that temperature and humidity varied less during the 
data collection period.

The tracking point level variables, measuring differences during trips, are hardly inves-
tigated in the literature, so they provide interesting, partly unexpected findings. First, the 
role of slopes: it appears that not only cycling uphill (see Arnesen et al. 2019; Flügel et al. 
2019) reduces speed, but also downhill. This is because most slopes in the Netherlands are 
short, such as bridges, which often end on another road or at a junction, causing cyclists to 
go down carefully.

Secondly, wind effects on speeds are partly as expected: tailwinds increase cycling 
speed, but surprisingly, headwinds have no effect. Light to medium rain is associated with 
a 0.9km∕h higher speed, suggesting that cyclists speed up to minimise exposure to rain, 
but self-selection may also play a role, namely people who choose cycling during rainy 
days may have better cycling abilities and so a higher speed. Heavy rain, however, does not 
affect cycling speed; a possible explanation could be that safety considerations discourage 
cyclists from cycling faster for a short exposure duration.

Third, with respect to land-use, being the landscape a cyclist crosses, we found that nat-
ural areas facilitate slightly faster cycling compared to built-up areas, as cyclists can cycle 
more unhindered, and decelerate and accelerate less frequently due to fewer crossings. Peo-
ple also ride faster in industrial areas, possibly because they are more often commuters. By 
contrast, cycling speeds in areas mainly used for transport are lower than in built up areas, 
probably due to complicated traffic conditions, including parking and bus docking.

Fourth, infrastructure characteristics play a key role in cycling speeds, and effects are 
largely as expected. Intersections and turns are the main barriers to cycling smoothly. Simi-
lar to other studies (Clarry et al. 2019; Strauss and Miranda-Moreno 2017), cycling speeds 
at intersections, especially at signalised intersections, are relatively low. Interestingly, we 
also find that cycling within 30 m before intersections is even slower than cycling at inter-
sections. This is because cyclists slow down and even stop before entering an intersec-
tion, whereas they usually do not stop when passing intersections. The same effects are 
observed for turns. In addition, it is found that cyclists with higher speeds encounter a 
greater need to slow down when close to intersections and turns. This makes sense, but it 
also clearly shows that barriers to fast riders, for example electric bicycles, are even more 
of a hindrance.

Surprisingly, however, the influence of bike lane types is slightly different from existing 
studies (El-Geneidy et al. 2007; Flügel et al. 2019), who found that separated bike paths 
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increase cycling speed. The highest speeds are found on bike tracks without physical sepa-
ration from motorised vehicles. A possible reason is that cyclists receive pressure from 
other traffic (Poliziani et al. 2022), so they cycle faster to leave bike tracks quickly. Another 
explanation is that cyclists using bike tracks not separated from motorised vehicles are 
the more experienced cyclists. A third explanation is that cyclists can more easily swerve 
around other cyclists here. Bike streets also have higher speeds, though motorised vehicles 
are not excluded. They are usually located in residential areas with relatively lower traffic 
volume, while cyclists have priority on this road type, so they can cycle smoothly with 
less disturbance. Solitary bike paths are often used for leisure trips, which are partly faster 
if used by people with racing bikes, but also partly slower because several people cycle 
relaxed on such trips. In addition, cyclists with safety concerns also cycle here at a lower 
speed. Paths along main roads are busy, resulting in frequent interactions between cyclists. 
To summarise, the positive effects of separate paths are smaller than those of bike tracks 
and bike streets.

Implications and recommendations

Cycling speed is related to other cycling behaviours, such as safety, mode choice and 
cycling route choice. Insights into intra-trip speed variation are of great importance for 
modelling bicycle traffic. In addition, results about cycling speed variation support urban 
and infrastructural planning for better bicycle infrastructures (Parkin and Rotheram 2010).

Incorporating speed variations between cyclists, trips, conditions and spatial-infrastruc-
tural situations in traffic models is believed to improve the model accuracy (Romanillos and 
Gutiérrez 2020). For example, the inclusion of heterogeneous speeds of cyclists in bicy-
cle congestion models successfully predicted longer delays for cyclists with high desired 
speeds (Paulsen et al. 2019). Paulsen and Nagel (2019) also indicated that bicycle conges-
tion models can be further improved by considering delays at turns and intersections. How-
ever, due to an insufficient understanding of cycling speed variation along routes, traffic 
models often assume a constant speed (e.g. mode choice models, as shown by Ton et al. 
2019) or struggle to accurately account for speed differences among infrastructures. For 
instance, Castro et al. (2022) modelled cycling speeds on a bicycle path with a 3% gradient 
with the traffic flow simulator VISSIM, but did not predict correct speed distributions, pos-
sibly because of the omission of other infrastructure characteristics influencing speeds. By 
including the speed differences in models, more accurate predictions can be made regard-
ing mode choice and cycling accessibility, as the total trip time can be predicted more cor-
rectly (El-Geneidy et al. 2007). Moreover, destination and route choice can be better pre-
dicted because both depend on cycling speeds (Flügel et al. 2019).

