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Abstract
Reliability is understood in public transport as the certainty travellers have regarding the 
level of service they will experience when travelling. The travel time, waiting time, or the 
comfort level they will experience inside the vehicle are some of the most important reli-
ability attributes. Reliability is usually neglected from travel behavioural models, since 
there is a lack of studies addressing its impact in travellers’ choices. This study proposes an 
in-depth analysis and characterization of travel time reliability in a public transport system 
using passive data only, which every day is getting more popular worldwide. The study 
is comprised of two parts, taking Transantiago (the public transport system of Santiago, 
Chile) as a study case, as it is a good representation of a frequency-based public transport 
system. In the first part a statistical and graphical analysis of travel times is conducted, 
focusing on characterizing headway and travel time reliability of public transport services 
as well as the effect of dedicated infrastructure, based on smartcard transactions and GPS 
information. In the second part an aggregate mode choice model based on revealed data is 
developed to analyse the effect of travel time reliability on travellers’ preferences. Overall, 
this study provides evidence of significant differences among headway variability and in-
vehicle travel time dispersion different public transport modes. The standard deviation (a 
measure of dispersion) can be quite high for bus trips, while in the case of metro is smaller 
than 4  min independent of trip length. Regarding the aggregate public transport mode 
choice model, the coefficient of variation of headways is a key attribute to explain modal 
preferences. It was found that average bus users would accept traveling ~ 5 min longer to 
completely avoid headway irregularity. All these results were obtained by analysing pas-
sive-data from AFC and AVL systems only, which represents a novel approach for choice 
modelling. Transport modellers should consider the impact of service reliability to improve 
route choice and passenger assignment models, and better represent users’ perceptions and 
behaviour.
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Introduction

Travel time reliability plays an important role in public transport travellers’ satisfaction 
and their perception regarding the level of service (Soza-Parra et al. 2019), as well as in 
operational costs (de Jong and Bliemer 2015). Nevertheless, when planning public trans-
port systems, travellers’ behaviour has been usually modelled through traditional variables 
such as monetary cost, expected travel time and planned waiting time. Other elements such 
as crowdedness, excess waiting time, and mode/service reliability (understood as the cer-
tainty travellers have regarding their travel time, their arrival time or the comfort level they 
will experience inside the vehicle) (van Oort 2011) are usually neglected from these behav-
ioural models (Petersen and Vovsha 2006; Raveau et al. 2014). This could lead to errone-
ous predictions of the demand for public transport alternatives.

In public transport systems, unreliability’s main impact is generally the potential delay 
on the arrival to the destination. Travellers can handle this situation by adjusting their 
departure time, changing routes or changing modes (Benezech and Coulombel 2013). In 
general, users’ preferred option is to add a safety margin to the ideal departure time (Bates 
et  al. 2001). Travellers’ reaction to unreliability has been widely studied in developed 
cities among the world, mainly in Europe and North America. However, in developing 
regions such as Latin America there is a lack of studies regarding public transport reliabil-
ity. Besides, developing regions are characterized by an accelerated urbanization process 
and a significant percentage of urban population (Jirón 2013). This, along with poor urban 
planning policies, leads to a significant proportion of long trips, from the periphery of 
the cities to highly concentrated activity centres (García Palomares 2008; Vignoli 2008, 
2012). These circumstances hinder the operation of public transport services based only on 
schedules, mainly because of the high frequency needed and the stochastic nature of public 
transport (Muñoz and Gschwender 2008). Thus, frequency-based public transport systems 
are the natural option. In this context, therefore, public transport reliability needs to be 
understood and addressed in a different way to what has been done in developed cities.

In terms of planning information, the availability of large volumes of automated data 
regarding the operation of public transport systems has increased over the recent years. 
This valuable source of detailed information, properly processed, allows analysing and 
understanding the system’s operation (Birr et al. 2014; Bucknell et al. 2017; Cham 2006; 
Fadaei and Cats 2016; Furth and Muller 2006; Gschwender et  al. 2016) and modelling 
it in a better way (Cats and Gkioulou 2017; van Oort et al. 2015; Raveau 2017; Frappier 
et  al. 2018). This type of information usually comes from sensors strategically placed 
within vehicles (such as GPS systems) and smartcard data from passengers boarding and/
or alighting the vehicles and allows understanding travel times in a better way.

