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Abstract
Extracting flow clusters consisting of many similar origin–destination (OD) trips is essen-
tial to uncover the spatio-temporal interactions and mobility patterns in the free-floating 
bike sharing (FFBS) system. However, due to occlusion and display clutter issues, efforts 
to identify inhomogeneous flow clusters from large journey data have been hampered to 
some extent. In this study, we present a two-stage flow clustering method, which integrates 
the Leiden community detection algorithm and the shared nearest-neighbor-based flow 
(SNN_flow) clustering method to efficiently identify flow clusters with arbitrary shapes 
and uneven densities. The applicability and performance of the method in detecting flow 
clusters are investigated empirically using the FFBS system of Nanjing, China as a case 
study. Some interesting findings can be drawn from the spatio-temporal patterns. For 
instance, the share of flow clusters used to meet the “first-/last-mile” demand at metro sta-
tions is reasonably high, both during the morning (71.85%) and evening (65.79%) peaks. 
Compared with the “first-/last-mile” flow clusters between metro stations and adjacent 
workplaces, the solution of the “first-/last-mile” flow clusters between metro stations and 
adjacent residences is more dependent on the FFBS system. In addition, we explored the 
shape and density distribution of flow clusters from the perspective of origin and destina-
tion points. The endpoint distribution characteristics demonstrate that the shape distribu-
tion of metro station point clusters is generally flatter and the spatial points within them 
are more concentrated than other sorts of point clusters. Our findings could help to better 
understand human movement patterns and home-work commute, thereby providing more 
rational and targeted decisions for allocating FFBS infrastructure resources.

Keywords  Free-floating bike sharing · Origin–destination flow · Clustering · Commuting 
trips · Spatio-temporal pattern

 *	 Xuewu Chen 
	 chenxuewu@seu.edu.cn

1	 School of Transportation, Southeast University, Dongnandaxue 2, Nanjing 211189, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11116-023-10415-y&domain=pdf


	 Transportation

1 3

Introduction

In recent years, smartphone-operated, non-station-based bike fleets (i.e., free-floating bike 
sharing, hereafter referred to as FFBS) have witnessed exponential growth worldwide 
(Cheng et al. 2022b; Hirsch et al. 2019). For instance, in less than two years since its launch 
in North America, FFBS has rapidly expanded to over 200 systems operating in more than 
150 cities (Hirsch et al. 2019). Meanwhile, the FFBS system has ushered in a golden age 
of expansion in China, with its implementation in over 200 cities and a total of 23 mil-
lion bikes in just a few years (Gu et al. 2019). By equipping shared bikes with a Global 
Positioning System (GPS) device, the FFBS system allows users to rent a nearby bike and 
return it in any suitable place (e.g., on-street corrals and sidewalk racks) via mobile appli-
cations (Zhao and Ong 2021). It greatly improves the flexibility and accessibility of jour-
neys by offering “door-to-door” services for local residents (Cheng et al. 2022b).

As FFBS schemes continue to grow in popularity around the world, large FFBS jour-
ney data with individual mobile locations and trajectories are readily available (Chen et al. 
2022b). In many studies based on journey data, researchers have found that point clusters 
with high FFBS usage were more concentrated near metro stations, residential neighbor-
hoods, and office buildings (Chen and Ye 2021; Guo and He 2020; Du et al. 2019b). The 
findings provide valuable insights for understanding spatio-temporal travel characteristics, 
predicting regional demand, and designing scheduling strategies. However, most of them 
only considered the origin (O) or destination (D) points of FFBS trips, while the studies 
from the origin–destination (OD) flow perspective are limited (Chen et al. 2022b; Zhang 
et al. 2021). Although the discovery of OD flow clusters consisting of many similar trips 
is essential for unveiling daily human mobility and home-work commuting patterns (Guo 
et al. 2020; Liu et al. 2022a; Wood et al. 2010), the focus of existing FFBS studies has not 
yet been extended from O or D points to OD flows.

Due to occlusion and display clutter issues, a substantial amount of trips overlap and 
intersect each other, making it challenging to discover flow clusters in large flow data (Zhu 
and Guo 2014). Some studies aggregate trips using predefined spatial areal units (e.g., reg-
ular grids, and traffic analysis zones) (Chen et al. 2022b; Wood et al. 2010; Zheng et al. 
2021). This aggregation approach is valid in reducing the flow cluttering problem, but it 
ignores the flow patterns at local scales (Zhu and Guo 2014; Zhu et al. 2019). In recent 
years, several flow clustering methods have been developed in an attempt to extract flow 
clusters from large flow data (Guo et al. 2020; Gao et al. 2018; Tao and Thill 2016). These 
clustering methods mitigate the cluttering and overlapping issues by extracting clusters of 
similar trips, while maximizing the spatial resolution of the data (Song et al. 2019; Zhu and 
Guo 2014). Nevertheless, detecting flow clusters with irregular shapes and uneven densi-
ties from large flow data is still a huge challenge (Liu et al. 2022a), which we will review in 
the “Flow clustering methods” section.

In reality, due to the nature of the short-distance trips, shared bikes are likely to stay 
near their initial assigned location (Zhang and Meng 2019). Inspired by this, we propose a 
two-stage flow clustering method by integrating the Leiden community detection and the 
shared nearest-neighbor-based flow (SNN_flow for short) clustering methods. More con-
cretely, in Stage I, the Leiden algorithm is leveraged to partition the entire study area into 
multiple FFBS activity zones with strong intra-connections, thus decomposing a large flow 
clustering problem into multiple small sub-problems. In Stage II, the FFBS flow clusters 
with varying shapes and densities in each activity zone are identified separately using the 
SNN_flow method, and then the extraction results of all activity zones are merged.
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Taking the FFBS system in Nanjing, China as a case study, an empirical investigation 
is performed on the applicability and performance of the two-stage flow clustering method 
in identifying flow clusters. This study tackles the following two research questions: (i) 
What are the typical characteristics of the spatio-temporal patterns of FFBS flow clusters? 
(ii) What are the similarities and diversities in the shape and density distribution of FFBS 
flow clusters? This study contributes to the existing literature in two ways. First, it proposes 
a two-stage flow clustering method that can be leveraged to efficiently detect FFBS flow 
clusters with arbitrary shapes and inhomogeneous densities from large-scale journey data. 
Second, it unveils the spatio-temporal patterns and endpoint distribution characteristics of 
FFBS flow clusters, which could help transportation planners and decision-makers to better 
understand the heterogeneity of flow clusters and thus take rational measures to make the 
resource allocation of the FFBS system as balanced as possible.

The remainder of the paper is structured as follows. “Literature review” section provides 
an overview of FFBS OD flows and flow clustering methods. “Two-stage flow clustering 
method” section introduces the two-stage flow clustering method in detail. “Study area and 
data description” section describes the study area and the data used. “Results and discus-
sions” section presents the research findings. Finally, our main conclusions are summa-
rized and policy implications are drawn in “Conclusions and policy implications” section.

Literature review

FFBS OD flows

Numerous existing studies on FFBS data analysis have focused on revealing the mecha-
nisms influencing O or D point usage patterns. These studies have investigated different 
aspects of this issue, including socio-demographics (Link et  al. 2020; Orvin and Fatmi 
2021), weather conditions (Peters and MacKenzie 2019), land use (Chen and Ye 2021; 
Cheng et al. 2020a), built environment (Guo and He 2020; Shen et al. 2018), and access 
to metro system (Cheng et al. 2022a, 2023; Ma et al. 2019). On balance, FFBS usage is 
higher in areas with denser populations, comfortable weather conditions, higher land use 
mix, friendlier cycling environments, and better interchange facilities. These findings are 
of great importance in many facets such as cycling facility planning (Zhao and Ong 2021), 
bike scheduling strategy design (Chang et al. 2021), and ridership activity prediction (Xu 
et al. 2018). However, most of them use isolated models to analyze trip origins and destina-
tions, and few investigate FFBS trips from the perspective of OD flows.

Abstracting flow clusters from large-scale, chaotic journey data is crucial to reveal the 
spatio-temporal dynamics of human mobility and commuting patterns (Liu et al. 2022a). 
Currently, only some initial works have looked at OD flows using FFBS journey data. 
Based on the Shanghai Mobike dataset, Du et al. (2019b) visualized the spatio-temporal 
distribution of FFBS OD flows by exploiting the ODPFM (O-D Proportion Flow Map) 
tool. They found that the spatial distribution of FFBS OD flows varied considerably by land 
use type and period of time. Zheng et al. (2021) constructed an OD spatial network using 
Beijing Mobike dataset and investigated the unbalance characteristics of the FFBS system. 
The results suggested that most of the study areas are in a relatively flat stage of supply and 
demand, while a few areas have large imbalances in resource supply and demand. Drawing 
on a four-month FFBS OD flow dataset in Singapore, Zhang et al. (2021) identified some 
activity zones from cycling behaviors by applying a modularity optimization community 
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detection method. They found that the activity zones yielded from the FFBS networks are 
locally clustered. Furthermore, taking Nanjing, China as an example, Chen et al. (2022b) 
constructed a spatial interaction network using FFBS OD flows. Based on this, the urban 
activity zone borders were delineated leveraging the Leiden algorithm. They pointed out 
that the FFBS activity zone borders overlap more with natural borders (e.g., water bodies 
and mountains) than with administrative borders.

The aforementioned studies addressing FFBS mobility patterns often focus on the OD 
flows from one individual area to the other, providing valuable findings for the spatial inter-
actions of the FFBS system. However, since there is no fixed station constraint for FFBS 
bikes, these studies typically use regular grids to aggregate FFBS usage (Du et al. 2019b; 
Zhang et al. 2019; Zheng et al. 2021), and few have investigated FFBS flow clusters from 
a finer spatial resolution. Many questions regarding what are the typical spatio-temporal 
patterns of FFBS flow clusters and whether they have varying shape and density distribu-
tions remain unanswered. Therefore, it is necessary to employ an efficient flow clustering 
method to detect inhomogeneous flow clusters from large-scale FFBS journey data.

Flow clustering methods

According to the basic principles of flow clustering, the related methods focus on the fol-
lowing categories: hierarchical clustering, statistical-based clustering, and density-based 
clustering.

In the hierarchical clustering methods, researchers first calculate the similarity between 
OD trips based on specific metrics (e.g., OD point locations and flow properties), and then 
use a specified strategy (e.g., agglomerative and divisive) to construct OD flow data into a 
hierarchical structure to identify flow clusters (Guo et al. 2020). For instance, Zhu and Guo 
(2014) considered both start and end positions in defining the similarity of two trips and 
proposed an agglomerative clustering approach to handle large-scale flow data. Yao et al. 
(2018) developed a new spatial similarity metric based on the angle and length differences 
between any pair of trips, and a similar agglomerative clustering approach was applied to 
extract flow clusters. Xiang and Wu (2019) proposed a new hierarchical clustering method 
(called TOCOFC) to obtain flow clusters from the original, chaotic trips. The method intro-
duces a similarity metric to measure the spatio-temporal similarity between different trips, 
and then employs a recursive optimum cut-based approach to partition trips. In summary, 
the hierarchical clustering methods have been widely utilized in small-scale OD flow data-
sets, but may not be applicable to large OD flow datasets like FFBS journey data because 
of their high computational complexity (Liu et al. 2022a).

