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Abstract
Given the limitations of traditional methods of data collection and the increased use of 
smartphones, there is growing attention given to using smartphone apps for activity-travel 
surveys. Smartphones, through their location-logging capability, allow for the collection of 
high-quality data on the travel patterns of individuals over multiple days while minimizing 
the burden on those being monitored.  This paper presents the results of an investigation 
into the potential and limitations of smartphone apps as passenger travel survey instru-
ments. It evaluates the accuracy and performance of various smartphone apps using prop-
erly recorded ‘ground truth’ data. Through an open and global invitation to travel survey 
app and trace processing suite developers, a total of 17 apps were recruited for testing. A 
controlled experiment was devised, and the accuracy of the apps evaluated based on their 
ability to reproduce ground truth trip information. Further, the performance of the apps in 
terms of battery drain was also quantified and evaluated. Results indicate that while accu-
racy in terms of the trip ends/starts is reasonably high in most cases, mode inference accu-
racy varied significantly, with a maximum 65–75% accuracy achieved. As such, until sig-
nificant improvements in mode inference algorithms arise, purely passive location-logging 
smartphone apps cannot serve as full-fledged automated travel survey instruments. While 
this may seem problematic, with minor input from respondents regarding regularly visited 
locations and modes used, as well as specific test case tuning and use of external data such 
as General Transit Feed Specification, there is an excellent potential to significantly reduce 
overall response burden and allow for high quality multi-day travel diary data to be col-
lected. Implications of our findings for app design are discussed.
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Introduction

Smartphones, with their location-logging capability, enable the collection of high-quality 
data on the travel patterns of individuals over multiple days by minimizing the burden on 
those being monitored. Unlike with other methods, individuals do not have to recall and 
report every detail of their travel. Smartphone apps can harness background logging func-
tionality and provide a user interface that makes it possible for participants to merely vali-
date pre-recorded and processed trip information, either in real-time or at the end of the 
day. Using smartphone apps to generate travel diaries potentially solves some of the issues 
with traditional self-reporting survey methods; these include unreliable respondent mem-
ory, proxy bias, mode bias, and rounding of travel times. Further, smartphone apps provide 
the ability to collect travel diaries for multiple days or weeks which could potentially lead 
to better understanding of individuals’ travel behaviour especially for intra-person vari-
ability in travel behaviour, the activity space of respondents and variability in travel over 
the course of the week, the link between time constraints and scheduling of discretionary 
travel, and trip chaining (Nahmias-Biran et al. 2018).

The household, person, and trip information typically collected in household travel 
surveys today can be obtained via smartphone, if the questions are included as part of an 
embedded questionnaire within the app. With apps, prompting can be employed to col-
lect information in real time as well, making it less likely that memory affects the qual-
ity of the data collected. Using apps, maps can be generated on the fly for a given user’s 
travel to help them answer questions, offering visual cues and reminders as to where and 
when they may have traveled. Further, the app can then ask the respondent to augment the 
already collected spatial and temporal information with contextual information: mode(s) of 
transportation, purpose(s) of the journey, and other attributes of interest. With smartphone 
traces, actual travel paths, including what road network links or transit lines were traveled 
on, can be inferred. This opens new avenues for analysts, as collecting such data was previ-
ously excessively burdensome for survey respondents. These potential benefits have led to 
several smartphone apps being developed around the world specifically for data collection 
in travel surveys.

This paper undertakes a rigorous assessment of the strengths and weaknesses of smart-
phone apps for addressing regional and national travel diary data collection needs. The 
assessment aims to address five major problems in the literature: (1) no universal metrics 
exist, (2) results in the literature are region and travel-pattern specific, (3) self-assessments 
are the norm; (4) small-sample and imperfectly generated ground truth data are typically 
used, and (5) that battery drain is reported on without context. Smartphone apps have his-
torically been assessed by their designers, with no independent assessment comparing apps 
and processing suites using properly recorded ground truth data for all travelled links, legs, 
and overall trip information.1

The assessment in this study seeks to better understand the accuracy of diaries gener-
ated from the data collected using smartphone apps. Thus, along with recording ground 
truth, data are collected using 17 smartphone apps (Android and iOS combined) from 11 