An application of automated data to characterize public transport level of service is the 
study by the BRT Center of Excellence (BRT 2012), which compares the level of service 
of six Latin American cities: Santiago, Chile; Porto Alegre, Brazil; Guadalajara, Mexico; 
Mexico City, Mexico; Bogota, Colombia; Lima, Peru. For each city, a socio-economic 
description of the population was made, as well as a description of the characteristics of 
the existing public transport system (such as the number of operators, metro lines, opera-
tion, fares, payment schemes, infrastructure, vehicles, information systems, quality percep-
tion, among others). Level of service indicators of the respective public transport systems 
were calculated by estimating travel, wait and walk times for 400 representative trips in 
each city. A relevant indicator within the study relates to travel time variability in the sys-
tems. To compute this indicator, the study defined two distinct types of variability: (1) an 
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interpersonal variability, which accounts for the heterogeneity of the existing levels of ser-
vice within the city, and (2) an intrapersonal variability, related to how variable the same 
trip performed repetitively by an individual is (i.e. how reliable is the level of service). 
This second kind of variability is called day-to-day variability (Hollander 2006; Jenelius 
2012). However, the travel demand is not adequately considered when measuring the aver-
age variability, as the indicators are not weighted by the number of travellers performing 
each trip. Nor is there an in-depth analysis of the differences between modes and/or operat-
ing conditions.

The purpose of this study is to use automated data to perform an in-depth analysis of the 
impacts of travel time components unreliability in a public transport system. We seek to 
characterize reliability for different modes and types of infrastructure and to measure their 
effects of travel time reliability on travellers’ mode choice decisions. For this, the case of 
Santiago, Chile, is considered.

Santiago’s public transport system is called Transantiago, where bus and metro services 
are integrated in fare (Muñoz et al. 2014). This means you can transfer to a new service 
of the same mode without having to pay any extra and only pay the fare difference when 
transferring from bus to metro. Besides, the fare is fixed regardless the distance travelled. 
There are mainly two types of bus services: regular services, which stop in every bus stop 
of the route, and express services, which stop only in some of them. There are also five 
metro lines, where Line 1 is the most crowded one during peak periods, as it runs though 
the city centre. Line 1 is also the oldest one and has an average distance of 660 m between 
stations, the lowest average distance of the network. Furthermore, it is the only line that 
goes from the west to the east of the city, passing through the most important activity cen-
tres. These characteristics make Line 1’s performance significantly different and thus it 
might be needed to study it separately.

In addition, this public transport system operates in a frequency-based scheme. Under 
these circumstances, passengers do not know in advance when the next vehicle (bus or 
metro) is going to arrive. In general terms, both metro and buses operate following an oper-
ational plan which indicates specific frequencies for each service for different periods of 
the day. Even though metro operates isolated, both modes suffer vehicle bunching. In fact, 
passengers indicate headway regularity as a critical attribute when evaluating the quality of 
service (Soza-Parra et al. 2019).

In Transantiago, the smartcards only record boardings. Munizaga and Palma (2012a, 
b) proposed a methodology to estimate a public transport trip matrix (inferring alightings) 
using the sequence of validations made with the smartcard and the geographical position 
of the buses. This trip matrix is used in this study to characterize travel time reliability 
for public transport routes of similar length in the city during the morning peak period. 
Additionally, the progressive change of travel time variability as travel length increases is 
analysed.

So far, the available automated data has not been used in Santiago to understand how 
travel time variability has an impact (if any) on user’s decisions. Furthermore, to the best 
of the authors knowledge, revealed preferences have not been used to analyse the impact of 
reliability on public transport travellers’ preferences. Based on the available information, 
this study develops an aggregate mode choice model, in which the explanatory variables 
are both average level-of-service indicators and indicators of their variability. This analysis 
further emphasizes the importance of travel time reliability. The analysis and characteriza-
tion of the travel time reliability and its effects were carried out using only passive data, 
without the need of any survey. This represents a novel and quite promising approach for 
choice modelling.
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This document is structured in four sections. “Characterizing travel time reliability’” 
section describes the statistical analysis conducted to obtain travel time distributions for 
regular bus, express bus, and metro services, as well as the impact of segregated corridors 
in travel time variability. The results are supported by both statistical and graphical analy-
sis. “The effect of travel time reliability on mode choice” section presents the methodology 
for estimating an aggregate behavioural model as well as its results, allowing us to under-
stand the effect reliability has on passenger choices. Finally, “Conclusion” section presents 
the main conclusions of this study and elaborates on how these results should steer follow-
ing studies and models for public transport planning.

Characterizing travel time reliability

In this section, the methodology applied for the travel time characterization as well as its 
graphical analysis are presented. To characterize travel times across the city, a statistical 
analysis of actual travel times of all travellers on a given week is performed. This analysis 
is conducted at a trip-leg level.

Travel time distributions and headway regularity

For bus trips, the data comes from smartcard transactions and GPS information. This infor-
mation was extracted from a trip-leg table constructed with the methodology proposed by 
Munizaga and Palma (2012a, b). This data source considers the period between 07:00 and 
09:00 during the morning peak period for a typical workweek in April 2017. For each day, 
around 210.000 validations are considered. For each smartcard validation, public trans-
port service is recorded as well as the moment and place in which the traveller boards and 
alights the bus. This information is estimated from the GPS information delivered by the 
vehicles every 30 s, the geo-referenced bus route and the geographical position of the stops 
along the route.