In the statistical-based clustering methods, researchers have extended the traditional spa-
tial statistics in hopes of detecting flow clusters from large OD flow datasets. For instance, 
Liu et al. (2015) improved the global and local Moran’s I statistics to extract flow clusters 
containing highly spatially correlated trips, and conducted an empirical study using taxi 
data from Shanghai, China as a case study. Tao and Thill (2016) proposed a K-function 
extension method for OD flow data to upgrade its detection target from point clusters to 
flow clusters. In addition, Gao et al. (2018) introduced a multidimensional spatial scan sta-
tistics approach to identify flow clusters. These statistical-based clustering methods can 
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effectively detect statistically significant flow clusters, but they have obstacles in detecting 
flow clusters with arbitrary shapes1 (Song et al. 2019).

Given that some density-based clustering algorithms (e.g., DBSCAN (Ester et al. 1996) 
and OPTICS (Ankerst et al. 1999)) are well able to identify irregularly shaped point clus-
ters, researchers have successfully upgraded point clustering to flow clustering by improv-
ing these traditional algorithms (Gallego et al. 2018; Tao and Thill 2016). Although such 
density-based clustering approaches have competitive advantages in detecting arbitrarily 
shaped clusters, they exhibit poor clustering performance when the density of OD flows 
is unevenly distributed (Reddy and Bindu 2017). Furthermore, these methods are mainly 
developed based on Euclidean spatial distances (Liu et al. 2022a). However, related studies 
have shown that Euclidean distance-based clustering methods may introduce a significant 
systematic bias in the presence of network constraints (Besse et al. 2016; Yamada and Thill 
2010). For FFBS journey data, the above methods are clearly not applicable as their OD 
points are typically strongly constrained by road networks (Hua et al. 2020; Zhang et al. 
2019). To handle these issues, Liu et al. (2022a) recently presented a shared nearest-neigh-
bor-based flow (SNN_flow) clustering method, which possesses superior performance in 
identifying clusters of network-constrained OD flows with irregular shapes and inhomoge-
neous distributions. However, for the city-level OD flow data, the efficiency of the SNN_
flow method does not seem to be ideal as it has a relatively high time complexity.

By and large, existing studies have tried many clustering algorithms in the flow clus-
ter extraction problem to provide valuable insights for unveiling human mobility patterns. 
However, they still have gaps in effectively detecting flow clusters of varying shapes and 
densities from large-scale OD flow data. To this end, we combine the respective advan-
tages of community detection and SNN_flow methods, and propose a two-stage flow clus-
tering method to extract FFBS flow clusters, trying to provide profound insights for uncov-
ering human mobility patterns and allocating infrastructure resources.

Two‑stage flow clustering method

In Stage I, the study area is divided into multiple FFBS activity zones using the Leiden 
algorithm. Based on this, the FFBS flow clusters within each activity zone are identified 
separately in Stage II employing the SNN_flow method.

Stage I: activity zone delineation

A three-step identification framework is developed to delineate the FFBS activity zone bor-
ders, as depicted in Fig. 1. First, we construct an undirected weighted network (G = (V, E)) 
upon the FFBS trips (Fig. 1a, b), where V is the vertex set of the network G, consisting of 
the centroids of all spatial units; E is the edge set of the network G, consisting of all links 
between each pair of centroids; each edge e corresponds to a weight W(e), which represents 
the size of OD flow (i.e., FFBS trip count).

Second, based on the community detection algorithm, all vertices are divided into mul-
tiple vertex groups (Fig. 1c). The basic principle of this algorithm is to form a community 

1  The shape of a flow cluster is determined by the direction and length of the similar trips it contains (Tao 
and Thill 2016).
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structure based on the degree of connection between vertices. That is, vertices located in 
the same community are relatively closely connected, while vertices located in different 
communities are very sparsely connected to each other (Girvan and Newman 2002). The 
Louvain algorithm is a classical community detection algorithm, covering two elementary 
phases (i.e., node local movement and network aggregation), which provides an efficient 
solution for vertex grouping (Jin et  al. 2021). However, it has been found that the Lou-
vain algorithm may derive some internally poorly connected communities during the com-
munity structure partitioning process (Traag et al. 2019). To overcome this defect, Traag 
et al. (2019) recently extended the Louvain method by adding a partition refinement phase 
and proposed the so-called Leiden algorithm, which is more computationally efficient and 
uncovers better partition structures. In this work, the Leiden community detection algo-
rithm is exploited to discover the partition structure of the FFBS system.

In addition, we measure the performance of the communities partitioned by the Leiden 
algorithm based on the modularity Q. The value of Q lies between zero and one, and the 
larger the value, the more stable the corresponding community structure (Jin et al. 2021). 
The modularity Q of the weighted network (Arenas et al. 2008) can be written as:

where W is the weight values of all edges, Wij is the weighted adjacency matrix (i.e., the 
weight value of the edge between vertices i and j), si (sj) refers to the strength of vertex i 
(j), ci (cj) refers to the community to which vertex i (j) is partitioned, and δ(·) is an indicator 
function, if ci = cj, then δ = 1, else, δ = 0.

Third, the borders of the community structures are automatically identified and high-
lighted with the help of the ArcGIS Dissolve Boundaries tool (Fig. 1d). These communi-
ties have dense FFBS trips within them and can serve as effective proxies for user activity 
spaces (Chen et al. 2022b). The study area is eventually separated by the borders of the 
FFBS activity zones.

Stage II: flow cluster identification

For each FFBS activity zone delineated in the previous phase, the SNN_flow method is 
exploited to identify its respective flow clusters. Specifically, the SNN_flow method con-
sists of three essential steps. First, the FFBS trips and road network datasets are collected 

(1)Q =
1

2W

∑

ij

(

Wij −
sisj

2W

)

�
(
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)

Fig. 1   Identification framework of FFBS activity zones: a FFBS trip preparation; b undirected weighted 
network construction; c community structure division; and d activity zone delineation
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and preprocessed as inputs for the subsequent steps (“Data preparation” section). Second, 
a suitable k value is estimated to determine the clustering scale (“Appropriate k-value esti-
mation” section). Finally, the flow clusters of FFBS are detected based on the SNN density 
(“Flow cluster detection” section). The pseudo-code of SNN_flow is given in Algorithm 1.

Data preparation

With no fixed dock limitation, FFBS bikes can be parked freely near buildings along urban 
streets (as long as parking is permitted), such that the location of some OD points is some-
what offset from the road segment (e.g., point Om in Fig. 2a). To address this issue, a map 
matching approach is used to match each pair of OD points onto their nearest road segment 
(White et al. 2000). A road network is then constructed based on the existing road dataset 
to search for the network distance2 between OD point pairs as a proxy for trip trajecto-
ries. Network distance is usually a more accurate reflection of users’ actual travel behavior 

2  Network distance refers to the shortest path between two points using a road network, where the shortest 
path is measured by the travel weight (e.g., travel time or distance) of the network edges (Apparicio et al. 
2008).
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than a straight-line path (i.e., Euclidean distance) (Apparicio et al. 2008; Páez et al. 2020). 
Taking the fm trip composed of origin point (Om) and destination point (Dm) as an exam-
ple, the spatial distribution of its network distance is shown in Fig. 2b. More specifically, 
the fm trip can be expressed as (Om, Dm, LS(Om), LE(Om), LS(Dm), LE(Dm)), where LS(Om) 
and LE(Om) denote the length of the shortest path between the origin point (Om) and the 
start/end node3 of the road segment where it is located, respectively; similarly, LS(Dm) and 
LE(Dm) are the shortest path lengths from Dm to the start node and end node of its road seg-
ment, respectively.

According to the basic principle of the SNN_flow algorithm, it is necessary to fur-
ther search for the k-nearest neighbors corresponding to each trip (Liu et  al. 2022a). 

Fig. 2   Identification process of the three-nearest neighbors of a certain trip (fm): a FFBS trip preparation; 
b matching FFBS trips onto the road network; c road node distance matrix construction; and d–f k-nearest 
neighbor identification

3  To facilitate the distinction, we set the node with the smaller longitude (latitude) value in a road segment 
as the start node and the other node as the end node.
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Hence, we need to calculate the distance (for this study, the network distance is used) 
between any two trips in advance. Taking fm and fn as an example, the network distance 
between them is calculated by the following formula (Shu et al. 2021):

where ND(Om, On) refers to the network distance between the origin points of fm and fn, and 
ND(Dm, Dn) refers to the network distance between the destination points of fm and fn. For 
the two origin points Om and On located at the road segments Sij and Spq in Fig. 2b, the net-
work distance ND(Om, On) between Om and On can be chosen as the minimum value from 
the following two cases: (i) LS(Om) + ND(i, p) + LS(On); (ii) LE(Om) + ND(j, q) + LE(On). 
From this, we can see that the network distance between two trips contains two parts, one 
is an uncertain distance consisting of road nodes and OD points (e.g., LS(Om), and the other 
is a fixed distance consisting of road nodes (e.g., ND(i, p)).

In reality, the network distance between road nodes is fixed and does not change with 
the location of the OD points. Therefore, we can calculate this part of the distance in 
advance to reduce the workload of calculating the network distance between OD points 
and improve computational efficiency. Figure 2c displays an example of constructing a 
distance matrix based on local network nodes.

Appropriate k‑value estimation

As mentioned above, in order to obtain the SNN density of a trip, we need to first iden-
tify its network-constrained k-nearest neighbors (Fig.  2f). In practice, most trips are 
within an acceptable distance from their kth nearest neighbors when the value of k is not 
large (Pei et al. 2012). This means that we only need to compute the network distance of 
fm from those trips within a certain range from it. In this study, linear buffers of length 
L0 are drawn for the origin and destination points of each trip, respectively. Figure 2d 
depicts the linear buffers at both ends of fm. The network distances from the Om (or Dm) 
point to the other origins (or destinations) in the buffer are all less than L0. L0 depends 
on the most of trip distances for a given transportation mode. For FFBS, 5 km is typi-
cally considered as its longest trip distance (Chen 2021), hence that is the length thresh-
old (L0) adopted in this study.

After a linear buffer is constructed for each trip, its neighboring trips located 
within the buffer can be further extracted. Figure  2e illustrates the neighboring trips 
of fm within its buffer. Then, combined with the local road node distance matrix, we 
efficiently calculate the network distance between the target trip fm and its neighboring 
trips, and on this basis, identify the k-nearest trips of fm. Figure 2f shows the three-near-
est trips identified from the neighboring trips of fm (assuming k = 3).

As we can see, estimating the appropriate value of k is very critical as its magni-
tude determines the reasonableness of the SNN density distribution. Either too low or 
too high k-value will affect the normal estimation of SNN density. Many researchers 
have applied the ratio between the variance of the (k + 1)th nearest distance and that of 
the kth nearest distance (RKD for short, which refers to the capitalized initials of ratio, 
(k + 1)k and distance, respectively) to estimate the appropriate k value with good perfor-
mance (Liu et al. 2022a; Pei 2011), and hence that is the index used in this study.