1 In this paper, trips refer to movements from an origin to a destination. If a trip includes more than one 
mode, legs are the individual mode segments of a trip that get from origin to mode change point, between 
mode change points if more than one mode is used, and between the final mode change point and the trip 
destination. Finally, links refer to the road network links traveled on during the course of a movement epi-
sode (this in contrast with a stationary episode). These are drawn as polylines between intersections.
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different development teams around the world. The accuracy of the apps and trace process-
ing suites are evaluated based on the capability to accurately reproduce ground truth trip 
information, including leg ends, trip ends, trip starts, trip modes, and route. After process-
ing the collected data, the performance of the apps is further quantified based on observed 
battery drain. The assessment was not designed to come up with a numeric score for the 
apps and processing suites, but rather to better understand the overall state of the art, range 
of performances among leaders and best practices in the field. As Wu et al. (2016) state, 
“results comparison has little meaning because different studies use a different quality of 
data, which has a great impact on the results” (Wu et al. 2016), and for this reason and oth-
ers, a ‘90%’ or ‘50%’ accuracy value reported in this article is not deemed more ‘accurate’ 
an assessment of an app’s performance than any prior published work. Rather, it is the 
range of performances and any broader lessons learned that are the focus.

The paper continues with an overview of smartphone apps for travel data collection. 
Section 3 discusses the data collection protocol. Section 4 presents the results of the assess-
ment, and finally, Sect. 5 concludes the paper.

Apps for travel data collection

A traditional household travel survey requires respondents to participate, whether via tel-
ephone, web, or paper questionnaire, by reporting trips for one or more days. This is not 
without problems, including under-reporting of short and discretionary trips, low response 
rates and inaccurately recorded travel information (Bohte and Maat 2009; Harding et al. 
2018; Schlich and Axhausen 2003; Wolf et al. 2004).

To mitigate these concerns, researchers first started collecting location information 
using standalone GPS loggers alongside user-provided input data. Such surveys are car-
ried out by asking respondents about their travel information over the phone or via paper-
based or web-survey, and then augmenting this information with traces passively collected 
using GPS devices (Auld et al. 2009; Li and Shalaby 2008; Schönfelder et al. 2002). The 
2010–2012 California Household Travel Survey is an example of GPS being used at large-
scale in this way (Kunzmann and Daigler 2013). However, the use of standalone GPS log-
gers leads to increased costs for data collection efforts (Wolf et al. 2014). Researchers not 
only have to manage recruitment and pre-interviews with respondents but also bear the 
burden of device distribution and retrieval. These issues, along with the growing ubiquity 
of personally owned smartphones that include location sensors with similar capabilities as 
standalone GPS loggers, have led to a move towards the use of apps.

Over the last decade, capabilities and market penetration of smartphones have increased 
substantially. Smartphones bring together location logging with a user interface that also 
makes it possible to carry out experience sampling, on-route or after-the-fact travel valida-
tion, as well as provide feedback to respondents. Many of the recent typical regional travel 
surveys around the world are conducted in conjunction with a smartphone app (Allström 
et al. 2017; Flake et al. 2017; Geurs et al. 2015; Joseph et al. 2019; Lynch et al. 2019; Nah-
mias-Biran et al. 2018). There remain, however, numerous technical challenge in the use of 
smartphones for travel data collection when it comes to the frequency and type of data that 
can realistically be collected (Prelipcean and Yamamoto 2018).

Battery drain is a crucial limitation of location-logging smartphone apps. The collection 
of location data using GPS places a significant drain on a smartphone’s battery (Jariyasu-
nant et al. 2014). As a result, considerable efforts have been expended researching hybrid 
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localization techniques using GSM and Wi-Fi location data, and other built-in sensors, to 
augment or replace GPS under certain conditions or to reduce the frequency of location 
queries (Ellison et al. 2019). Some apps only request location data when a movement epi-
sode is detected via algorithms that use data from lower power smartphone sensors such as 
accelerometer readings or Wi-Fi signature (Patterson and Fitzsimmons 2016). Geofences 
are another way to limit battery drain: a geofence can be set up when a stop is detected, 
with conditions then applied such that querying and recording of location points do not 
occur until a respondent is determined to have left the geofence. These approaches, while 
effective in reducing battery drain, might also lead to inaccurate and patchy data, especially 
for subway trips (Krenn et al. 2011).