For urban and infrastructural planners, understanding the variation of cycling speed can 
be used to design better cycling networks, which enable fast and smooth cycling and thus 
make cycling more competitive with other modes of transport. This knowledge can provide 
insights into ‘black spots’ where bicycle speed seriously drops. These fine-grained spatial 
insights enable a targeted, tailor-made approach. For example, some intelligent traffic light 
systems can be installed at intersections where cyclists experience long waiting times; pro-
viding more space for cyclists at intensively used segments, such as bike lanes along main 
roads, can prevent cyclists from reducing their speeds sharply. Moreover, it is possible to 
develop fast routes, which can be advised to cyclists, especially those prefer a constant and 
higher speed, i.e. cyclists with sporty and electric bicycles. Such routes can, for example, 
result from linking multiple bicycle streets.
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Future research

By studying bicycle speed in a multilevel setting, using a broad dataset, this study has pro-
vided an impetus to explore bicycle speed in depth. To this end, a number of indicators and 
models have been developed that can be further refined in future research.

First, the present study addressed many bicycle speed influencing factors, including 
socio-demographics, bicycle types, bicycle infrastructure characteristics, weather condi-
tions, etc. However, the data collected during the COVID-19 pandemic caused a small and 
less representative sample and limited variation in bicycle types. Although we consider this 
dataset to be fit for such an analysis, the small dataset may limit the generalizability of the 
findings to the broader population, particularly for cyclist and trip level variables. So we 
recommend a larger and more representative sample, to consider a richer set of variables, 
including different age groups, trip purposes, time of day and bicycle types, as well as their 
interaction effects. We also recommend to identify and control for possible confounding 
variables, such as the bicycle type choice across age groups, and cycling frequency and 
distance between genders.

Second, because cyclists might choose a residential area and cycling routes that match 
their cycling speed preferences, self-selection effects can easily occur, influencing the 
results. Moreover, the degree to which people like cycling leads to self-selection by the 
degree of use, type of bicycle, and destination. An avenue for future research is to explore 
the occurrence and impact of such self-selection effects. Such effects are usually analysed 
by including attitudinal data in a longitudinal model, e.g. using structural equation models 
(e.g. Coevering et al. 2021; Hamaker et al. 2015).

Third, it can be assumed that cyclists not only prefer a higher cycling speed but also a sta-
ble cycling speed. After all, both braking and accelerating require extra physical and mental 
effort and possibly increase risks. That is why additional research could focus on the extent 
of speed stability and where or in which situations cyclists can maintain stable speeds.

Fourth, cycling is more sensitive to weather conditions than other transportation modes, 
and this study reveals that weather also affects cycling speed. However, the differences 
in weather conditions during our observations were limited. It may even be assumed that 
potential cyclists will refrain from cycling when it rains, if barriers make travel times 
longer than strictly necessary. It therefore makes sense that some traffic lights nowadays 
give cyclists priority when it rains. With climate change, weather conditions tend to be 
more extreme and unpredictable, and the influence of weather on cycling speed is expected 
to increase. Consequently we advise more research into the impact of weather on cycling 
speeds, preferably based on year-round weather conditions.

To conclude, knowledge about cycling speed used to be almost non-existent, but with 
the increasing use of bicycles, the increasing stimulation of bicycle use and the greater 
variation in bicycle types, in particular the variety of electric bicycles, these insights are 
highly necessary and valuable. Based on the results of the current study, we can conclude 
that better cycling routes stimulate faster and smoother cycling. Any form of cycling facili-
ties, such as cycle paths, cycle lanes and cycle tracks, can support high speeds. This also 
applies to the removal of speed-limiting factors. Therefore, more routes without barriers 
and with facilities specifically for bicycles are essential for cycling to be smooth and fast.

Acknowledgements  We thank three graduate students, Maaike Kuiper, Jimme Smit and Harmke Vliek, 
from the interuniversity master GIMA, the Netherlands, for the data collection and initial survey data prepa-
ration. We also thank three anonymous reviewers for their valuable suggestions to improve our paper.