(2)ND(fm, fn) = ND(Om,On) + ND(Dm,Dn)
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where Var∗
k
(x) denotes the variance of the kth nearest distance of the trips (i.e., the distance 

between each trip and its kth nearest trip is first calculated, and then the variance of all 
distances is calculated); Var∗

k+1
(x) has a similar meaning; and Rk is a constant term whose 

value is equal to the ratio of the expectation value of the above two distances. As the k 
value increases, the RKD value will gradually level off. We can easily identify the magni-
tude of the k value when RKD is at the leveling-off change point. For more details, please 
refer to the study of Pei (2011).

Flow cluster detection

In the previous subsection, we identified k neighboring trips for each trip, and in this sub-
section, the SNN density of each trip is estimated to finally detect flow clusters. Following 
Ester et al. (1996) and Liu et al. (2022a), we introduce some important concepts for SNN 
algorithm:

•	 Definition 1 (SNN similarity). The number of nearest neighbors shared by the k-near-
est trips of any two trips. For trips fm and fn, their k-nearest trips can be expressed as 
KNN(fm) and KNN(fn), and the SNN similarity of them can be expressed as:

•	 Definition 2 (Directly reachable). If SNN(fm, fn) ≥ k/2, the two trips, fm and fn, are 
directly reachable.

•	 Definition 3 (SNN density). It refers to the number of trips that are directly reachable 
from a particular trip (e.g., fm).

•	 Definition 4 (Core flow). For a particular trip, fm, if p-value(fm) ≤ α (α is the signifi-
cance level), then it is regarded as a core flow. The p-value of fm can be written as:

where Ii(·) is an indicator function, if SNNDr(fm) ≥ SNNDo(fm), then Ii = 1, else, Ii = 0. 
SNNDr(fm) and SNNDo(fm) refer to the SNN density of fm calculated from the random trips 
and observed trips. R is the number of Monte Carlo simulations. Some researchers con-
firmed that Monte Carlo simulation can minimize the sampling effort without affecting 
the overall performance of the model when α = 0.05, R = 99 (Silva et al. 2009; Liu et al. 
2022b), which is used in this study.

•	 Definition 5 (Border flow). A trip that is directly reachable from a core flow but is not 
itself a core flow.

•	 Definition 6 (Noise flow). A trip that is neither a core flow nor directly reachable from 
one.

The following steps describe how the SNN algorithm detects flow clusters based on the 
density-connectivity mechanism. (i) A case (fm) is randomly selected from the dataset. The 
case fm is considered a core flow if its p-value is smaller than or equal to α. Immediately 

(3)RKD =
Var

∗
k+1

(x)

Var
∗
k
(x)

∕Rk (k ≥ 1)

(4)SNN(fm, fn) =
||KNN(fm) ∩ KNN(fn)

||

(5)p - value(fm) =

∑R

i=1
Ii(SNNDr(fm) ≥ SNNDo(fm))

1 + R
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afterwards, fm is added to an initial cluster and a cluster ID is assigned to it (e.g., Ck). If the 
case fm is not a core flow, the SNN algorithm moves on to another case; (ii) We assume that 
the algorithm selects a case (fm) and finds it is a core flow. The algorithm then visits each of 
the reachable cases that are directly reachable with fm and repeats the same task: calculate 
the SNN density. If the reachable case is also identified as a core flow, it is added to the Ck 
cluster; (iii) If the algorithm finds a reachable case that is directly reachable with fm but has 
a p-value greater than α, then this case is considered as a border flow. A border flow can 
still be added to a Ck cluster as long as it is directly reachable from any core flow in the Ck 
cluster. The search continues recursively until all reachable cases of fm are visited; (iv) The 
algorithm selects a case in the dataset that it has not visited before and starts the process of 
(i)–(iii) all over again. Those cases that are neither core flows nor directly reachable from 
one are grouped into the noise flows. Finally, a flow cluster consisting of core and border 
flows aggregates a certain number of spatially similar trips.

As stated earlier, the SNN_flow method consisting of three essential steps is utilized 
to identify the flow clusters for each activity zone. It is thus necessary to finally merge the 
flow clusters of all activity zones for subsequent analysis.

Study area and data description

Study area

Nanjing is the capital of Jiangsu province of China, a megacity and the second largest city 
in the East China region (Fig. 3a). Nanjing had a total area of 6587 km2 and a population 
of 8.33 million as of 2018. There are 11 administrative districts, six of which are urban dis-
tricts (i.e., Gulou, Jianye, Xuanwu, Qinhuai, Yuhuatai, and Qixia) and the remaining five 
are suburban districts (i.e., Liuhe, Pukou, Jiangning, Lishui, and Gaochun) (Cheng et al. 
2020b), as shown in Fig. 3b.

Since the beginning of 2017, FFBS was first launched in Nanjing and quickly attracted 
numerous users due to its advantages such as flexible mobility and smart rental process 
(Hua et al. 2020). FFBS is usually backed by venture capital funding. For profit-making 
purposes, most bikes are assigned to densely populated areas with high demand (Cheng 
et al. 2020a; Gu et al. 2019). Nanjing is no exception, and citizens in its peripheral districts 

Fig. 3   Spatial distribution of a Jiangsu province; b Nanjing city; and c study area
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(i.e., Lishui and Gaochun) have no FFBS bikes to use. Therefore, the remaining nine 
administrative districts of Nanjing are selected as the study area (see Fig. 3c). Note that the 
traffic analysis zone (TAZ) within the study area was adopted as the spatial unit for delin-
eating the FFBS activity zones (see “Stage I: Activity zone delineation” section).

Data description

The FFBS journey data were provided by Mobike, which at the time had the largest share 
of the FFBS fleet in Nanjing (Cheng et al. 2022b). The dataset records journey information 
of users, including fields such as user ID, bike ID, unlock time, lock time, coordinates of 
origins and destinations. We focus on the mobility pattern of the FFBS system on week-
days. In this study, data for only three consecutive weekdays (from 12 (Tuesday) to 14 
(Thursday) September 2017) are used due to data availability. Nevertheless, they could still 
serve as a valid sample to validate the applicability of the method and unravel the daily 
patterns of FFBS trips (Guo and He 2020). During this period, the average temperature 
in Nanjing was between 20 °C and 28 °C with no rainfall, which was suitable for outdoor 
activities such as cycling. To mitigate the interference of abnormal data, we removed FFBS 
journeys with travel times less than 2 min or longer than 120 min (Chen et al. 2022b; Zhao 
et  al. 2015). Nearly 1.9 million trips made by a total of 190,008 bikes were eventually 
recorded.

The road dataset was obtained from Amap (https://​ditu.​amap.​com/), one of the most 
popular mapping service providers in China. In order to calculate the network distance 
between adjacent FFBS trips (see “Data preparation” section), a road network needs to 
be constructed on the basis of the original road dataset with the help of ArcGIS Network 
Analyst Extension. In addition, we applied a solution recently developed by Xu (2022) to 
further refine the connectivity of the road network by checking and modifying its topology 
(https://​github.​com/​xuxin​kun05​91/​gaode2/).

Another dataset we adopted is the land use map provided by the Nanjing Planning 
Bureau. The land use map consists of many polygons with different shapes, and each 

Fig. 4   Spatial distribution of different land use types in the study area

https://ditu.amap.com/
https://github.com/xuxinkun0591/gaode2/
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polygon has a corresponding land use type attribute. In line with a related study (Pan et al. 
2012), a variety of land use types are divided, including campus, hospital, scenic spot, 
metro station, employment district, residential district, commercial district, green space, 
water body, and other land use. The spatial distribution of different land use types in the 
study area is shown in Fig. 4. Based on the land use information, we can initially infer the 
travel purpose of FFBS trips in the subsequent analysis (Lei et al. 2020).

Results and discussions

Flow clusters identification

Application of the two‑stage flow clustering method

In a recently published work by Chen et  al. (2022b), the partitioning of FFBS activity 
zones has been examined employing the Leiden algorithm using the same data source. The 
community structure of the study area is obtained in just a few seconds due to the low time 
complexity of the Leiden algorithm, which proves that this algorithm is very efficient. The 
study pointed out that the most robust community structure was yielded when the entire 
study area was divided into 22 FFBS activity zones (Fig. 5b). It can be seen from Fig. 5a, b 
that the FFBS activity zone borders coincide with the established administrative borders in 
a small percentage.

To validate the rationality of the FFBS activity zone delineation, the proportional distri-
bution of FFBS trips within and between regions is investigated for three weekdays (Sep-
tember 12 to 14, 2017), as shown in Fig. 5c, d. First, as we can see, while most FFBS trips 
are distributed within the same administrative district (87.89%), there is still a certain share 
of FFBS trips used to connect different administrative districts (12.11%). This distribu-
tion characteristic is more prominent in urban districts (e.g., Gulou, Qinhuai, and Xuanwu 
districts). By contrast, the activity zones delineated by the Leiden algorithm have stronger 
intra-zone connections (92.34%). While the number of activity zones is increasing, FFBS 
trips between them show the opposite trend (i.e., inter-zone trips, 7.66%). It means that 
activity zone borders could portray FFBS user travel behavior and urban spatial structure in 
a more reasonable way. Therefore, by dividing the study area into multiple activity zones, a 
complex network can be decomposed into multiple sub-networks. This process is expected 
to significantly improve the computational efficiency of the SNN_flow method while mini-
mizing the effect of inter-zone connections.

Then, the flow clusters within each activity zone are detected separately using the 
SNN_flow method, and the flow cluster detection results are further merged for all activ-
ity zones. It is noteworthy that morning peak (7:00–9:00, referred to as AM) and evening 
peak (17:00–19:00, referred to as PM) are considered the focus of flow clusters analysis, 
as FFBS usage is higher and more time-concentrated during these periods. In addition, we 
extract flow clusters with the number of similar trips greater than 30 from the daily AM 
and PM peaks to ensure that the number of flow clusters is within a reasonable range (Liu 
et al. 2022a). Taking the activity zone 14 as a case study, the details of flow clusters identi-
fication are illustrated in Appendix 1.