The resulting database has the boarding and alighting time for every bus trip-leg made 
by at least one individual. With this information, it is possible to construct travel time dis-
tributions for any service between any pair of stops where there are trips within the net-
work. Origin-destinations pairs without any trips are excluded for the analysis. The travel 
time distributions can be discretised by the in-route distance that separates the pair of stops, 
in order to obtain travel time histograms for trips of a given length range.

For the case of metro trips, the database of arrival and departure times for every train 
at every station was provided by Metro de Santiago. Just like in the case of the buses, it is 
possible to obtain travel time distributions by distance range for every pair of stations that 
belong to the same line.

In order to analyse headway distributions, a new database was used for bus trips. This 
database consists in the estimated arrival time of every bus at every bus stop for the same 
previous week of analysis. This extensive database was filtered to consider only the same 
services described above that cover the set of origin–destination pairs of interest. With this 
information, for both metro and buses it is possible to calculate consecutive headways for 
every stop/station in the network. Then, for the time-period of analysis, we compute the 
coefficient of variation of headways as a reliability indicator due to its direct incidence in 
the expected waiting time.
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The previously described methodology treats each vehicle alike, regardless of the num-
ber of passengers travelling in them. To obtain travel time distributions from a point of 
view of the user’s experience, it is necessary to weight the travel time distributions associ-
ated to each origin–destination pair by the travel demand of that pair. To do this, informa-
tion from smartcard transactions is used. In addition to boarding and alighting stops, and 
the service boarded, the trip matrix contains expansion factors for each observation. Add-
ing all the expansion factors of those trips that had the same vehicle, boarding and alight-
ing stops, it is possible to obtain the demand for all trips within each service.

However, the smartcard demand database used for the metro services contains informa-
tion of trips between any two stations within the entire metro network (as no transfers are 
recorded), while the metro travel times are within lines. For this reason, the available data 
must be transformed so all information corresponds to metro trip-legs within lines. One 
way to solve this is to divide each metro trip between any pair of stations (which could use 
different lines) into its trip-legs. This is not straightforward, as for some pair of stations 
there is more than one reasonable route. To solve this issue, a choice probability to each 
of these routes was considered. These probabilities correspond to the travellers’ choice 
proportions, obtained from an appropriate route choice model (Raveau et al. 2011). This 
model is estimated based on an origin–destination survey conducted within the metro net-
work. As any specific trip-leg that involves a transfer station will be part of multiple ori-
gin–destination pairs within the network, the sum of the demand of all those multiple pairs 
must be computed to have the actual demand of every trip-leg in the metro system.

The entire data set used for the week of analysis in this article, and its relation with the 
attributes studied, is presented in Fig. 1.

Graphical analysis

As a first step, we performed a graphical analysis to compare for buses and metro how 
does their coefficient of variation of headways evolve with the distance from the terminal 
(Fig. 2), as well as the distribution of travel time for trips of similar length (Fig. 3). It is 
important to highlight than these two indicators are not interchangeably, but they do pro-
vide different perspectives of the complex phenomenon of reliability.

Fig. 1  Databases for the same week of April 2017
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Fig. 2  Coefficient of variation of headways by distance to the terminal for buses and metro services

Fig. 3  Travel time distributions by mode and distance range. a between 2.5 and 3.5 km; b between 7.5 and 
8.5 km; c between 12.5 and 13.5 km; d between 17.5 and 18.5 km
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Regarding metro services, there is a significant difference in the speed of metro Line 
1 compared to the other lines, and therefore Line 1 is shown separately from the others. 
There is also a broader dispersion for Line 1 in comparison to the rest of the lines, but, 
as mentioned in the case of buses, this will be of further analysed. Although the disper-
sion of the performance of express bus services shows that many of them have a level 
of service similar to that of regular bus services, there is a portion that resembles both 
the best lines of metro and Line 1. As future research, it will be important to understand 
what conditions make these services show such a level of service.

The relationship between travel time dispersion measures of the histograms and dis-
tance can be seen in Fig. 4. Two dispersion measures are considered for the analysis: the 
standard deviation of travel time and the difference between the 95th percentile and the 
average travel time, which in the literature has been called Reliability Buffer Time (RBT, 
Engelson and Fosgerau 2016). While the standard deviation takes into account travel 
times shorter and longer than average, the reliability buffer time only measures the dif-
ference between the longer travel times and the average. Thus, it is important to analyse 
different dispersion metrics, as they might lead to different conclusions.