	 Transportation

1 3

Author contributions  All authors contributed to the overall study conception and design. Data analysis was 
performed by HY. The first draft of the manuscript was written by HY, and all authors commented on previ-
ous versions of the manuscript. All authors read and approved the final manuscript.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

AHN: Actueel Hoogtebestand Nederland. https://​www.​ahn.​nl (2020). (accessed)
Arentze, T., Dijst, M., Dugundji, E., Joh, C.H., Kapoen, L.L., Krygsman, S., Maat, K., Timmermans, H.: 

New activity diary format: design and limited empirical evidence. Transp. Res. Rec. 1768(1), 79–88 
(2001). https://​doi.​org/​10.​3141/​1768-​10

Arnesen, P., Malmin, O.K., Dahl, E.: A forward Markov model for predicting bicycle speed. Transportation 
47(5), 2415–2437 (2019). https://​doi.​org/​10.​1007/​s11116-​019-​10021-x

Berjisian, E., Bigazzi, A.: Evaluation of methods to distinguish trips from activities in walking and cycling 
GPS data. Transp. Res. Part C Emerg. Technol. 137, 103588 (2022). https://​doi.​org/​10.​1016/j.​trc.​2022.​
103588

Bernardi, S., Rupi, F.: An analysis of bicycle travel speed and disturbances on off-street and on-street facili-
ties. Transp. Res. Proc. 5, 82–94 (2015). https://​doi.​org/​10.​1016/j.​trpro.​2015.​01.​004

Bohte, W., Maat, K.: Deriving and validating trip purposes and travel modes for multi-day GPS-based travel 
surveys: A large-scale application in the Netherlands. Transp. Res. Part C Emerg. Technol. 17(3), 285–
297 (2009). https://​doi.​org/​10.​1016/j.​trc.​2008.​11.​004

Boonstra, H.J., van den Brakel, J., Das, S., Wüst, H.: Modelling mobility trends—update including 2020 
ODiN data and Covid effects. Discussion Paper. Centraal Bureau voor de Statistiek (CBS), The Hague 
(2021)

Boufous, S., Hatfield, J., Grzebieta, R.: The impact of environmental factors on cycling speed on shared 
paths. Accid. Anal. Prev. 110, 171–176 (2018). https://​doi.​org/​10.​1016/j.​aap.​2017.​09.​017

Broach, J., Dill, J., Gliebe, J.: Where do cyclists ride? A route choice model developed with revealed prefer-
ence GPS data. Transp. Res. Part A Policy Pract. 46(10), 1730–1740 (2012). https://​doi.​org/​10.​1016/j.​
tra.​2012.​07.​005

Castro, G.P., Johansson, F., Olstam, J.: How to model the effect of gradient on bicycle traffic in microscopic 
traffic simulation. Transp. Res. Rec. 2676(11), 609–620 (2022). https://​doi.​org/​10.​1177/​03611​98122​
10943​00

Clarry, A., Imani, A.F., Miller, E.J.: Where we ride faster? Examining cycling speed using smartphone GPS 
data. Sustain. Cities Soc. 49, 101594 (2019). https://​doi.​org/​10.​1016/j.​scs.​2019.​101594

De Haas, M., Hamersma, M.: Cycling facts: new insights. Netherlands Institute for Transport Policy Analy-
sis (KiM), The Hague (2020).

De Vos, J.: Towards happy and healthy travellers: a research agenda. J. Transp. Health 11, 80–85 (2018). 
https://​doi.​org/​10.​1016/j.​jth.​2018.​10.​009

Dill, J., Gliebe, J.: Understanding and measuring bicycling behaviour: a focus on travel time and route 
choice. Oregon Transportation Research and Education Consortium Portland (2008). https://​doi.​org/​
10.​15760/​trec.​151

Dissanayake, D., Morikawa, T.: Household travel behavior in developing countries: nested logit model of 
vehicle ownership, mode choice, and trip chaining. Transp. Res. Rec. 1805(1), 45–52 (2002). https://​
doi.​org/​10.​3141/​1805-​06

http://creativecommons.org/licenses/by/4.0/
https://www.ahn.nl
https://doi.org/10.3141/1768-10
https://doi.org/10.1007/s11116-019-10021-x
https://doi.org/10.1016/j.trc.2022.103588
https://doi.org/10.1016/j.trc.2022.103588
https://doi.org/10.1016/j.trpro.2015.01.004
https://doi.org/10.1016/j.trc.2008.11.004
https://doi.org/10.1016/j.aap.2017.09.017
https://doi.org/10.1016/j.tra.2012.07.005
https://doi.org/10.1016/j.tra.2012.07.005
https://doi.org/10.1177/03611981221094300
https://doi.org/10.1177/03611981221094300
https://doi.org/10.1016/j.scs.2019.101594
https://doi.org/10.1016/j.jth.2018.10.009
https://doi.org/10.15760/trec.151
https://doi.org/10.15760/trec.151
https://doi.org/10.3141/1805-06
https://doi.org/10.3141/1805-06