Table 1 depicts a summary of the flow clusters identified for all activity zones during the 
AM and PM peaks. On the whole, the number of similar trips and flow clusters stabilized 
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at an equilibrium level during three different weekdays. For instance, during the AM peak, 
the number of flow clusters remained between 375 and 404, corresponding to a percentage 
of similar trips located between 16.92% and 17.57%. Nevertheless, we found salient dif-
ferences in the number and size of flow clusters identified between the AM and PM peaks. 
Taking September 12, 2017 (Tuesday) as an example, while the number of raw trips during 
the PM peak (117,386) was larger than that during the AM peak (108,387), the number of 
flow clusters extracted during these two time periods showed an opposite trend (328 for 
PM vs. 375 for AM), and the corresponding number and proportion of similar trips also 
followed this trend. This implies that more flow clusters are identified and the size of the 
flow clusters is usually larger during the AM peak compared to the PM peak (see the mean 
values in Table 1). A plausible explanation is that commuters tend to have less stringent 
time constraints for returning home during the PM peak, during which they may complete 

Fig. 5   Spatial distribution of a administrative districts and b activity zones in the study area; and propor-
tional distribution of FFBS trips from September 12 to 14, 2017 of c administrative districts and d activity 
zones in the study area. Note spatial distribution of activity zones b is adapted from Chen et al. (2022b). 
Those connections with less than 100 FFBS trips are not displayed in this figure c–d to avoid display clutter 
issues



Transportation	

1 3

Ta
bl

e 
1  

S
um

m
ar

y 
re

su
lts

 o
f fl

ow
 c

lu
ste

r d
et

ec
tio

n 
fro

m
 S

ep
te

m
be

r 1
2 

to
 1

4,
 2

01
7

a  It 
re

fe
rs

 to
 th

e 
av

er
ag

e 
nu

m
be

r o
f s

im
ila

r t
rip

s c
on

ta
in

ed
 in

 e
ac

h 
flo

w
 c

lu
ste

r
b  It 

re
fe

rs
 to

 th
e 

st
an

da
rd

 d
ev

ia
tio

n 
of

 th
e 

nu
m

be
r o

f s
im

ila
r t

rip
s c

on
ta

in
ed

 in
 e

ac
h 

flo
w

 c
lu

ste
r

D
at

e
Pe

rio
d

N
o.

 o
f r

aw
 tr

ip
s

N
o.

 o
f s

im
ila

r t
rip

s 
(p

er
ce

nt
ag

e)
N

o.
 o

f fl
ow

 
cl

us
te

rs
M

ea
n 

(u
ni

t: 
si

m
ila

r t
rip

s /
flo

w
 c

lu
ste

r)
a

St
d.

 D
ev

. (
un

it:
 si

m
i-

la
r t

rip
s /

flo
w

 c
lu

ste
r)

b

Se
pt

. 1
2,

 2
01

7 
(T

ue
sd

ay
)

A
M

10
8,

38
7

18
,4

43
 (1

7.
02

%
)

37
5

49
.2

30
.2

PM
11

7,
38

6
15

,8
89

 (1
3.

54
%

)
32

8
48

.4
28

.8
Se

pt
. 1

3,
 2

01
7 

(W
ed

ne
sd

ay
)

A
M

11
2,

23
2

19
,7

16
 (1

7.
57

%
)

40
4

48
.8

30
.6

PM
11

8,
32

0
15

,6
57

 (1
3.

23
%

)
33

7
46

.5
27

.6
Se

pt
. 1

4,
 2

01
7 

(T
hu

rs
da

y)
A

M
11

1,
75

1
18

,9
07

 (1
6.

92
%

)
39

0
48

.5
30

.8
PM

11
7,

21
7

15
,1

26
 (1

2.
90

%
)

32
9

46
.0

27
.4

To
ta

l
A

M
33

2,
37

0
57

,0
66

 (1
7.

17
%

)
11

69
48

.8
31

.1
PM

35
2,

92
3

46
,6

72
 (1

3.
22

%
)

99
4

47
.0

28
.3



	 Transportation

1 3

some discretionary activities (e.g., shopping, eating, and entertainment) (Chen et al. 2022c; 
Ji et al. 2017). This leads to a reduction in the share of commuting demand that concen-
trates a large number of similar trips.

Efficiency comparison of flow clustering methods

In this subsection, we focus on comparing the efficiency of SNN_flow method and the 
two-stage flow clustering method (Leiden & SNN_flow) in extracting flow clusters. The 
largest difference between the two methods in the process of identifying flow clusters is the 
input. More specifically, the former takes the dataset of the entire study area as input, while 
the latter first partitions the study area into 22 activity zones, and then takes the dataset of 
each activity zone as input separately. Both methods take a little time in the data prepara-
tion step (see “Data preparation” section), but the former method has difficulty in obtaining 
results within a limited time in the flow cluster detection step (see “Flow cluster detection” 
section). Under this circumstance, the running time of the appropriate k-value estimation 
step (see “Appropriate k-value estimation” section) was selected as a proxy to compare 
the efficiency of these two methods in this study. It is noteworthy that both methods were 
implemented in Python 3.8.11. All computational experiments were conducted on a desk-
top with a 2.90 GHz computer processing unit and 64 GB memory.

We randomly sampled from the dataset and generated five datasets with different 
numbers of raw trips. The running times of these two methods in estimating k values for 
these five datasets are displayed in Table 2. It is found that when the number of raw trips 
increases to a certain threshold, the time spent by the SNN_flow method is incredibly 
high. For example, when the number of raw trips increased to 50,000, its running time is 
nearly 7000 s. In contrast, the running time of the two-stage flow clustering method is in an 
acceptable range. On the other hand, FFBS trips have the distinct characteristics of short 
distance and local aggregation (Chen et al. 2022b; Zhang et al. 2021), and thus it seems 
more reasonable to extract the corresponding k value for each activity zone than to extract 
a unique k value from the entire study area. In summary, for the FFBS system, the two-
stage flow clustering method that divides the study area into multiple activity zones and 

Table 2   Running time of SNN_flow and the two-stage flow clustering methods for estimating appropriate k 
values

a The entire study area is taken as input and a unique k value is output
b For each activity zone, one corresponding k value is output separately. The study area is divided into 22 
activity zones, so there are 22 k values in total (Fig. 11a–c shows the case of determining the appropriate k 
value for activity zone 14)

No. of raw trips SNN_flow method Two-stage flow clustering method

Time (s) No. of k values Time (s) No. of k values

10,000 138 1a 31 22b

20,000 436 1 130 22
30,000 1323 1 286 22
40,000 2859 1 557 22
50,000 6957 1 934 22
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then treats them separately is more efficient and reasonable than the SNN_flow method that 
directly treats the entire study area.

Spatio‑temporal patterns of flow clusters

Inference of potential travel purpose

In this subsection, we focus on the spatio-temporal patterns of the flow clusters identified 
in “Application of the two-stage flow clustering method” section. First of all, the travel 
purpose of the flow clusters is inferred by combining the land use information (see Fig. 6). 
More concretely, if the proportion of the origin (destination) points of a flow cluster that 
falls into a certain land parcel exceeds 50%, we assign the land use type of this parcel to 
the head (end) of this flow cluster. Note that for an origin (destination) point that does not 
fall into any of the parcels, we group it into the parcel nearest to it. As shown in Fig. 6a, in 
the case of this identified flow cluster, most of its origins and destinations fall into parcels 
of the metro station type and employment district type, respectively. Therefore, it is reason-
able to assume that this is a flow cluster for addressing the “last-mile” demand between a 
metro station and a workplace.

Figure 6b, and c illustrates the matching results of origin–destination land use types for 
the AM peak and PM peak flow clusters from September 12 to 14, 2017. For the AM peak 
(as shown in Fig. 6b), those OD flow clusters of the “residential district → metro station” 
type have the highest share (47.73%). This is followed by the flow clusters of the “metro 
station → employment district” type (24.12%). Those flow clusters that span directly from 
residential districts to employment districts also have a share, coming in third (8.98%). 
The remaining types of flow clusters (e.g., “metro station → commercial district”, “cam-
pus → campus”) are fewer in number during the AM peak, together accounting for less 
than 20% of the total. Similar to the AM peak, the OD points of the flow clusters during 
the PM peak are primarily concentrated in three land use types: metro station, residential 
district, and employment district, but their trip chain order is the opposite of that of the 
AM peak (see Fig. 6c). To put it another way, the flow clusters during the PM peak are 
dominated by return-home trips, including “metro station → residential district” (40.14%), 

Fig. 6   Matching results of origin–destination land use types of flow clusters. (a) a matching case of “metro 
station → employment district” type flow cluster; matrix of origin–destination land use types for all flow 
clusters during (b) the AM peak and (c) the AM peak from September 12 to 14, 2017
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“employment district → metro station” (25.65%), and “employment district → residential 
district” (8.15%).

Overall, the percentage of flow clusters used to meet “first-/last-mile” demand between 
metro stations and adjacent residences/workplaces is considerable, both during the AM 
(71.85%) and PM (65.79%) peaks. This implies that FFBS commuting trips with similar 
spatio-temporal characteristics mostly occur near metro stations. Another interesting find-
ing is that the proportion of flow clusters addressing the “first-/last-mile” between metro 
stations and adjacent residences (47.73% for AM, 40.14% for PM) was considerably higher 
than those addressing the “first-/last-mile” between metro stations and adjacent workplaces 
(24.12% for AM, 25.65% for PM). One reason is that many companies provide commuter 
shuttles for their employees as an optional way to address the “first-/last-mile” needs of the 
metro system (Johnson et al. 2015; Kou et al. 2022). The other reason may be that many 
workplaces (e.g., industrial parks, government agencies) rarely allow FFBS bikes parking 
inside for management purposes, and the parking spaces available for commuters near the 
gates are usually limited (Chen and Ye 2021). This somewhat reduces the possibility of 
choosing FFBS as the connection mode of the metro system.

Analysis of spatio‑temporal distribution characteristics

The spatial distribution of FFBS flow clusters during the peak hours from September 12 
to 14, 2017 was depicted with the help of the Line Density tool in ArcGIS (see Fig. 7). 
The length and direction of the flow clusters are characterized by the centerline extracted 
from the similar trips, and the size of the flow clusters is weighted by the number of similar 
trips. As shown in Fig. 7, the redder the color of the grid, the higher the number of similar 
trips occurring at that location. As expected, the density of flow clusters during the AM 
peak is generally larger than that of flow clusters during the PM peak.

As shown in Fig. 7, metro stations perform a considerable role in the formation of FFBS 
flow clusters. In order to provide nuanced and appropriate guidance to relevant policies, 
it is necessary to investigate from which metro stations these flow clusters converge and 
diverge. First, four types of flow clusters related to metro stations are labeled according 

Fig. 7   Spatial distribution of FFBS flow cluster density during a the AM peak and b the PM peak from 
September 12 to 14, 2017. Note: the numerical intervals in the legend are divided by the Jenks Natural 
Breaks Classification tool
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to peak hours and trip chain order, namely AM “first-mile” clusters (i.e., “residential dis-
trict → metro station”), AM “last-mile” clusters (i.e., “metro station → employment dis-
trict”), PM “first-mile” clusters (i.e., “employment district → metro station”), and PM “last-
mile” clusters (i.e., “metro station → residential district”). Then, the number of similar trips 
from September 12 to 14, 2017 corresponding to these four types of flow clusters is aggre-
gated to each metro station, as shown in Fig. 8.

Some interesting findings can be drawn from Fig.  8. For instance, for the AM “first-
mile” clusters, those metro stations that converge a large number of similar trips from 
residences are principally located outside the city center (Fig. 8a). As for the AM “last-
mile” clusters, those metro stations that diverge plenty of similar trips to workplaces are 
mostly concentrated in the core city (see Fig.  8c). This coincides with the work of Gan 
et al. (2020) that the residential-oriented metro stations are located in more remote areas 
than the employment-oriented metro stations concentrated in urban cores. They argued that 
a major reason is that these relatively remote areas often grew out of under-functioning 
urban villages, lacking companies and enterprises that can provide a substantial number of 
job opportunities.