Overall, we observe that both dispersion measures present similar information. This 
indicate that we might use them interchangeably in subsequent analysis. Besides, both 
of them increase with travel length for every mode except for the last segment of Line 1. 
This happens as the number of origin–destination pairs for every travel distance range 
decreases as the distance gets longer. For the longest distance range, there is only one 
origin–destination pair analysed, which is from one end to the other. Thus, the vari-
ability is expected to be smaller as there is no variability due to differences in demand 
on different pairs. Besides, the difference between regular and express bus services is 
higher when analysing the RBT. This indicates that the degree at how the longest travel 
times grow is higher for this type of buses.

The dispersion is always smaller than 2.5 min for metro (except for Line 1, whose 
maximum is 4 min) when the standard deviation is considered as the measure of disper-
sion, which could hardly be perceived by travellers. Considering the reliability buffer 
time, the dispersion is almost eight minutes for Line 1 and always smaller than five min-
utes for the rest of the lines.

Fig. 4  Relationship between dispersion measures and travel length. a Standard deviation; b difference 
between 95th percentile and average travel time
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The impact of segregated bus corridors on travel time reliability

Over the last decade, to palliate the effect of traffic congestion (mainly due to the increase 
of private car use) on the performance of public transport systems, there has been a sub-
stantial increase in the length of specialized infrastructure for bus services. According 
to the BRT Centre of Excellence, there are 4,900 kms of segregated bus corridors mov-
ing 32 million passengers daily in 166 cities worldwide (BRT + Centre of Excellence and 
EMBARQ 2018).

Buses operating in segregated corridors increase their speed in comparison to those 
operating in mixed traffic. It has also been observed that segregated corridors have a posi-
tive impact in avoiding bus bunching by reducing headway variability growth along the 
route (Danés et  al. 2015). However, their impact regarding travel time reliability is less 
clear.

In this section we provide a graphical comparison between services running on specific 
segregated corridors and on parallel comparable mixed-traffic lanes based exclusively on 
passive data. Figure 5 shows the considered corridors. The segregated corridors analysed 
(dashed lines) are Las Industrias and Av. Grecia and their comparable mixed traffic corri-
dors (solid lines) are Vicuña Mackenna and Eduardo Castillo Velazco–Los Orientales–Las 
Parcelas (ECV-LO-LP), respectively. To isolate the effect of the segregated corridors, only 

Fig. 5  Segregated corridors analysed and their comparable mixed traffic corridors
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trips that started and finished at bus stops inside the analysed corridors (both segregated 
and mixed-traffic) were considered.

The evolution of the coefficient of variation of headways as vehicles move away from 
the terminal, as shown in Fig. 2, is presented in Fig. 6. For both bus corridor comparisons, 
the headway coefficient of variation is lower when services operate in a segregated bus cor-
ridor. The evolution of the coefficient of variation for the service operating in a segregated 
corridor in both cases are quite alike. However, the evolution of the headway coefficient of 
variation of the services operating in mixed traffic describe different stories in each situa-
tion. In (a), mixed-traffic services start their operation at a relatively low value and grows 
at a faster pace than the segregated corridor service indicator. In (b), mixed-traffic services 
start their operation with a headway coefficient of close to 1 (which is what we would 
observe for instance if buses arrived according to a Poisson process). This indicates that 
the services operating in these streets are already highly irregular, and therefore the pace at 
which headway variability grows is lower. Thus, it is not surprising that the increment of 
the headway variability would be slower than in the previous scenario, as can be confirmed 
in Fig. 6.

The speed distribution for both corridor comparisons is presented in Fig. 7. For both 
cases the average speed observed in the segregated corridor is higher than in the mixed 
traffic corridor. This is represented by the difference on the modes of the distributions. 

Fig. 6  Coefficient of variation of headways by distance from terminal. a Las Industrias & Vicuña Mack-
enna; b Av. Grecia & ECV – LO – LP

Fig. 7  Bus services’ speed distribution. a Las Industrias & Vicuña Mackenna; b Av. Grecia & ECV – LO – 
LP
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However, the difference between speed variability is not clear since the spread of both 
distributions seems (at least at first sight) rather similar.

As the analysis presented in Sect. 1.1, travel data was grouped in different distance 
ranges within each corridor. Within each distance range, average travel times and vari-
ability measures were computed. The positive impact of segregated corridors on the 
average speed can be seen in Fig. 8, which confirms that trips on segregated corridors 
are, on average, faster (as expected) (Durán-Hormazábal and Tirachini 2016). Figure 8 
also shows that the reduction on travel times increases as the trips get longer.