Transportation	

1 3

El-Geneidy, A., Krizek, K., Iacono, M.: Predicting bicycle travel speeds along different facilities using GPS 
data: a proof of concept model. In: paper read at 86th annual meeting of the transportation research 
board, at Washington DC, USA (2007)

Eriksson, J., Forsman, Å., Niska, A., Gustafsson, S., Sörensen, G.: An analysis of cyclists’ speed at com-
bined pedestrian and cycle paths. Traffic Inj. Prev. 20(sup3), 56–61 (2019). https://​doi.​org/​10.​1080/​
15389​588.​2019.​16580​83

Fietstelweek.: Ruim half miljoen fietskilometers in Fietstelweek 2017. https://​fiets​telwe​ek.​nl/​ruim-​half-​
miljo​en-​fiets​kilom​eters-​fiets-​telwe​ek-​2017/ (in Dutch) (2017). Accessed 2021

Flügel, S., Hulleberg, N., Fyhri, A., Weber, C., Ævarsson, G.: Empirical speed models for cycling in the Oslo 
road network. Transportation 46(4), 1395–1419 (2019). https://​doi.​org/​10.​1007/​s11116-​017-​9841-8

Garcia, A., Gomez, F.A., Llorca, C., Angel-Domenech, A.: Effect of width and boundary conditions on 
meeting maneuvers on two-way separated cycle tracks. Accid. Anal. Prev. 78, 127–137 (2015). https://​
doi.​org/​10.​1016/j.​aap.​2015.​02.​019

Geurs, K.T., Van Wee, B.: Accessibility evaluation of land-use and transport strategies: review and research 
directions. J. Transp. Geogr. 12(2), 127–140 (2004). https://​doi.​org/​10.​1016/j.​jtran​geo.​2003.​10.​005

Go Velo.: Het B-Riders programma heet nu Go Velo! https://​govelo.​nl/b-​riders/ (in Dutch) (2021). Accessed 
2021

Gustafsson, L., Archer, J.: A naturalistic study of commuter cyclists in the greater Stockholm area. Accid. 
Anal. Prev. 58, 286–298 (2013). https://​doi.​org/​10.​1016/j.​aap.​2012.​06.​004

Hamaker, E.L., Kuipers, R.M., Grasman, R.P.: A critique of the cross-lagged panel model. Psychol. Meth-
ods 20(1), 102–116 (2015). https://​doi.​org/​10.​1037/​a0038​889

Hamilton, T.L., Wichman, C.J.: Bicycle infrastructure and traffic congestion: evidence from DC’s capital 
bikeshare. J. Environ. Econ. Manage. 87, 72–93 (2018). https://​doi.​org/​10.​1016/j.​jeem.​2017.​03.​007

Harding, C., Faghih Imani, A., Srikukenthiran, S., Miller, E.J., Habib, K.N.: Are we there yet? Assessing 
smartphone apps as full-fledged tools for activity-travel surveys. Transportation 48, 2433–2460 (2021). 
https://​doi.​org/​10.​1007/​s11116-​020-​10135-7

Harms, L., Kansen, M.: Cycling facts. Netherlands Institute for Transport Policy Analysis (KiM). Prepared 
by the Minister van Infrastructuur en Waterstaat, The Hague (2018)

Haustein, S., Møller, M.: E-bike safety: individual-level factors and incident characteristics. J. Transp. 
Health 3(3), 386–394 (2016). https://​doi.​org/​10.​1016/j.​jth.​2016.​07.​001

Herteleer, B., Van den Steen, N., Vanhaverbeke, L., Cappelle, J.: Analysis of initial speed pedelec usage for 
commuting purposes in Flanders. Transp. Res. Interdiscip. Perspect. 14, 100589 (2022). https://​doi.​
org/​10.​1016/j.​trip.​2022.​100589

Hunter, W.W., Srinivasan, R., Martell, C.: An examination of bicycle counts and speeds associated with the 
installation of bike lanes in St. Petersburg, Florida. Highway Safety Research Center, University of 
North Carolina, Chapel Hill (2009)

Jensen, P., Rouquier, J.B., Ovtracht, N., Robardet, C.: Characterizing the speed and paths of shared bicycle 
use in Lyon. Transp. Res. Part D Transp. Environ. 15(8), 522–524 (2010). https://​doi.​org/​10.​1016/j.​trd.​
2010.​07.​002

Jin, S., Shen, L., Liu, M., Ma, D.: Modelling speed–flow relationships for bicycle traffic flow. Proc. Inst. 
Civ. Eng. Transp. 170(4), 194–204 (2017). https://​doi.​org/​10.​1680/​jtran.​15.​00115