During the PM peak, the spatial distribution of similar trips arriving at the metro sta-
tions (Fig. 8b) is similar to that of similar trips departing from the metro stations during 
the AM peak (Fig. 8c). Figure 8a and d also follow the same trend. Nevertheless, we find 
a significant difference in the AM “first-mile” clusters (Fig. 8a) and PM “last-mile” clus-
ters (Fig. 8d). Specifically, the residential-based metro stations are located in more remote 
peripheral areas during the PM peak compared to the AM peak. This may be due to the fact 
that many commuters will have discretionary activities (e.g., shopping, eating, and enter-
tainment) in their return-home journeys during the PM peak, and inner areas with more 
commercial land uses appear to be better able to meet these flexible needs (Chen et  al. 
2022c).

Endpoint distribution characteristics of flow clusters

In this section, two classical tools in spatial analysis, namely standard deviational ellipse 
(SDE)4 and calculate distance band from neighbor count (CDBFNC),5 are adopted to por-
tray the shape and density distribution of flow clusters (Zhu et al. 2016).

We focus on three types of work-related flow clusters during the AM peak (i.e., “resi-
dential district → metro station”, “metro station → employment distric”, and “residential 
district → employment district”) and three types of return-home-related flow clusters dur-
ing the PM peak (i.e., “employment district → metro station”, “metro station → residential 
district”, and “employment district → residential district”), all of which have a high share 
(see “Inference of potential travel purpose” section for details). It is worth noting that we 

4  SDE is widely utilized to examine the directionality and shape of the spatial points. one, two and three 
standard deviation(s) (input parameter) indicate that the ellipse cover 68%, 95% and 99% of all points, 
respectively. The latest help document from ArcGIS 10.8 describes how the tool works. https://​deskt​op.​arc-
gis.​com/​zh-​cn/​arcmap/​latest/​tools/​spati​al-​stati​stics-​toolb​ox/h-​how-​direc​tional-​distr​ibuti​on-​stand​ard-​devia​
tiona.​htm
5  CDBFNC reflects the degree of aggregation of spatial points by calculating the average distance from a 
set of points to the specified nth nearest neighbor (n is an input parameter). For more details on this tool, 
please refer to the latest help documentation from ArcGIS 10.8. https://​deskt​op.​arcgis.​com/​en/​arcmap/​lat-
est/​tools/​spati​al-​stati​stics-​toolb​ox/​calcu​late-​dista​nce-​band-​from-​neigh​bor-​count.​htm

https://desktop.arcgis.com/zh-cn/arcmap/latest/tools/spatial-statistics-toolbox/h-how-directional-distribution-standard-deviationa.htm
https://desktop.arcgis.com/zh-cn/arcmap/latest/tools/spatial-statistics-toolbox/h-how-directional-distribution-standard-deviationa.htm
https://desktop.arcgis.com/zh-cn/arcmap/latest/tools/spatial-statistics-toolbox/h-how-directional-distribution-standard-deviationa.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/calculate-distance-band-from-neighbor-count.htm
https://desktop.arcgis.com/en/arcmap/latest/tools/spatial-statistics-toolbox/calculate-distance-band-from-neighbor-count.htm
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need to extract the endpoints of these flow clusters as the input of the two tools, as both of 
them are limited to processing point data (Zhu et al. 2016). For the AM peak from Septem-
ber 12 to 14, 2017, the total number of flow clusters in terms of three work-related types is 
945, corresponding to 1890 point clusters (945 × 2, i.e., a flow cluster contains one origin 
point cluster and one destination point cluster). According to the point cluster land use 

Fig. 8   Aggregation results of the number of similar trips from September 12 to 14, 2017 corresponding to 
the four types of flow clusters at the metro stations. a “first-mile” clusters (residential district → metro sta-
tion) arriving at metro stations during the AM peak; b “first-mile” clusters (employment clusters → metro 
station) arriving at metro stations during the PM peak; c “last-mile” clusters (metro station → employment 
clusters) departing from metro stations during the AM peak; and d “last-mile” clusters (metro station → res-
idential district) departing from metro stations during the PM peak
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type, we further divide the 1890 observations into three categories (840 for metro station, 
663 for residential district, and 387 for employment district). By analogy, there are 1470 
observations in the PM peak from September 12 to 14, 2017 (654 for metro station, 480 for 
residential district, and 336 for employment district).

We set two standard deviations as the input parameter for SDE, so that the ellipse cov-
ers as many points in the point cluster as possible (95%) with less influence from outliers. 
The tool finally outputs the long and short semi-axes of each ellipse. To be more intuitive, 
we use the flattening value to depict the shape of the ellipse (point cluster). The flattening 
value is equal to the ratio of the difference between the long and short semi-axes to the 
long semi-axes. Its value spans from zero to one, and the closer the value is to one, the flat-
ter the shape of the point cluster. Figure 9 shows the distribution of flattening values for the 
1890 (1470) point clusters during the AM (PM) peak of the three weekdays in the form of 
kernel density and box plots. On the whole, the highest flattening values are found for the 
metro station point clusters during the AM peak (mean = 0.562), followed by the employ-
ment district point clusters (mean = 0.503), and the lowest flattening values for the resi-
dential district point clusters (mean = 0.415) (see Fig. 9a). This implies that the shape dis-
tributions of employment district and metro station point clusters are inclined to be flatter 
than that of residential district point clusters. This is perhaps due to the fact that during the 
peak-hour periods, parking spaces near the entrances of office buildings, especially metro 
stations, are often in short supply (Zhao and Ong 2021), resulting in many travelers having 
to park their FFBS bikes along the surrounding sidewalks. In contrast, the shape distribu-
tion of residential district point clusters tends to be more circular. The major reason for 
this may be the existence of many non-gated residential communities in Nanjing (Xinhua 
Daily 2022), which allows travelers scattered there to park FFBS bikes closer to their exact 
destination. The distribution of flattening values during the PM peak is basically the same 
as that during the AM peak, except that it is more uniform (see Fig.  9b). The potential 
rationale is that, as we discussed in “Application of the two-stage flow clustering method” 
section, the transaction time and location of return-home trips during the PM peak tend to 
be less concentrated compared to those of work-related trips during the AM peak (Chen 
et al. 2022c; Ji et al. 2017).

Fig. 9   Distribution of flattening values at the origins and destinations of flow clusters during a the AM peak 
and b the PM peak from September 12 to 14, 2017
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Since the number of spatial points falling into each point cluster is more than 30 (the 
recognition threshold for flow clusters is 30, see “Flow clusters identification” section for 
details), we set the input parameter (n) of CDBFNC tool to 30. The tool finally returns the 
average distance of all spatial points of the point cluster to the 30th nearest neighbor. Fig-
ure 10 illustrates the distribution of average nearest neighbor distance for the 1890 (1470) 
point clusters during the AM (PM) peak of the three weekdays. As shown in Fig. 10a, the 
overall distribution of the average nearest neighbor distance of the metro station point clus-
ters is significantly shorter (mean = 71.8 m). This result further indicates that metro sta-
tions with relatively limited parking resources often need to carry the operational man-
agement pressure incurred by the rapid convergence and divergence of FFBS bikes during 
peak hours. For the residential district point clusters, we find that their average nearest 
neighbor distances are longer in general (mean = 260.7 m). In other words, the spatial dis-
tribution of points within the residential district point clusters is more dispersed than the 
other two types of point clusters. One possible reason is that, compared with the compact 
office buildings and metro stations, many large residential neighborhoods in Nanjing are 
located in less-developed peripheral areas (Cheng et  al. 2022b; Gan et  al. 2020), where 
there is relatively sufficient space for bike parking. The average nearest neighbor distance 
exhibits essentially the same overall distribution during the AM and PM peaks, except that 
its distribution is somewhat more uniform during the PM peak (see Fig. 10b). This find-
ing is similar to the distribution of flattening values during the peak hours (Fig. 9), further 
demonstrating that FFBS trips in the morning are more intensively concentrated.

Conclusions and policy implications

Discovering FFBS similar trips is of great importance for understanding spatio-temporal 
interactions and human mobility patterns. However, extracting flow clusters consisting 
of similar trips from large-scale, chaotic journey data remains under-researched. To deal 
with this issue, this study presents a two-stage flow clustering method, which integrates 
the Leiden community detection algorithm and the SNN_flow clustering method to effi-
ciently identify flow clusters with arbitrary shapes and inhomogeneous densities. Taking 

Fig. 10   Distribution of average nearest neighbor distances at the origins and destinations of flow clusters 
during a the AM peak and b the PM peak from September 12 to 14, 2017
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the Nanjing FFBS system as a case study, we demonstrate that the methodological frame-
work helps to significantly improve the efficiency of flow cluster identification.

The results of flow cluster detection (see Table 1) show that although the number of raw 
trips is higher during the PM peak, the number of flow clusters and corresponding similar 
trips identified during this period are notably less than those during the AM peak. From the 
perspective of spatio-temporal patterns, some interesting findings can also be drawn. First, 
the share of flow clusters used to meet the “first-/last-mile” demand between metro sta-
tions and adjacent residences/workplaces is quite high during both the AM (71.85%) and 
PM (65.79%) peaks. Second, the share of the “first-/last-mile” flow clusters between metro 
stations and adjacent residences (47.73% for AM, 40.14% for PM) is markedly higher than 
that of the “first-/last-mile” flow clusters between metro stations and adjacent workplaces 
(24.12% for AM, 25.65% for PM). Third, the residential-based metro stations in the “first-/
last-mile” flow clusters are principally located out of the city center, while the employ-
ment-based metro stations in the “first-/last-mile” flow clusters are mostly concentrated in 
the core city, which is more pronounced during the PM peak. We also investigate the shape 
and density distribution of the flow clusters. The endpoint distribution results show that 
metro station point clusters typically have a flatter, linear-like shape distribution than resi-
dential point clusters. In addition, we find that spatial points in metro station point clusters 
are more concentrated, and their density distribution is generally higher than that of other 
sorts of point clusters.