The reliability of smartphone location logging accuracy in different urban environments 
must also be considered. Aside from measurement error (Enge and Misra 1999), the “urban 
canyon” effect (signals bouncing off of high rises in densely built-up areas) that results in 
recording errors for standalone GPS loggers remains a problem with smartphone apps. It is 
possible, however, to use cellular networks (GSM) and Wi-Fi-derived location information 
to estimate the location and improve accuracy in dense urban environments (Ellison et al. 
2019; Greaves et al. 2015; Jariyasunant et al. 2014; Zhao et al. 2015). In cases of GPS sig-
nal loss, such as underground locations, smartphone sensors can be employed to estimate 
present location by keeping track of the general direction and distance traveled from the 
last known point, known as dead reckoning (Randell et al. 2003).

While the broad technical limitations and potential of current generation smartphone 
apps is well understood, there is a lack of understanding among transportation profession-
als and researchers regarding the feasibility of rolling out smartphone apps for passenger 
travel data collection. To the best of our knowledge, this study provides the first large-
scale, global, and multiplatform assessment of the accuracy of travel diary-type outputs, 
combining app and processing suites. The experiment devised involved the collection of 
data using a range of apps, followed by comparison against a rigorously recorded ground 
truth. Similar assessment frameworks were developed previously to compare GPS data to 
time use surveys or travel diaries (Lawson et  al. 2010; Stopher and Shen 2011). In our 
assessment, guidelines were used to determine what trips were to be made, how long these 
trips were to take, and by what modes they should be carried out, all the while carrying all 
21 project phones together and recording events using a separate device. Such an experi-
mental design ensured that a mix of trip types was recorded and that no uncertainty existed 
in comparing processed traces to ground truth data on travel episodes.

The methods employed for smartphone location logging and trace processing assess-
ment have so far been ad-hoc, with recording and processing algorithms and outputs being 
project-specific, making it impossible to truly compare between apps or processing suites 
(Dalumpines 2014). In this study, all apps and processing suites are simultaneously com-
pared to allow for a more objective evaluation of their potential to accurately record start 
and end times, and infer trip locations, modes of transportation and the links traveled.

The existing literature has established the features and functions, as well as the gen-
eral quality of smartphone data. Before this study, however, no effort had yet been carried 
out to compare (1) multiple apps and processing algorithms, (2) in a particular region, (3) 
where data were collected following a strict protocol. Generating a perfect ground truth 
and carrying 21 phones together running 17 apps allowed us to quantify performances in 
a manner never done before, but it also meant we could not make use of the data to bet-
ter assess the learning potential of apps, purpose identification, protocol compliance or 
any other notion of user interaction. Therefore, assessment results in this paper provide 
an objective evaluation of the expected performance of apps. The results obtained provide 
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sufficient information for decision-makers to better understand the potential role of smart-
phone apps in regional travel data collection efforts.2

Data collection protocol

App selection

Personal invitations to participate were sent to app developers and research groups for 
whose products the team were able to find information, as well as broader invitations were 
made around the world through professional networks, e.g., IATBR listserv, TRB Commit-
tee mailing lists and personal networks. Responses were received from 19 companies and 
university research groups, with apps or processing suites being proposed for assessment. 
Accounting for both Android and iOS versions of the apps, this resulted in a total of 29 
apps and data processing software suites. Of these, ten were commercial (consultant or 
other private firm-developed applications that require paid contracts to make use of) and 17 
from academia (developed by research institutions and either not currently or exclusively 
commercial in use), along with two apps that were open source (with code available on 
GitHub) or free on the App/Play store with traces available for download.

After a pre-assessment to ensure the apps functioned properly and were worthy of fur-
ther evaluation, eight app candidates were selected for Android and nine for iOS from 11 
different development teams. Given knowledge of both the apps and processing suites 
available and those made by institutions who declined participation, a representative cross-
section is believed to have been recruited that allows for reporting on the at-the-time state 
of the art. For privacy reasons, in this article each app is assigned a number, instead of 
being referred to by name.

Different phone models were employed. All phone models except one had all potentially 
relevant sensors, namely gyroscope, accelerometer and compass. The testbed was com-
prised of 11 iOS devices and 10 Android devices. To run the apps, active SIM cards with 
data plans were used.