However, as it has been argued in this study, characterizing the impact of segregated 
corridors should include in-vehicle travel time variability. For that purpose, three indi-
cators of travel time variability are computed for every travel distance range: the stand-
ard deviation, the coefficient of variation and the reliability buffer time. This analysis 
is presented in Fig.  9. Overall, segregated corridors present a better performance in 
terms of in-vehicle travel time variability. The only exception would be the case of the 
coefficient of variation in Av. Grecia which is equal to the one of the comparable ways 
for trips longer than 1.5 kms. These figures indicate that there is evidence of a posi-
tive impact of dedicated infrastructure, as segregated corridors, not only on the average 
travel times but for their variability as well.

This extensive graphical analysis outperforms any statistical summary as it is pos-
sible to clearly detect the differences between these two types of public transportation 
services. Besides, it is possible to also visualize the rate of change for every measure 
studied, which gives a new dimension of analysis.

The effect of travel time reliability on mode choice

In this section, the methodology for the aggregate demand model is presented and the 
results obtained are discussed. This model allows understanding the effect that travel 
time reliability has on travellers’ preferences and on the observed travel structure. To 
estimate the aggregate public transport mode choice model, it is necessary to build a 
database for that purpose. The model only considers origin–destination pairs where 
metro is an alternative to the buses, to analyse individuals’ choices between both modes 
and its combination.

Fig. 8  Average in-vehicle travel time by travel distance. a Las Industrias & Vicuña Mackenna; b Av. Grecia 
& ECV – LO – LP
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Origin–destination pairs

To identify the bus services that are an alternative to metro, buffers (or influence zones) of 
750 m radius were defined around each metro station. All bus stops within the buffer define 
the origin–destination pairs for bus trips or combined bus-metro trips that could have been 
done only by metro. For those bus stops with more than one metro station within the range, 
the closest station was assigned. This way the demand for buses and combined trips can 
then be aggregated for each origin–destination pair. The 750 m radius was selected based 
on the results of Tamblay et al. (2015), which identifies that 95% of Metro users walk less 
than this distance to reach their metro stations. The result of this procedure is shown in 
Fig.  10, where the left panel shows a general view of the city with while the panel on 
the right shows, in a more detailed way, the circular buffers created surrounding the metro 
stations. With this information it is possible to create an aggregate database of public 

Fig. 9  Variability measures for in-vehicle travel time by travel distance. a Las Industrias & Vicuña Mack-
enna; b Av. Grecia & ECV – LO – LP
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transport trips in bus, metro and bus-metro between selected origin–destination pairs, in 
order to study travellers’ mode choices.

Database creation

Once the metro stations are matched to their corresponding surrounding bus stops, it is 
possible to group all trips in the database based on the origin and destination metro station 
to understand how travel attributes impact the total demand for each mode. The analysis 
must be conducted at the level of full travel and not at the trip-leg level (as was the case of 
the analysis presented in “Introduction” section), since only this way it is possible to prop-
erly understand and explain travellers’ behaviour.

The three considered alternatives are bus, metro, and combined bus-metro. For bus ser-
vices, the average travel time and its variance were obtained directly from the database 
used in “Introduction” section, grouping trip-legs into trips. For metro, the information was 
obtained based on the arrival and departure times provided by Metro de Santiago. As for 
some origin–destination pairs there is more than one reasonable route, the level of service 
was computed as a weighted average based on route probabilities calibrated in a previous 
study for the same network (Raveau et al. 2011). Finally, for the trips made by a combina-
tion of metro and bus services, the level of service was obtained as a combination of both 
procedures. To get a total variance for each trip, it was assumed that every trip-leg was 
independent and their travel time variances to be additive.

The behavioural analysis presented in this study focuses only on the morning peak 
period. As more than one observation is needed to obtain reliability indicators, origin–des-
tination pairs with five or less trips for any mode were not considered in the analysis. Since 
the estimated bus arrival time database is not exhaustive, we also filtered those OD pairs 
without headway information for this mode. This allowed us to guarantee that every ori-
gin–destination pair considered in our analysis contains enough information to measure 
variability for both travel and waiting times. The number of origin–destination pairs for 
every criterion is displayed in Table 1.

The number of origin–destination pairs is reduced significantly when the criteria are 
applied. However, the remaining origin–destination pairs present, as expected, higher 

Fig. 10  Buffers of 750 m around metro stations
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demand than the deleted pairs, which represent almost one half of the total demand. 
Finally, bus observations were corrected by fare evasion (Cantillo et al. 2018), which is on 
average 26% for the selected bus stops during the period of analysis. The final number of 
observations considered is 695,113.

Results

Based on a Random Utility Maximization approach (McFadden 1974; Ortúzar and Wil-
lumsen 2011) for modelling aggregate mode choice, different specifications were tested 
to obtain a good fit for the data set. As for travel and waiting time variability, the stand-
ard deviation, the variance, the coefficient of variation and the reliability buffer time were 
tested.