The spatio-temporal patterns of flow clusters could assist transportation planners and 
decision-makers in establishing effective policies and regulations to facilitate the rational 
use of FFBS infrastructure resources. First, extracting flow clusters that concentrate a large 
number of similar trips could provide nuanced guidance for FFBS operators to allocate 
resources more efficiently. For instance, during the epidemic prevention and control period, 
knowing the spatio-temporal dynamics of similar trips could help enhance the efficiency 
of staff in cleaning and disinfecting bikes (Teixeira and Lopes 2020). Second, metro sta-
tions, as the primary departure/arrival places of FFBS similar trips, play a crucial role in 
addressing the “first-/last-mile” commuting demand of local residents. However, around 
metro stations, there is often an obstacle in addressing the operational management pres-
sure incurred by the rapid convergence and divergence of FFBS bikes, and the tidal phe-
nomenon of “no bikes to rent or no parking spaces to return” often occurs during the peak 
hours (Chen et  al. 2022a). An effective solution is to predict the similar trips in certain 
areas in advance according to the past spatio-temporal distribution of flow clusters, thereby 
reserving a certain amount of bikes and parking spaces for users. Third, compared with 
the “first-/last-mile” between metro stations and adjacent workplaces, the solution of the 
“first-/last-mile” between metro stations and adjacent residences is more dependent on the 
FFBS system. Although FFBS has attracted many users due to its convenience of payment 
and parking, it is clearly vulnerable to extreme weather such as heavy rain and low tem-
peratures (Shen et al. 2018). In contrast, microcirculation bus – a recently emerging public 
transportation mode – can provide short-distance travelers with a safer and more comfort-
able travel service (Du et al. 2019a). Therefore, microcirculation bus service is expected to 
be the preferred mode of connection to meet the “first-/last-mile” demand between metro 
stations and adjacent residential neighborhoods under severe meteorological conditions. 
Fourth, jobs-housing imbalance leads to different FFBS-metro usage patterns during the 
AM and PM peaks. The differences are critical for designing FFBS fleet rebalancing strate-
gies. For instance, during the AM peak, many metro stations outside the city center may 
be piled up with a great deal of returned shared bikes, and staff will need to clean them 
in a timely manner. During the PM peak, the provision of shared bikes near these metro 
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stations becomes insufficient, and it is necessary to allocate more bikes there in advance to 
address the return-home demand.

The endpoint distribution of flow clusters also provides scholars and decision-makers 
with some valuable insights and policy implications. Specifically, we inferred from Fig. 9 
that the narrow space near metro station entrances results in many users having to park 
their FFBS bikes along sidewalk racks. This implies that the catchment area with a cer-
tain radius size (i.e., acceptable walking distance, e.g., 300 m) generated in the center of a 
metro station may not be able to accurately capture the FFBS-metro integrated use (Cheng 
et al. 2022b; Xu et al. 2019). Therefore, it seems more reasonable to construct the catch-
ment area in terms of network walking distance rather than in a straight line. In addition, 
geo-fenced parking spaces have been put into use in many cities around the world to tackle 
the disorderly parking of shared bikes (Zhang et al. 2019; Cheng et al. 2022b). It is found 
that differences in land use types (e.g., metro station, residential district, and employment 
district) and time of day (e.g., morning peak and evening peak) can bring varying distribu-
tions of shape and density in FFBS parking areas. To improve the efficiency of parking 
utilization, transportation planners may consider flexibility in the size and shape of geo-
fenced areas to meet parking needs.

In addition, the journey data of travel modes such as taxis and buses usually have a 
larger order of magnitude compared to those of FFBS. Many studies have pointed out that 
traditional flow clustering methods may have some hindrance in efficiently extracting flow 
clusters from the above travel modes (Liu et al. 2022a; Song et al. 2019). The two-stage 
flow clustering method proposed in this study may be an effective solution. To be specific, 
the community detection algorithm is utilized to first divide the entire study area into mul-
tiple activity zones with strong intra-connections, thus decomposing a large flow clustering 
problem into multiple small sub-problems.

Admittedly, there are several limitations to this study. First, we conducted an empirical 
analysis based on cross-sectional data (three-weekday FFBS journey data), which makes it 
difficult to trace the evolutionary mechanism of FFBS flow clusters over time. This study 
will be extended by performing a longitudinal analysis if a longer period of journey data 
becomes available in the future. Second, this study did not focus on individual-level mobil-
ity patterns, which are also important for understanding home-work commuting. Therefore, 
exploring the similarities and diversities of FFBS flow clusters among different user groups 
is also a worthwhile research topic. Furthermore, only the flow clusters within each activ-
ity zone were extracted in this study. Although the proportion of FFBS trips between dif-
ferent activity zones is small (7.66%), the identification and analysis of their flow clusters 
can be further taken into account, which is worth of on-going study. Nevertheless, as a 
first attempt to extract FFBS flow clusters and investigate their spatio-temporal patterns, 
our findings could provide further insights into human movement patterns and home-work 
commuting behavior.

Appendix 1

Taking the activity zone 14 as a case study,6 its flow clusters detected in the AM peak 
hours from September 12 (Tuesday) to 14 (Thursday), 2017 are displayed in Fig.  11. 
Figure  11a–c shows the RKD plots of journey data on different weekdays. According 

6  All datasets that support the findings of this case study are available on “figshare.com”, with the identifier 
at the private link: https://​doi.​org/​10.​6084/​m9.​figsh​are.​21324​837.​v1

https://doi.org/10.6084/m9.figshare.21324837.v1
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to the identification rule provided in “Stage II: Flow cluster identification” section, the 
values of k for these three weekdays were set to 13, 10, and 10, respectively. Using the 
determined k values as the input parameters of SNN_flow, the spatial distribution of the 
identified flow clusters is depicted in Fig. 11d–f.

During the AM peak on three different weekdays, we identified two flow clusters in 
activity zone 14 with similar spatial distributions, albeit slightly different in the number 
of similar trips. Cluster I is composed of many similar trips from Wutongyu Neigh-
borhood (a residential area) to China Pharmaceutical University Station (the terminal 
metro station of Line 1). Cluster I represents the AM “first-mile” commute pattern 
between these two locations (see “Analysis of spatio-temporal distribution character-
istics” section for details). The spatial distribution of similar trips contained in Clus-
ter II is mainly from China Pharmaceutical University Station to Jiangning Technology 
Innovation Center (an office building). Cluster II represents the AM “last-mile” com-
mute pattern between these two locations (see “Analysis of spatio-temporal distribution 

Fig. 11   Flow clusters identification results for activity zone 14 during the AM peak from September 12 to 
14, 2017. a–c RKD plots; d–f spatial distribution of the identified flow clusters; and g–i spatial distribution 
of raw trips
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characteristics” section for details). In short, it can be seen from this case that the two-
stage flow clustering method allows us to efficiently abstract flow clusters with irregular 
shapes and uneven densities from large-scale, chaotic FFBS trips (see Fig. 11g–i).

Acknowledgements  This research is funded by the Joint Funds of the National Natural Science Foundation 
of China (Grant No. 52172316, 52372301 and 71901059). The authors wish to thank Beijing Mobike Tech-
nology Co., Ltd. for providing the data used in this study.

Author contributions  The authors confirm contribution to the paper as follows: Conceptualization: WC, 
XL, XC; Methodology: WC; Formal analysis and investigation: WC, XL, XC; Writing—original draft prep-
aration: WC; Writing—review and editing: WC, LC, JC. All authors reviewed the results and approved the 
final version of the manuscript.

Data availability statements  The data that support the findings of this study are available from the corre-
sponding author upon request.

Declarations 

Competing interests  The authors declare no competing interests.

Conflict of interest  The authors declare that they have no known competing financial interests or personal 
relationships that could have appeared to influence the work reported in this paper.

References

Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: ordering points to identify the clustering 
structure. ACM SIGMOD Rec. 28, 49–60 (1999). https://​doi.​org/​10.​1145/​304181.​304187

Apparicio, P., Abdelmajid, M., Riva, M., Shearmur, R.: Comparing alternative approaches to measuring the 
geographical accessibility of urban health services: distance types and aggregation-error issues. Int. J 
Health Geogr. 7, 1–14 (2008). https://​doi.​org/​10.​1186/​1476-​072X-7-7

Arenas, A., Fernandez, A., Gomez, S.: Analysis of the structure of complex networks at different resolution 
levels. New J. Phys. 10(5), 053039 (2008). https://​doi.​org/​10.​1088/​1367-​2630/​10/5/​053039

Besse, P.C., Guillouet, B., Loubes, J.M., Royer, F.: Review and perspective for distance-based clustering of 
vehicle trajectories. IEEE Trans. Intell. Transp. Syst. 17, 3306–3317 (2016). https://​doi.​org/​10.​1109/​
TITS.​2016.​25476​41

Chang, X., Wu, J., Sun, H., de Almeida Correia, G.H., Chen, J.: Relocating operational and damaged bikes 
in free-floating systems: a data-driven modeling framework for level of service enhancement. Transp. 
Res. Part A Policy Pract. 153, 235–260 (2021). https://​doi.​org/​10.​1016/j.​tra.​2021.​09.​010

Chen, D.: Free-floating bike-sharing green relocation problem considering greenhouse gas emissions. 
Transp. Saf. Environ. 3, 132–151 (2021). https://​doi.​org/​10.​1093/​tse/​tdab0​01

Chen, E., Ye, Z.: Identifying the nonlinear relationship between free-floating bike sharing usage and built 
environment. J. Clean. Prod. 280, 124281 (2021). https://​doi.​org/​10.​1016/j.​jclep​ro.​2020.​124281

Chen, W., Chen, X., Chen, J., Cheng, L.: What factors influence ridership of station-based bike sharing and 
free-floating bike sharing at rail transit stations? Int. J. Sustain. Transp. 16, 357–373 (2022a). https://​
doi.​org/​10.​1080/​15568​318.​2021.​18721​21

Chen, W., Chen, X., Cheng, L., Liu, X., Chen, J.: Delineating borders of urban activity zones with free-
floating bike sharing spatial interaction network. J. Transp. Geogr. 104, 103442 (2022b). https://​doi.​
org/​10.​1016/j.​jtran​geo.​2022.​103442

Chen, W., Liu, X., Chen, X., Cheng, L., Wang, K., Chen, J.: Exploring year-to-year changes in station-based 
bike sharing commuter behaviors with smart card data. Travel Behav. Soc. 28, 75–89 (2022c). https://​
doi.​org/​10.​1016/j.​tbs.​2022.​02.​005

Cheng, L., Yang, J., Chen, X., Cao, M., Zhou, H., Sun, Y.: How could the station-based bike sharing sys-
tem and the free-floating bike sharing system be coordinated? J. Transp. Geogr. 89, 102896 (2020a). 
https://​doi.​org/​10.​1016/j.​jtran​geo.​2020.​102896

https://doi.org/10.1145/304181.304187
https://doi.org/10.1186/1476-072X-7-7
https://doi.org/10.1088/1367-2630/10/5/053039
https://doi.org/10.1109/TITS.2016.2547641
https://doi.org/10.1109/TITS.2016.2547641
https://doi.org/10.1016/j.tra.2021.09.010
https://doi.org/10.1093/tse/tdab001
https://doi.org/10.1016/j.jclepro.2020.124281
https://doi.org/10.1080/15568318.2021.1872121
https://doi.org/10.1080/15568318.2021.1872121
https://doi.org/10.1016/j.jtrangeo.2022.103442
https://doi.org/10.1016/j.jtrangeo.2022.103442
https://doi.org/10.1016/j.tbs.2022.02.005
https://doi.org/10.1016/j.tbs.2022.02.005
https://doi.org/10.1016/j.jtrangeo.2020.102896


Transportation	

1 3

Cheng, L., Yang, M., De Vos, J., Witlox, F.: Examining geographical accessibility to multi-tier hospital care 
services for the elderly: a focus on spatial equity. J. Transp. Health. 19, 100926 (2020b). https://​doi.​
org/​10.​1016/j.​jth.​2020.​100926