Setup and data collection

Data collection was conducted starting in June 2016. Travel data were collected for 32 
non-consecutive days. Additional days of battery drain-only recordings were also collected 
to see how the phones would perform when (1) only running the location logging apps 
without movement, and when (2) neither running the apps nor moving. This allowed us to 
isolate the effect the apps themselves have on battery drain.

All phones were configured the same way to ensure that the settings would lead to as 
uniform a drain as possible when testing each app, irrespective of device. No other apps 
were installed, while screen brightness was minimized and notifications were turned off. 
Non-location-logging app drain was kept to a minimum, such that whatever drain was 

2 While the success of a travel diary data collection project depends just as much on recruitment and design 
of user interface as it does on the more technical accurate recording and processing of traces, the design 
aspect of the work would have meant an entirely different project being undertaken. For more information 
on more human elements of app design dealing with user experience design, the readers are referred to one 
of the appendices in Harding (2019).
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observed could be attributed to location sensor use, app-specific upload or download, or 
local trace processing. During collection, the location logging apps were brought up on 
screen every few hours to check whether data were logging correctly and to respond to 
prompts from certain apps when validating travel in real-time. These were the only times 
the screen on the devices were turned on. This approach was believed to lead to an assess-
ment of apps with results relevant farther into the future, independent of what was deemed 
a realistic or ‘normal’ use of a smartphone.

Each device ran one app at a time, with apps cycled through devices over the collection 
period. A log was also kept of all trips made. To minimize the potential for random errors 
when reporting performance, all devices were carried together at all times, with the same 
trips recorded for all phones.

To produce a robust assessment, as many trips as possible were logged while main-
taining realistic dwell times for stop detection. The trip-making was set to be as random 
as possible by varying length, dwell time, travel modes, and built environment (urban or 
suburban). Car, transit, bike, and walk trips were made. For transit trips, bus, subway, 
and regional trains were included. The trip scheduling design ensured all modes would 
include a minimum number of trips—approximately 30. The number of coach trips, how-
ever, were kept to a minimum because of scheduling logistics, as well as the small benefit 
from including such a seldom-used mode of transportation. Table 1 presents a summary of 
number of trips made by main mode of transportation. All local trips are made within the 
Greater Toronto Area (Fig. 1).

Since data were collected simultaneously using 21 smartphones, the total number of 
trips potentially recorded is much greater than the number of trips physically made. Ground 
truth information was generated reflecting the start and end locations and times, mode 
change points, and all associated modes of the travel episodes. Paths were also constructed 
from the OpenStreetMap (OSM) network dataset such that every link traveled represented 
the exact link taken for a particular trip leg.

Table 1  Trips and hours of travel by validation status and main transportation mode

Main mode of transportation Disaggregate Trips recorded Validated Non-validated Hours of travel

Walk 52 28 24 9.4
Bike 77 29 48 21.8
Local bus/streetcar Bus 59 29 30 27.0

Streetcar
Subway/SRT 41 22 19 22.2
Regional transit (GO) 33 18 15 21.6
Coach 4 2 2 28.0
Car 51 33 18 15.9
Total 317 161 156 77.8
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Analysis and results

In total, 317 trips were made while carrying all 21 phones, consisting of 553 legs (includ-
ing short access and egress legs). Over roughly 130 h of travel time, 3655 km were trave-
led, and 1063 battery recordings were taken. Travel recorded included trips made on foot, 
by bicycle, bus, streetcar, subway, commuter rail, car, and finally multi-modal trips.

A total of 11,304 events (i.e., recorded information about trip legs and stops from all 
21 phones) were collected or extracted for analysis and comparison with ground truth 
(GT) information. Reporting of app performances with respect to reproducing ground 
truth are reported both for ‘Native’ app-processed data (i.e., X app producing trip tables 
using data recorded by the same app), as well as app data processed using a common 
Travel Diary eXtractor (TDx). TDx is a generic trace processing suite that was devel-
oped to convert any app’s raw location traces to a universal format and then process the 
traces to remove noise, identify trip ends and infer main mode of transportation (Hard-
ing 2019). This allowed for all apps, irrespective of whether they are bundled with a 
trace processing suite or not, to be included in the assessment.