As the bus-metro alternative is a combination of the other alternatives, correlation is 
expected. To address this issue a Cross Nested Logit model (Vovsha 1997) was calibrated. 
Two nests are defined, one for the metro alternatives and the other for the bus alternatives. 
On one side, the pure modal alternatives belong entirely to their respective nest, with each 
inclusion coefficient (denoted by α) equal to 1. On the other side, the combined metro-bus 
alternative belongs to both nests, with inclusion coefficients to be estimated. For identifi-
ability purposes the scale parameter at the root was set equal to 1, as well as one of the 
nest coefficients (denoted by λ). The scale parameter estimated was the associated with the 

Table 1  Number of origin–destination pairs selected

Criterion Number of ori-
gin—destination 
pairs

Morning peak 
travel demand

Percentage of the 
total (OD pairs/
demand)

At least 1 observation in metro 9082 1,330,896 100%/100%
At least 1 observation in bus or bus-metro 7328 1,289,621 80.69%/96.90%
At least 6 observations in every alternative 2315 669,232 25.49%/50.28%
Presence of headway observations for buses 2264 662,063 24.93%/49.75%

Fig. 11  Cross Nested Logit 
model structure
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metro alternative. The model structure, nest coefficients and inclusion coefficients can be 
seen in Fig. 11.

The best specification was found by the Likelihood-ratio test. Regarding travel attrib-
utes’ variability, only the variability of headways had a significant effect. From all the 
different variability measures, the coefficient of variation performed the best. Non-line-
arity was tested for both travel and waiting time. However, no significant improvement 
was found in this sense. The selected utility specification Vi considered is:

where TTi Average travel time for alternative i, E(W)i Expected waiting time for alternative 
i, CV(h)i Coefficient of variation of headways for alternative i, TrTi Average transfer time 
for alternative i, #Tr(M → M)i Average number of metro-to-metro transfers for alternative 

i, #Tr(M → M)i Average number of bus-to-bus transfers for alternative i, #Tr
⎛
⎜
⎜
⎝

M → B

B → M

⎞
⎟
⎟
⎠
 Average 

number of metro-to-bus or bus-to-metro transfers for alternative i.
Before presenting the results analysis, there are three important modelling considera-

tions to highlight. Firstly, the combined alternative considers both specific and common 
parameters. For example, the average in-vehicle travel time is split by mode and share 
the parameters for both metro and bus. The same happens with the number of transfers, 
sharing bus-to-bus and metro-to-metro parameters. The coefficient of variation and the 
average waiting time is the same parameter than for buses.

Secondly, there is a strong correlation between ASCComb and #Tr
⎛
⎜
⎜
⎝

M → B

B → M

⎞
⎟
⎟
⎠
 as the combined 

alternative is the only one with transfers between metro and bus (and vice-versa) and the 
average value is close to 1. Therefore, both parameters associated cannot be estimated at 
the same time. As our major objective is to understand travellers’ behaviour, we decided to 
define the combined alternative specific constant conveniently, in order to estimate the 
parameter associated with the number of transfers. The specific constant is defined as fol-
lows, proportionally to the amount of in vehicle time spent in bus for the combined 
alternative:

Finally, the database consists in 5429 observations which represent 695,113 individ-
ual revealed choices. As these choices are aggregated by origin–destination pairs, every 
observation has the total amount of trips for each origin–destination pair for each mode 
assigned. If this attribute is neglected, the model would consider that each observed modal 
split is equal. However, the common practice is to multiply this value so that the total sum 
of them is equal to the total number of observations. This is done to correctly estimate the 
standard deviation of the estimated parameters.

The results of the model are shown in Table  2. The parameters part of the different 
alternative utility functions are denoted with B, M, and C for bus, metro and combined 
respectively. This parameters were obtained using PythonBiogeme (Bierlaire 2016a, b). 
All parameters associated with travel attributes have the expected sign and are statistically 

V
i
= ASC

i
+ �

TT
⋅

�
1 + �

CV(h) ⋅ CV(h)i
�
⋅ TT

i
+ �

WT
⋅ E(W)i + �

CV(h) ⋅ CV(h)i

+ �
TrT

⋅ TrT
i
+ �#Tr(M→M) ⋅ #Tr(M → M)i + �#Tr(B→B) ⋅ #Tr(B → B)i

+ �
#Tr

�
M→B

B→M

�
⋅ #Tr

⎛
⎜
⎜
⎝

M → B

B → M

⎞
⎟
⎟
⎠
i

ASC
Comb

=ASC
Bus

⋅

TTbus
Comb

TTbus
Comb

+ TTmetro
Comb



635Transportation (2022) 49:621–640 

1 3

significant at a 91% confidence level. Also, the combined inclusion coefficients ( �
c,m and 

�
c,b ) and the scale parameter for metro ( �

m
 ) were found to be significantly different from 1, 

which confirms the Cross-Nested Logit structure. Besides, the higher value of �
c,m means 

the combined alternative relates more with metro. This is mostly explained as in bus-metro 
trips, bus is mostly used as an access/egress mode, meaning that the bigger portion of the 
trip is done in metro.