Kanarachos, S., Christopoulos, S.R.G., Chroneos, A.: Smartphones as an integrated platform for monitoring 
driver behaviour: the role of sensor fusion and connectivity. Transp. Res. Part C Emerg. Technol. 95, 
867–882 (2018). https://​doi.​org/​10.​1016/j.​trc.​2018.​03.​023

Kassim, A., Culley, A., McGuire, S.: Operational evaluation of advisory bike lane treatment on road user 
behavior in Ottawa. Canada. Transp. Res. Rec. 2673(11), 233–242 (2019). https://​doi.​org/​10.​1177/​
03611​98119​851450

Kassim, A., Tayyeb, H., Al-Falahi, M.: Critical review of cyclist speed measuring techniques. J. Transp. 
Eng. 7(1), 98–110 (2020). https://​doi.​org/​10.​1016/j.​jtte.​2019.​09.​001

Kassim, A., Ismail, K., Woo, S.: Modeling cyclists speed at signalized intersections: Case study from 
Ottawa, Canada. In: 2017 5th IEEE international conference on models and technologies for intelligent 
transportation systems. 639–644 (2017). https://​doi.​org/​10.​1109/​MTITS.​2017.​80055​91

Kelly, P.: Assessing the utility of wearable cameras in the measurement of walking and cycling. Oxford 
University, Oxford (2013)

KNMI, 2021. Month and season overviews. https://​www.​knmi.​nl/​neder​land-​nu/​klima​tolog​ie/​maand-​en-​
seizo​ensov​erzic​hten/​2020/​decem​ber (2021). (accessed 2023)

Langford, B.C., Chen, J., Cherry, C.R.: Risky riding: naturalistic methods comparing safety behavior from 
conventional bicycle riders and electric bike riders. Accid. Anal. Prev. 82, 220–226 (2015). https://​doi.​
org/​10.​1016/j.​aap.​2015.​05.​016

https://doi.org/10.1080/15389588.2019.1658083
https://doi.org/10.1080/15389588.2019.1658083
https://fietstelweek.nl/ruim-half-miljoen-fietskilometers-fiets-telweek-2017/
https://fietstelweek.nl/ruim-half-miljoen-fietskilometers-fiets-telweek-2017/
https://doi.org/10.1007/s11116-017-9841-8
https://doi.org/10.1016/j.aap.2015.02.019
https://doi.org/10.1016/j.aap.2015.02.019
https://doi.org/10.1016/j.jtrangeo.2003.10.005
https://govelo.nl/b-riders/
https://doi.org/10.1016/j.aap.2012.06.004
https://doi.org/10.1037/a0038889
https://doi.org/10.1016/j.jeem.2017.03.007
https://doi.org/10.1007/s11116-020-10135-7
https://doi.org/10.1016/j.jth.2016.07.001
https://doi.org/10.1016/j.trip.2022.100589
https://doi.org/10.1016/j.trip.2022.100589
https://doi.org/10.1016/j.trd.2010.07.002
https://doi.org/10.1016/j.trd.2010.07.002
https://doi.org/10.1680/jtran.15.00115
https://doi.org/10.1016/j.trc.2018.03.023
https://doi.org/10.1177/0361198119851450
https://doi.org/10.1177/0361198119851450
https://doi.org/10.1016/j.jtte.2019.09.001
https://doi.org/10.1109/MTITS.2017.8005591
https://www.knmi.nl/nederland-nu/klimatologie/maand-en-seizoensoverzichten/2020/december
https://www.knmi.nl/nederland-nu/klimatologie/maand-en-seizoensoverzichten/2020/december
https://doi.org/10.1016/j.aap.2015.05.016
https://doi.org/10.1016/j.aap.2015.05.016


	 Transportation

1 3

Li, Z., Ye, M., Li, Z., Du, M.: Some operational features in bicycle traffic flow: observational study. Transp. 
Res. Rec. 2520(1), 18–24 (2015). https://​doi.​org/​10.​3141/​2520-​03

Lin, S., He, M., Tan, Y., He, M.: Comparison study on operating speeds of electric bicycles and bicycles: 
experience from field investigation in Kunming, China. Transp. Res. Rec. 2048(1), 52–59 (2008). 
https://​doi.​org/​10.​3141/​2048-​07

Ling, H., Wu, J.: A study on cyclist behavior at signalized intersections. IEEE Trans. Intell. Transp. Syst. 
5(4), 293–299 (2004). https://​doi.​org/​10.​1109/​TITS.​2004.​837812

Liu, C., Susilo, Y.O., Karlström, A.: Weather variability and travel behaviour–what we know and what 
we do not know. Transp. Rev. 37(6), 715–741 (2017). https://​doi.​org/​10.​1080/​01441​647.​2017.​
12931​88