Cheng, L., Jin, T., Wang, K., Lee, Y., Witlox, F.: Promoting the integrated use of bikeshare and metro: 
a focus on the nonlinearity of built environment effects. Multimodal Transp. 1(1), 100004 (2022a). 
https://​doi.​org/​10.​1016/j.​multra.​2022.​100004

Cheng, L., Wang, K., De Vos, J., Huang, J., Witlox, F.: Exploring non-linear built environment effects on 
the integration of free-floating bike-share and urban rail transport: a quantile regression approach. 
Transp. Res. Part A Policy Pract. 162, 175–187 (2022b). https://​doi.​org/​10.​1016/j.​tra.​2022.​05.​022

Cheng, L., Huang, J., Jin, T., Chen, W., Li, A., Witlox, F.: Comparison of station-based and free-floating 
bikeshare systems as feeder modes to the metro. J. Transp. Geogr. 107, 103545 (2023). https://​doi.​org/​
10.​1016/j.​jtran​geo.​2023.​103545

Du, B., Qiao, Y., Zhao, J., Sun, L., Lv, W., Huang, R.: Urban micro-circulation bus planning based on tem-
poral and spatial travel demand, in: 2019a IEEE SmartWorld, Ubiquitous Intelligence & Computing, 
Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Com-
puting, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/
IOP/SCI), pp. 981–988. IEEE (2019a). https://​doi.​org/​10.​1109/​Smart​World-​UIC-​ATC-​SCALC​OM-​
IOP-​SCI.​2019.​00193

Du, Y., Deng, F., Liao, F.: A model framework for discovering the spatio-temporal usage patterns of public 
free-floating bike-sharing system. Transp. Res. Part C Emerg. Technol. 103, 39–55 (2019b). https://​
doi.​org/​10.​1016/j.​trc.​2019.​04.​006

Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spa-
tial databases with noise. In: KDD, pp. 226–231 (1996)

Gallego, C.E.V., Comendador, V.F.G., Nieto, F.J.S., Martinez, M.G.: Discussion on density-based cluster-
ing methods applied for automated identification of airspace flows. In: 2018 IEEE/AIAA 37th Digital 
Avionics Systems Conference (DASC), pp. 1–10. IEEE (2018). https://​doi.​org/​10.​1109/​DASC.​2018.​
85692​19

Gan, Z., Yang, M., Feng, T., Timmermans, H.: Understanding urban mobility patterns from a spatiotempo-
ral perspective: daily ridership profiles of metro stations. Transportation 47, 315–336 (2020). https://​
doi.​org/​10.​1007/​s11116-​018-​9885-4

Gao, Y., Li, T., Wang, S., Jeong, M.H., Soltani, K.: A multidimensional spatial scan statistics approach 
to movement pattern comparison. Int. J. Geogr. Inf. Sci. 32(7), 1304–1325 (2018). https://​doi.​org/​10.​
1080/​13658​816.​2018.​14268​59

Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 
u.s.a. 99, 7821–7826 (2002). https://​doi.​org/​10.​1073/​pnas.​12265​3799

Gu, T., Kim, I., Currie, G.: To be or not to be dockless: Empirical analysis of dockless bikeshare develop-
ment in China. Transp. Res. Part A Policy Pract. 119, 122–147 (2019). https://​doi.​org/​10.​1016/j.​tra.​
2018.​11.​007

Guo, Y., He, S.Y.: Built environment effects on the integration of dockless bike-sharing and the metro. 
Transp. Res. D Transp. Environ. 83, 102335 (2020). https://​doi.​org/​10.​1016/j.​trd.​2020.​102335

Guo, X., Xu, Z., Zhang, J., Lu, J., Zhang, H.: An OD flow clustering method based on vector constraints: a 
case study for Beijing taxi origin-destination data. ISPRS Int. J. Geo-Inf. 9, 128 (2020). https://​doi.​org/​
10.​3390/​ijgi9​020128

Hirsch, J.A., Stratton-Rayner, J., Winters, M., Stehlin, J., Hosford, K., Mooney, S.J.: Roadmap for free-
floating bikeshare research and practice in North America. Transp. Rev. 39, 706–732 (2019). https://​
doi.​org/​10.​1080/​01441​647.​2019.​16493​18

Hua, M., Chen, X., Zheng, S., Cheng, L., Chen, J.: Estimating the parking demand of free-floating bike 
sharing: A journey-data-based study of Nanjing, China. J. Clean. Prod. 244, 118764 (2020). https://​
doi.​org/​10.​1016/j.​jclep​ro.​2019.​118764

Ji, Y., Fan, Y., Ermagun, A., Cao, X., Wang, W., Das, K.: Public bicycle as a feeder mode to rail transit 
in China: the role of gender, age, income, trip purpose, and bicycle theft experience. Int. J. Sustain. 
Transp. 11, 308–317 (2017). https://​doi.​org/​10.​1080/​15568​318.​2016.​12538​02

Jin, M., Gong, L., Cao, Y., Zhang, P., Gong, Y., Liu, Y.: Identifying borders of activity spaces and quantify-
ing border effects on intra-urban travel through spatial interaction network. Comput. Environ. Urban 
Syst. 87, 101625 (2021). https://​doi.​org/​10.​1016/j.​compe​nvurb​sys.​2021.​101625

Johnson, G., Scher, H., Wittmann, T.: Designing shuttle connections to commuter rail with census origin 
and destination data. Transp. Res. Rec. 2534, 84–91 (2015). https://​doi.​org/​10.​3141/​2534

Kou, W., Wang, J., Liu, Y., Li, C.: Last-mile shuttle planning for improving bus commuters’ travel time reli-
ability: a case study of Beijing. J. Adv. Transp. 2022, 5117488 (2022). https://​doi.​org/​10.​1155/​2022/​
51174​88

https://doi.org/10.1016/j.jth.2020.100926
https://doi.org/10.1016/j.jth.2020.100926
https://doi.org/10.1016/j.multra.2022.100004
https://doi.org/10.1016/j.tra.2022.05.022
https://doi.org/10.1016/j.jtrangeo.2023.103545
https://doi.org/10.1016/j.jtrangeo.2023.103545
https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00193
https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00193
https://doi.org/10.1016/j.trc.2019.04.006
https://doi.org/10.1016/j.trc.2019.04.006
https://doi.org/10.1109/DASC.2018.8569219
https://doi.org/10.1109/DASC.2018.8569219
https://doi.org/10.1007/s11116-018-9885-4
https://doi.org/10.1007/s11116-018-9885-4
https://doi.org/10.1080/13658816.2018.1426859
https://doi.org/10.1080/13658816.2018.1426859
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1016/j.tra.2018.11.007
https://doi.org/10.1016/j.tra.2018.11.007
https://doi.org/10.1016/j.trd.2020.102335
https://doi.org/10.3390/ijgi9020128
https://doi.org/10.3390/ijgi9020128
https://doi.org/10.1080/01441647.2019.1649318
https://doi.org/10.1080/01441647.2019.1649318
https://doi.org/10.1016/j.jclepro.2019.118764
https://doi.org/10.1016/j.jclepro.2019.118764
https://doi.org/10.1080/15568318.2016.1253802
https://doi.org/10.1016/j.compenvurbsys.2021.101625
https://doi.org/10.3141/2534
https://doi.org/10.1155/2022/5117488
https://doi.org/10.1155/2022/5117488


	 Transportation

1 3

Lei, D., Chen, X., Cheng, L., Zhang, L., Ukkusuri, S.V., Witlox, F.: Inferring temporal motifs for travel 
pattern analysis using large scale smart card data. Transp. Res. Part C Emerg. Technol. 120, 102810 
(2020). https://​doi.​org/​10.​1016/j.​trc.​2020.​102810

Link, C., Strasser, C., Hinterreiter, M.: Free-floating bikesharing in Vienna–A user behaviour analysis. Transp. 
Res. Part A Policy Pract. 135, 168–182 (2020). https://​doi.​org/​10.​1016/j.​tra.​2020.​02.​020

Liu, Q., Yang, J., Deng, M., Song, C., Liu, W.: SNN_flow: a shared nearest-neighbor-based clustering method 
for inhomogeneous origin-destination flows. Int. J. Geogr. Inf. Sci. 36(2), 253–279 (2022a). https://​doi.​
org/​10.​1080/​13658​816.​2021.​18991​84

Liu, Y., Tong, D., Liu, X.: Measuring spatial autocorrelation of vectors. Geogr. Anal. 47, 300–319 (2015). 
https://​doi.​org/​10.​1111/​gean.​12069

Liu, W., Liu, Q., Yang, J., Deng, M.: A network-constrained clustering method for bivariate origin-destination 
movement data. Int. J. Geogr. Inf. Sci. 37(4), 767–787 (2022b). https://​doi.​org/​10.​1080/​13658​816.​2022.​
21378​79

Ma, X., Zhang, X., Li, X., Wang, X., Zhao, X.: Impacts of free-floating bikesharing system on public transit 
ridership. Transp. Res. D Transp. Environ. 76, 100–110 (2019). https://​doi.​org/​10.​1016/j.​trd.​2019.​09.​014

Orvin, M.M., Fatmi, M.R.: Why individuals choose dockless bike sharing services? Travel Behav. Soc. 22, 
199–206 (2021). https://​doi.​org/​10.​1016/j.​tbs.​2020.​10.​001

Páez, A., Anjum, Z., Dickson-Anderson, S.E., Schuster-Wallace, C.J., Ramos, B.M., Higgins, C.D.: Compar-
ing distance, time, and metabolic energy cost functions for walking accessibility in infrastructure-poor 
regions. J. Transp. Geogr. 82, 102564 (2020). https://​doi.​org/​10.​1016/j.​jtran​geo.​2019.​102564

Pan, G., Qi, G., Wu, Z., Zhang, D., Li, S.: Land-use classification using taxi GPS traces. IEEE Trans. Intell. 
Transp. Syst. 14, 113–123 (2012). https://​doi.​org/​10.​1109/​TITS.​2012.​22092​01

Pei, T.: A nonparametric index for determining the numbers of events in clusters. Math. Geosci. 43, 345–362 
(2011). https://​doi.​org/​10.​1007/​s11004-​011-​9325-x

Pei, T., Gao, J., Ma, T., Zhou, C.: Multi-scale decomposition of point process data. GeoInformatica 16, 625–652 
(2012). https://​doi.​org/​10.​1007/​s10707-​012-​0165-8

Peters, L., MacKenzie, D.: The death and rebirth of bikesharing in Seattle: Implications for policy and system 
design. Transp. Res. Part A Policy Pract. 130, 208–226 (2019). https://​doi.​org/​10.​1016/j.​tra.​2019.​09.​012

Reddy, K.S.S., Bindu, C.S.: A review on density-based clustering algorithms for big data analysis. In: 2017 
International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 123–
130, IEEE (2017). https://​doi.​org/​10.​1109/I-​SMAC.​2017.​80583​22

Shen, Y., Zhang, X., Zhao, J.: Understanding the usage of dockless bike sharing in Singapore. Int. J. Sustain. 
Transp. 12, 686–700 (2018). https://​doi.​org/​10.​1080/​15568​318.​2018.​14296​96