In order to understand better the impact of each attribute, we calculated the marginal 
rate of substitution of them with in-vehicle travel time. Typically, this analysis is regarding 
the cost attribute. However, the model that considers the fare fails to pass the Likelihood-
ratio test when compared with the model presented in the manuscript. This might hap-
pen as this attribute is highly correlated with the alternative specific constants, as bus fare 
is $640 CLP and both metro and combined alternative’s fare is $740 CLP. As in-vehicle 
travel time perception depends on headway regularity, we define two scenarios to analyse: 
perfect headway regularity, where CV(h) equals 0 and an irregular scenario, such as arriv-
als follow a Poisson process, where CV(h) equals 1.

In terms of average waiting time, in a regular scenario we see it is considered higher 
than in-vehicle travel time only for the cases of metro trips. For this case, the MRS between 
this attribute and in-vehicle travel time is 2.33. In an irregular scenario, the MRS rises to 
1.35 for buses. If we consider the average values of CV(h) for both modes, MRS equals 
1.26 for buses and 2.39 for metro. This might be explained as during morning peak hours, 
waiting for metro might be considered worse as in some stations the amount of people 
waiting reach an uncomfortable level.

In relation to transfers, we observe that transfer times are lower than in-vehicle travel 
time under regular headways. Considering the average coefficient of variation on headways, 

Table 2  Calibrated parameters values

Attribute Alternative Parameter Estimate p-value

Average travel time B, M, C �
TT

−0.087 0.00
Marginal effect of coefficient of variation of 

headways in the perception of Travel time
B, M, C �

CV(h) −0.269 0.00

Average waiting time B, C �
WT

−0.086 0.00
M �

WT
−0.203 0.00

Coefficient of variation headways B, C �
CV(h) −0.424 0.09

Average transfer time B, M �
TrT

−0.078 0.00
C �

TrT
−0.026 0.00

Number of transfers B, C �#Tr(B→B) −1.050 0.00
M, C �#Tr(M→M) −0.455 0.00
C �

#Tr

(
M→B

B→M

) −1.140 0.00

Alternative specific constant B, C ASC
Bus −0.159 0.45

M, C ASC
Metro 0 Fixed

Combined inclusion coefficient – metro �
c,m 0.854 0.00

Combined inclusion coefficient – bus �
c,b 0.146 0.00

Nest coefficient – metro �
m

1.780 0.00
Nest coefficient – bus �

b 1.000 Fixed
Number of observations 5429
Log-likelihood −2,979.41
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the MRS is 1.15 for buses, 0.92 for metro and 0.38 for the combined alternative. One pos-
sible explanation considers that transfer time for the combined alternative are related with 
access or egress to the metro network, which might be perceived better than travelling 
itself.

On the other side, the worst perceived transfer is Bus-to-Metro/Metro-to-Bus, followed 
by Bus-to-Bus, and lastly Metro-to-Metro. This is also in line with our current knowledge, 
where Metro transfers are not perceived as bad as bus transfers. Based on the MRS, people 
would travel on average around 17, 15, and 5 min extra to avoid a Bus-to-Metro/Metro-to-
Bus, Bus-to-Bus, and Metro-to-Metro transfer respectively.

Regarding the coefficient of variation of headways, there are four different aspects to 
recall. Firstly, this attribute has three different effects in the utility function. It increases 
the expected waiting time (Osuna and Newell 1972a, b), it has a direct impact in the 
utility function, and it has a marginal impact in the perception of travel time. This allow 
the model to differentiate between two services with different frequency and headway 
regularity but with the same expected waiting time.

Secondly, the coefficient of variation of headways by itself only has a significant 
impact for bus and combined alternatives. The non-significative impact for metro can 
be explained as the combination of its regularity and frequency level might not be high 
enough to have a perceivable effect in passengers’ experience.

Thirdly, the marginal effect of the coefficient of variation of headways in the per-
ception of in-vehicle travel time, �CV(h) , was found to be significant and negative. This 
means than passengers are willing to travel longer in order to travel in a reliable bus 
service. In an irregular scenario, the perception of in-vehicle travel time is ~ 27% lower 
than in a perfectly regular scenario.