Manum, B., Nordström, T., Gil, J., Nilsson, L., Marcus, L.: Modelling bikeability. In: proceedings of the 
11th international space syntax symposium, Lisbon, Portugal (2017)

Mohamed, A., Bigazzi, A.: Speed and road grade dynamics of urban trips on electric and conventional 
bicycles. Transp. B. Transp. Dyn. 7(1), 1467–1480 (2019). https://​doi.​org/​10.​1080/​21680​566.​2019.​
16306​91

Mokhtarian, P.L., Salomon, I., Redmond, L.S.: Understanding the demand for travel: it’s not purely 
‘derived.’ Innov. Eur. J. Soc. Sci. Res. 14(4), 355–380 (2001). https://​doi.​org/​10.​1080/​13511​61012​
01061​47

Munshi, T.: Built environment and mode choice relationship for commute travel in the city of Rajkot, 
India. Transp. Res. Part D Transp. Environ. 44, 239–253 (2016). https://​doi.​org/​10.​1016/j.​trd.​2015.​
12.​005

Olsson, S.R., Elldér, E.: Are bicycle streets cyclist-friendly? Micro-environmental factors for improving 
perceived safety when cycling in mixed traffic. Accid. Anal. Prev. 184, 107007 (2023). https://​doi.​
org/​10.​1016/j.​aap.​2023.​107007

Opiela, K.S., Khasnabis, S., Datta, T.K.: Determination of the characteristics of bicycle traffic at urban 
intersections. Transp. Res. Rec. 743, 30–38 (1980)

Parkin, J., Rotheram, J.: Design speeds and acceleration characteristics of bicycle traffic for use in plan-
ning, design and appraisal. Transp. Policy 17(5), 335–341 (2010). https://​doi.​org/​10.​1016/j.​tranp​ol.​
2010.​03.​001

Paulsen, M., Nagel, K.: Large-scale assignment of congested bicycle traffic using speed heterogeneous 
agents. Procedia Comput. Sci. 151, 820–825 (2019). https://​doi.​org/​10.​1016/j.​procs.​2019.​04.​112

Paulsen, M., Rasmussen, T.K., Nielsen, O.A.: Fast or forced to follow: a speed heterogeneous approach 
to congested multi-lane bicycle traffic simulation. Transp. Res. Part B: Methodol. 127, 72–98 
(2019). https://​doi.​org/​10.​1016/j.​trb.​2019.​07.​002

Plazier, P.A., Weitkamp, G., van den Berg, A.E.: “Cycling was never so easy!” An analysis of e-bike 
commuters’ motives, travel behaviour and experiences using GPS-tracking and interviews. J. 
Transp. Geogr. 65, 25–34 (2017). https://​doi.​org/​10.​1016/j.​jtran​geo.​2017.​09.​017

Poliziani, C., Rupi, F., Schweizer, J., Saracco, M., Capuano, D.: Cyclist’s waiting time estimation at 
intersections, a case study with GPS traces from Bologna. Transp. Res. Proc. 62, 325–332 (2022). 
https://​doi.​org/​10.​1016/j.​trpro.​2022.​02.​041

Rayaprolu, H.S., Llorca, C., Moeckel, R.: Impact of bicycle highways on commuter mode choice: a sce-
nario analysis. Environ Plan B Urban Anal City Sci 47(4), 662–677 (2020). https://​doi.​org/​10.​1177/​
23998​08318​797334

Romanillos, G., Gutiérrez, J.: Cyclists do better. Analyzing urban cycling operating speeds and accessibility. 
Int. J. Sustain. Transp. 14(6), 448–464 (2020). https://​doi.​org/​10.​1080/​15568​318.​2019.​15754​93

Romanillos, G., Zaltz Austwick, M., Ettema, D., De Kruijf, J.: Big data and cycling. Transp. Rev. 36(1), 
114–133 (2016). https://​doi.​org/​10.​1080/​01441​647.​2015.​10840​67

Schantz, P.: Distance, duration, and velocity in cycle commuting: analyses of relations and determinants 
of velocity. Int. J. Environ. Res. Public Health 14(10), 1166 (2017). https://​doi.​org/​10.​3390/​ijerp​
h1410​1166

Scheider, S.: Mapmatching. https://​github.​com/​simon​schei​der/​mapma​tching (2017). Accessed 2021
Schepers, P., Hagenzieker, M., Methorst, R., van Wee, B., Wegman, F.: A conceptual framework for road 

safety and mobility applied to cycling safety. Accid. Anal. Prev. 62, 331–340 (2014). https://​doi.​
org/​10.​1016/j.​aap.​2013.​03.​032