Shu, H., Pei, T., Song, C., Chen, X., Guo, S., Liu, Y., Chen, J., Wang, X., Zhou, C.: L-function of geographical 
flows. Int. J. Geogr. Inf. Sci. 35, 689–716 (2021). https://​doi.​org/​10.​1080/​13658​816.​2020.​17492​77

Silva, I., Assunçao, R., Costa, M.: Power of the sequential Monte Carlo test. Seq. Anal. 28, 163–174 (2009). 
https://​doi.​org/​10.​1080/​07474​94090​28166​01

Song, C., Pei, T., Ma, T., Du, Y., Shu, H., Guo, S., Fan, Z.: Detecting arbitrarily shaped clusters in origin-
destination flows using ant colony optimization. Int. J. Geogr. Inf. Sci. 33, 134–154 (2019). https://​doi.​org/​
10.​1080/​13658​816.​2018.​15162​87

Tao, R., Thill, J.C.: Spatial cluster detection in spatial flow data. Geogr. Anal. 48, 355–372 (2016). https://​doi.​
org/​10.​1111/​gean.​12100

Teixeira, J.F., Lopes, M.: The link between bike sharing and subway use during the COVID-19 pandemic: the 
case-study of New York’s Citi bike. Transp. Res. Interdiscip. Perspect. 6, 100166 (2020). https://​doi.​org/​
10.​1016/j.​trip.​2020.​100166

Traag, V.A., Waltman, L., Van Eck, N.J.: From Louvain to Leiden: guaranteeing well-connected communities. 
Sci. Rep. 9, 1–12 (2019). https://​doi.​org/​10.​1038/​s41598-​019-​41695-z

White, C.E., Bernstein, D., Kornhauser, A.L.: Some map matching algorithms for personal navigation assis-
tants. Transp. Res. Part C Emerg. Technol. 8, 91–108 (2000). https://​doi.​org/​10.​1016/​S0968-​090X(00)​
00026-7

Wood, J., Dykes, J., Slingsby, A.: Visualisation of origins, destinations and flows with OD maps. Cartogr. J. 47, 
117–129 (2010). https://​doi.​org/​10.​1179/​00087​0410X​12658​02346​7367

Xiang, Q., Wu, Q.: Tree-based and optimum cut-based origin-destination flow clustering. ISPRS Int. J. Geo-Inf. 
8, 477 (2019). https://​doi.​org/​10.​3390/​ijgi8​110477

Xinhua Daily: More than 2300 non-gated residential neighborhoods in Nanjing have achieved full coverage of 
high-standard basic management. http://​house.​china.​com.​cn/​21158​07.​htm (2022). Accessed 30 Sept 2022

Xu, X.: The road network data obtained from this processing can be directly used in traffic models. https://​www.​
sohu.​com/a/​39798​2966_​650480 (2020). Accessed 25 Aug 2022

https://doi.org/10.1016/j.trc.2020.102810
https://doi.org/10.1016/j.tra.2020.02.020
https://doi.org/10.1080/13658816.2021.1899184
https://doi.org/10.1080/13658816.2021.1899184
https://doi.org/10.1111/gean.12069
https://doi.org/10.1080/13658816.2022.2137879
https://doi.org/10.1080/13658816.2022.2137879
https://doi.org/10.1016/j.trd.2019.09.014
https://doi.org/10.1016/j.tbs.2020.10.001
https://doi.org/10.1016/j.jtrangeo.2019.102564
https://doi.org/10.1109/TITS.2012.2209201
https://doi.org/10.1007/s11004-011-9325-x
https://doi.org/10.1007/s10707-012-0165-8
https://doi.org/10.1016/j.tra.2019.09.012
https://doi.org/10.1109/I-SMAC.2017.8058322
https://doi.org/10.1080/15568318.2018.1429696
https://doi.org/10.1080/13658816.2020.1749277
https://doi.org/10.1080/07474940902816601
https://doi.org/10.1080/13658816.2018.1516287
https://doi.org/10.1080/13658816.2018.1516287
https://doi.org/10.1111/gean.12100
https://doi.org/10.1111/gean.12100
https://doi.org/10.1016/j.trip.2020.100166
https://doi.org/10.1016/j.trip.2020.100166
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1016/S0968-090X(00)00026-7
https://doi.org/10.1016/S0968-090X(00)00026-7
https://doi.org/10.1179/000870410X12658023467367
https://doi.org/10.3390/ijgi8110477
http://house.china.com.cn/2115807.htm
https://www.sohu.com/a/397982966_650480
https://www.sohu.com/a/397982966_650480


Transportation	

1 3

Xu, C., Ji, J., Liu, P.: The station-free sharing bike demand forecasting with a deep learning approach and large-
scale datasets. Transp. Res. Part C Emerg. Technol. 95, 47–60 (2018). https://​doi.​org/​10.​1016/j.​trc.​2018.​
07.​013

Xu, D., Bian, Y., Rong, J., Wang, J., Yin, B.: Study on clustering of free-floating bike-sharing parking time 
series in Beijing subway stations. Sustainability 11, 5439 (2019). https://​doi.​org/​10.​3390/​su111​95439

Yamada, I., Thill, J.C.: Local indicators of network-constrained clusters in spatial patterns represented by a link 
attribute. Ann. Assoc. Am. Geogr. 100, 269–285 (2010). https://​doi.​org/​10.​1080/​00045​60090​35503​37

Yao, X., Zhu, D., Gao, Y., Wu, L., Zhang, P., Liu, Y.: A stepwise spatio-temporal flow clustering method for 
discovering mobility trends. IEEE Access. 6, 44666–44675 (2018). https://​doi.​org/​10.​1109/​ACCESS.​
2018.​28646​62

Zhang, J., Meng, M.: Bike allocation strategies in a competitive dockless bike sharing market. J. Cleaner Prod. 
233, 869–879 (2019). https://​doi.​org/​10.​1016/j.​jclep​ro.​2019.​06.​070

Zhang, Y., Lin, D., Mi, Z.: Electric fence planning for dockless bike-sharing services. J. Cleaner Prod. 206, 
383–393 (2019). https://​doi.​org/​10.​1016/j.​jclep​ro.​2018.​09.​215

Zhang, X., Shen, Y., Zhao, J.: The mobility pattern of dockless bike sharing: a four-month study in Singapore. 
Transp. Res. D Transp. Environ. 98, 102961 (2021). https://​doi.​org/​10.​1016/j.​trd.​2021.​102961

Zhao, D., Ong, G.P.: Geo-fenced parking spaces identification for free-floating bicycle sharing system. Transp. 
Res. Part A Policy Pract. 148, 49–63 (2021). https://​doi.​org/​10.​1016/j.​tra.​2021.​03.​007

Zhao, J., Wang, J., Deng, W.: Exploring bikesharing travel time and trip chain by gender and day of the week. 
Transp. Res. Part C Emerg. Technol. 58, 251–264 (2015). https://​doi.​org/​10.​1016/j.​trc.​2015.​01.​030

Zheng, Z., Chen, Y., Zhu, D., Sun, H., Wu, J., Pan, X., Li, D.: Extreme unbalanced mobility network in bike 
sharing system. Physica a. 563, 125444 (2021). https://​doi.​org/​10.​1016/j.​physa.​2020.​125444

Zhu, X., Guo, D.: Mapping large spatial flow data with hierarchical clustering. Trans. GIS. 18, 421–435 (2014). 
https://​doi.​org/​10.​1111/​tgis.​12100

Zhu, R., Hu, Y., Janowicz, K., McKenzie, G.: Spatial signatures for geographic feature types: examining gazet-
teer ontologies using spatial statistics. Trans. GIS 20, 333–355 (2016). https://​doi.​org/​10.​1111/​tgis.​12232

Zhu, X., Guo, D., Koylu, C., Chen, C.: Density-based multi-scale flow mapping and generalization. Comput. 
Environ. Urban Syst. 77, 101359 (2019). https://​doi.​org/​10.​1016/j.​compe​nvurb​sys.​2019.​101359

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 
law.

Wendong Chen  is a Ph.D. candidate in the School of Transportation, Southeast University. He received his 
master’s degree from the School of Transportation of Southeast University and his bachelor’s degree from 
the School of Highway of Chang’an University. His research interests are in shared mobility, travel behav-
iour analysis, and transport and land use integration.

Xize Liu  is a Ph.D. candidate in the School of Transportation, Southeast University. He received his master’s 
degree from the School of Transportation of Southeast University and his bachelor’s degree from the School 
of Transportation Science and Engineering of Harbin Institute of Technology. His research interests are in 
travel behaviour analysis and multimodal transport.

Xuewu Chen  received the Ph.D. degree in transportation engineering from Southeast University, China. 
She is currently a professor with the School of Transportation, Southeast University. Her research interests 
include urban transportation, multimodal transportation, shared mobility, and travel behaviour analysis.

Long Cheng  received the B.S. degree in transport & traffic from Southeast University, Nanjing, China in 
2011 and the Ph.D. degree in transport engineering from Southeast University, Nanjing, China in 2016. 
He is currently an associate professor at the School of Transportation of Southeast University. His research 
interests include multimodal transport, shared mobility, travel behaviour analysis, and transport and land use 
integration.

https://doi.org/10.1016/j.trc.2018.07.013
https://doi.org/10.1016/j.trc.2018.07.013
https://doi.org/10.3390/su11195439
https://doi.org/10.1080/00045600903550337
https://doi.org/10.1109/ACCESS.2018.2864662
https://doi.org/10.1109/ACCESS.2018.2864662
https://doi.org/10.1016/j.jclepro.2019.06.070
https://doi.org/10.1016/j.jclepro.2018.09.215
https://doi.org/10.1016/j.trd.2021.102961
https://doi.org/10.1016/j.tra.2021.03.007
https://doi.org/10.1016/j.trc.2015.01.030
https://doi.org/10.1016/j.physa.2020.125444
https://doi.org/10.1111/tgis.12100
https://doi.org/10.1111/tgis.12232
https://doi.org/10.1016/j.compenvurbsys.2019.101359


	 Transportation

1 3

Jingxu Chen  received the Ph.D. degree in transportation engineering from Southeast University, China, in 
2018. He is currently an associate professor with the School of Transportation, Southeast University. His 
research interests include multimodal transport, transportation system optimization, and modeling and simu-
lation of real-time transit control systems.


	Deciphering flow clusters from large-scale free-floating bike sharing journey data: a two-stage flow clustering method
	Abstract
	Introduction
	Literature review
	FFBS OD flows
	Flow clustering methods

	Two-stage flow clustering method
	Stage I: activity zone delineation
	Stage II: flow cluster identification
	Data preparation
	Appropriate k-value estimation
	Flow cluster detection


	Study area and data description
	Study area
	Data description

	Results and discussions
	Flow clusters identification
	Application of the two-stage flow clustering method
	Efficiency comparison of flow clustering methods

	Spatio-temporal patterns of flow clusters
	Inference of potential travel purpose
	Analysis of spatio-temporal distribution characteristics

	Endpoint distribution characteristics of flow clusters

	Conclusions and policy implications
	Appendix 1
	Acknowledgements 
	References