Fourthly, the MRS between CV(h) and TTBus is calculated as follows:

This means the rate of substitution grows with both the coefficient of variation of 
headways and the expected value (the inverse of the frequency) and decreases with 
travel time. If we consider the average value of E(h), CV(h), and TT, 6.85  min, 0.81, 
and 21.53 min respectively, we obtain a MRS equals to 5.84 min, which is comprised 
by −7.41  min in terms of travel time, 7.02  min in terms of excess waiting time and 
6.23  min in terms of regularity. This means passengers, on average, are willing to 
increase their in-vehicle travel time in 5.08 min to have a service with perfectly regular 
headways. By multiplying this amount by the Chilean social value of time (MDS 2016) 
we obtain a monetary value of ~ $156 CLP, which is equivalent to a 24.38% of the fare 
at that time. The in-vehicle dependency of this marginal rate of substitution means that, 
under unreliable waiting time, passengers are willing to travel longer for shorter trips. If 
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in-vehicle travel time is 38.52 min and both E(h) and CV(h) remain constant, the MRS 
equals 0, which means passengers are not willing to travel any longer to reduce their 
waiting time uncertainty.

Finally, every time the coefficient of variation of headways was included in the speci-
fication function, the alternative specific constant of buses decreased its significance. As 
this attribute was not found to be significant for metro trips, we consider that headway 
variability as a key attribute in order to explain modal choices. All these results confirm 
the idea that public transport reliability has a significant impact on passenger’s mode 
decisions.

Conclusions

This study provides evidence of significant differences among headway regularity and 
travel time dispersion (measured as the standard deviation or the difference between the 
 95th percentile and the average travel time) for trips of similar length on different public 
transport modes. The study also shows that these dispersions also increase with travel 
length for every mode. However, the dispersion is always smaller than 4  min for metro 
(when the standard deviation is considered), which could hardly be perceived by travellers, 
particularly on long trips.

The results were displayed allowing a clear visualization of the reliability differences 
between different modal alternatives. The graphs provide an intuition about why certain 
services could be used to a lesser extent than what is predicted by conventional models 
(which ignore the uncertainty in the level of service). The figures presented in this paper 
considered every service within certain distance range, but the methodology is of course 
applicable for any subset of services satisfying specific conditions (as with the case of 
particular corridors presented in this study). This visualization allows identifying oppor-
tunities for improvement in the system by recognising similarities in the level of service 
between some bus-based services and metro. For example, clustering those services whose 
characteristics mimic in some sense their operation with metro (such as the express ser-
vices in Transantiago or those operating over a segregated corridor).

The aggregate demand analysis proved the significant impact of public transport reli-
ability (measured as the coefficient of variation of headways) in travellers’ choice between 
buses and metro for origin–destination pairs where both modes are available. One would 
have expected a significant impact in aggregate choices of travel time variability when 
studying travel reliability. In this study, that was not the case. We suspect this is due to the 
big existing differences between public transport systems operating on a frequency-based 
and schedule-based manner and because of the high-demand-high-frequency nature of the 
public transport systems in Latin America. In this context, headway regularity plays an 
even more crucial role. However, unreliability is not limited to travel or waiting times, also 
affecting average crowding and its variability. The effect of variability on these attributes 
should be also analysed and included in demand models, further increasing the impact of 
unreliability on passenger’s behaviour.

It is important to emphasize that all the analysis in this study was conducted by only 
using passive-data, without the need of any kind of survey or external information. The 
data used comprises smartcard validation, buses’ GPS position and trains’ time schedules. 
Although the demand model is quite general (as no individual information, such as gender 
or income, is recorded in the smartcards) to the best of the authors knowledge, revealed 
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preferences have not been used to analyse the impact of reliability on the preferences of 
public transport travellers. In a world were passive-data collection technologies rapidly 
gain importance over former techniques, studies similar to the one presented here will help 
to better understand passive-data capabilities and limitations.

The aggregate demand model suggests that, in a more detailed disaggregated model 
(at an individual level), variability should also have a significant impact in the travellers’ 
decisions. Such disaggregated model would require a travel survey to gather socio-demo-
graphic information, and more detailed travel information to compute reliability indica-
tors for each individual based on their past travel experiences. Such disaggregated revealed 
preference model could provide further insights regarding the effect of reliability in travel 
demand and have higher repercussions in public policy.

As public transport time reliability has a relevant impact on travellers’ decisions, it is 
necessary to improve it, enhancing the level of service. This paper shows that this is par-
ticularly important for bus services, which lag behind metro in this dimension. An effective 
way to improve bus reliability is with segregated corridors. This study shows that segre-
gated corridors not only reduce average travel times, but also reduce travel time variability. 
The methodology presented in this study could be used to assess the impact that other poli-
cies and strategies (such as public transport signal priority or bus holdings at stops) have 
on reducing travel time variability.

Transport planners and modellers should consider these results to improve project eval-
uation and decision-making processes by better understanding the effects of travel time 
reliability on public transport travellers. Extending the behavioural models to include 
additional level-of-service components (such as waiting times and crowding levels) would 
be an interesting research subject. Further understanding the causes and effects of public 
transport variability has a significant impact on public policy.
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