Schepers, P., Twisk, D., Fishman, E., Fyhri, A., Jensen, A.: The Dutch road to a high level of cycling 
safety. Saf. Sci. 92, 264–273 (2017). https://​doi.​org/​10.​1016/j.​ssci.​2015.​06.​005

Schering, J., Janßen, C., Kessler, R., Dmitriyev, V., Stüven, J., Marx Gómez, J., van Dijk, E., Brou-
wer, W., Kamermans, A., Verweij, L., Janssen, G.: ECOSense and sniffer bike: european bike sen-
sor applications and its potential to support the decision-making process in cycling promotion. In 

https://doi.org/10.3141/2520-03
https://doi.org/10.3141/2048-07
https://doi.org/10.1109/TITS.2004.837812
https://doi.org/10.1080/01441647.2017.1293188
https://doi.org/10.1080/01441647.2017.1293188
https://doi.org/10.1080/21680566.2019.1630691
https://doi.org/10.1080/21680566.2019.1630691
https://doi.org/10.1080/13511610120106147
https://doi.org/10.1080/13511610120106147
https://doi.org/10.1016/j.trd.2015.12.005
https://doi.org/10.1016/j.trd.2015.12.005
https://doi.org/10.1016/j.aap.2023.107007
https://doi.org/10.1016/j.aap.2023.107007
https://doi.org/10.1016/j.tranpol.2010.03.001
https://doi.org/10.1016/j.tranpol.2010.03.001
https://doi.org/10.1016/j.procs.2019.04.112
https://doi.org/10.1016/j.trb.2019.07.002
https://doi.org/10.1016/j.jtrangeo.2017.09.017
https://doi.org/10.1016/j.trpro.2022.02.041
https://doi.org/10.1177/2399808318797334
https://doi.org/10.1177/2399808318797334
https://doi.org/10.1080/15568318.2019.1575493
https://doi.org/10.1080/01441647.2015.1084067
https://doi.org/10.3390/ijerph14101166
https://doi.org/10.3390/ijerph14101166
https://github.com/simonscheider/mapmatching
https://doi.org/10.1016/j.aap.2013.03.032
https://doi.org/10.1016/j.aap.2013.03.032
https://doi.org/10.1016/j.ssci.2015.06.005


Transportation	

1 3

digital transformation for sustainability ICT-supported environmental socio-economic develop-
ment. Cham: Springer International Publishing. 157–182 (2022)

Schleinitz, K., Petzoldt, T., Franke-Bartholdt, L., Krems, J., Gehlert, T.: The German naturalistic cycling 
study-comparing cycling speed of riders of different e-bikes and conventional bicycles. Saf. Sci. 92, 
290–297 (2017). https://​doi.​org/​10.​1016/j.​ssci.​2015.​07.​027

Schleinitz, K., Petzoldt, T., Gehlert, T.: Risk compensation? The relationship between helmet use and 
cycling speed under naturalistic conditions. J. Safety Res. 67, 165–171 (2018). https://​doi.​org/​10.​
1016/j.​jsr.​2018.​10.​006

Searle, S.R., Casella, G., McCulloch, C.E.: Variance components. Wiley, New York (2009).
Shan, X., Li, Z., Chen, X., Ye, J.: A modified cellular automaton approach for mixed bicycle traffic flow 

modeling. Discrete Dyn. Nat. Soc. (2015). https://​doi.​org/​10.​1155/​2015/​213204
Shen, L., Stopher, P.R.: Review of GPS travel survey and GPS data-processing methods. Transp. Rev. 34(3), 

316–334 (2014). https://​doi.​org/​10.​1080/​01441​647.​2014.​903530
Small, K.A.: Valuation of Travel Time. Econ. Transp. 1(1–2), 2–14 (2012). https://​doi.​org/​10.​1016/j.​ecotra.​

2012.​09.​002
Stigell, E., Schantz, P.: Active commuting behaviors in a Nordic metropolitan setting in relation to modality, 

gender, and health recommendations. Int. J. Environ. Res. Public Health 12(12), 15626–15648 (2015). 
https://​doi.​org/​10.​3390/​ijerp​h1212​15008

Strauss, J., Miranda-Moreno, L.F.: Speed, travel time and delay for intersections and road segments in the 
Montreal network using cyclist smartphone GPS data. Transp. Res. Part D Transp. Environ. 57, 155–
171 (2017). https://​doi.​org/​10.​1016/j.​trd.​2017.​09.​001

Sun, B., Ermagun, A., Dan, B.: Built environmental impacts on commuting mode choice and distance: evi-
dence from Shanghai. Transp. Res. Part D Transp. Environ. 52, 441–453 (2017). https://​doi.​org/​10.​
1016/j.​trd.​2016.​06.​001

Tawalbeh, L.A., Basalamah, A., Mehmood, R., Tawalbeh, H.: Greener and smarter phones for future cities: 
characterizing the impact of GPS signal strength on power consumption. IEEE Access 4, 858–868 
(2016). https://​doi.​org/​10.​1109/​ACCESS.​2016.​25327​45

Thompson, D.C., Rebolledo, V., Thompson, R.S., Kaufman, A., Rivara, F.P.: Bike speed measurements in 
a recreational population: validity of self reported speed. Inj. Prev. 3(1), 43–45 (1997). https://​doi.​org/​
10.​1136/​ip.3.​1.​43

Ton, D., Duives, D.C., Cats, O., Hoogendoorn-Lanser, S., Hoogendoorn, S.P.: Cycling or walking? Deter-
minants of mode choice in the Netherlands. Transp. Res. Part A Policy Pract. 123, 7–23 (2019). https://​
doi.​org/​10.​1016/j.​tra.​2018.​08.​023

Van De Coevering, P., Maat, K., Van Wee, B.: Causes and effects between attitudes, the built environment 
and car kilometres: a longitudinal analysis. J. Transp. Geogr. 91, 102982 (2021)

Visser, L.A.: Built environment and cycling speed: investigating built environment influences on cycling 
speed in the Netherlands. Delft, the Netherlands (2019)

Vlakveld, W.P., Twisk, D., Christoph, M., Boele, M., Sikkema, R., Remy, R., Schwab, A.L.: Speed choice 
and mental workload of elderly cyclists on e-bikes in simple and complex traffic situations: a field 
experiment. Accid. Anal. Prev. 74, 97–106 (2015). https://​doi.​org/​10.​1016/j.​aap.​2014.​10.​018

Woodcock, J., Tainio, M., Cheshire, J., O’Brien, O., Goodman, A.: Health effects of the London bicycle 
sharing system health impact modelling study. BMJ-BRIT MED J. (2014). https://​doi.​org/​10.​1136/​
bmj.​g425

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Hong Yan  is a PhD candidate at the Transport & Logistics Group of the Faculty of Technology, Policy and 
Management, Delft University of Technology. He is interested in understanding the influential factors of 
cycling speed variation and formulating policies to promote cycling from the perspective of cycling speed.

Kees Maat  is an associate professor at the Transport & Planning department of the Faculty of Civil Engi-
neering and Geosciences, Delft University of Technology. His research is concerned with the study of the 
built environment and travel behaviour, particularly the relationship between them. He focuses increasingly 
on GPS-based data analysis and longitudinal studies to explore travel behaviour.

https://doi.org/10.1016/j.ssci.2015.07.027
https://doi.org/10.1016/j.jsr.2018.10.006
https://doi.org/10.1016/j.jsr.2018.10.006
https://doi.org/10.1155/2015/213204
https://doi.org/10.1080/01441647.2014.903530
https://doi.org/10.1016/j.ecotra.2012.09.002
https://doi.org/10.1016/j.ecotra.2012.09.002
https://doi.org/10.3390/ijerph121215008
https://doi.org/10.1016/j.trd.2017.09.001
https://doi.org/10.1016/j.trd.2016.06.001
https://doi.org/10.1016/j.trd.2016.06.001
https://doi.org/10.1109/ACCESS.2016.2532745
https://doi.org/10.1136/ip.3.1.43
https://doi.org/10.1136/ip.3.1.43
https://doi.org/10.1016/j.tra.2018.08.023
https://doi.org/10.1016/j.tra.2018.08.023
https://doi.org/10.1016/j.aap.2014.10.018
https://doi.org/10.1136/bmj.g425
https://doi.org/10.1136/bmj.g425


	 Transportation

1 3

Bert van Wee  is a professor in Transport Policy at the Faculty of Technology, Policy and Management, 
Delft University of Technology. His main interests are in long-term developments in transport, in particular 
in the areas of accessibility, land-use transport interaction, (evaluation of) large infrastructure projects, the 
environment, safety, policy analyses and ethics.


	Cycling speed variation: a multilevel model of characteristics of cyclists, trips and route tracking points
	Abstract
	Introduction
	Literature review
	Speed data collection
	Variation in speed
	Analysis methods
	Factors determining cycling speed
	Gaps and conceptual framework

	Approach
	Data collection
	Preprocessing
	Variables
	Speed and distance
	Turn and slope
	Infrastructures and land-use
	Weather and night trip

	Modelling method

	Result
	Sample frequency
	Descriptive analysis
	Model outcomes
	Multilevel structure
	The influence of cyclist level and trip level variables
	The influence of tracking point level variables
	The random slope effect


	Conclusion
	Conclusions and discussion
	Implications and recommendations
	Future research

	Acknowledgements 
	References