Certain apps merely produce traces, while others produce event or trip tables, some 
containing inferred and validated modes. Of the 17 apps tested, only two provide shape-
files that could be compared with link-matched ground truth. For the remainder, routed 
and point-to-line paths were generated using the TDx and ArcGIS. This allowed for the 
measurement of overlap between actual routes and routed smartphone traces.

Fig. 1  Greater Toronto Area transportation network
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Assessment of travel episode detection and attribute inference

Any observations that potentially contained errors because of procedural mishaps were first 
removed from the final datasets. Such mishaps were identified when verifying app status 
during data collection, when uploading to server at the end of the data collection days or 
when manually reviewing the trace and battery reading files before running any scripts on 
them. These accounted for approximately 3.5% of all observations. This section provides 
detail from the assessment of identified trip leg ends, trip start, end and modes, and route 
overlap.

Leg ends

Figure 2 shows the percent of leg ends inferred from app traces that have a match in time 
(± 7 min) and space (800 m) when compared to the ground truth leg end data.3

As seen in Fig. 2, the performance of apps and their processing suites varied considera-
bly when it came to producing accurate travel episodes from traces. The difference between 
the performances of native processing suites (native meaning that a given app’s traces were 
processed by an algorithm or suite designed by the same team that designed that particular 
app) was considerably higher than that of multiple app traces being run through the same 
TDx. Leg end accuracy ranged from 38 to 97% on the native side, and 60 to 97% on the 
TDx side. Figure 2 also shows that it is rather straightforward to correctly identify leg ends 
from traces. All that is required for this task is a clear understanding of dwell times that are 
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Fig. 2  Percent app-data inferred leg ends that match with GT

3 The cut-off values in this paper were decided upon after trial and error testing in a previous project by the 
same team, taking Toronto subway spacing, network attributes such as block size and minimum dwell times 
into consideration (Miller et al. 2016). The data collection protocol was compatible with the values previ-
ously determined using trial and error, namely staying in a given location for 3 min or more before begin-
ning another travel episode.
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locally relevant (not too short to accidentally include traffic signal delays or boarding and 
alighting times at transit stops) and reasonably complete and accurate location traces.

Ignoring the validation data recorded, the data that make up the analysis dataset for 
legs includes 5496 observations, shown by OS and ground truth mode of transportation in 
Table 2.

Looking only at the best performing algorithm for any app, 13 of 17 apps produced high 
enough quality data that 88% or more of all inferred leg ends matched the GT leg ends. The 
four worst performers were all Android apps; this was the case with many of the accuracies 
looked at, while for battery drain the reverse was found. Three out of the four had larger 
than average recording intervals (more infrequent location point recording), at 23, 60, and 
108 s post-filtering, the likely reason for the poorer end detection accuracy.

Of all the processed datasets, those from 2 apps that had native processing suites outper-
formed TDx, Apps 15 and 16. It is interesting to see that, at least in this respect, it seems 
possible to build a flexible trace processing algorithm that performs reasonably well for 
detection of leg ends when applied to datasets produced by multiple apps.

Trip ends

Instead of simply labelling trips as ‘correct’ or ‘incorrect’, events were placed into six 
different categories, based on whether the time, the location or both were correct, as well 
as whether a travel episode was underway at the moment a leg or trip was detected. This 

Table 2  Legs included in 
analysis, by transportation mode 
and OS

Mode (for leg) Android iOS Total

Walk 848 946 1794
Bike 733 897 1630
Car 344 461 805
Bus 183 231 414
Streetcar 83 91 174
Subway 143 186 329
Regional rail 157 193 350
All modes 2491 3005 5496

Table 3  Trips in analysis data, 
by main transportation mode 
and OS

Main mode (for trip) Android iOS Total

Walk 227 255 482
Bike 612 737 1349
Car 279 374 653
Bus 185 202 387
Tram 113 135 248
Subway 166 202 368
Regional rail 182 225 407
All modes 1764 2130 3894
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allowed for differentiation of legs or trips accidentally detected on-route to events, trun-
cated events, and finally, those detected when the phones were not in movement—noise.

Ignoring validation data recorded, the data that make up the analysis dataset for trips 
includes 3894 observations, shown by OS and ground truth mode of transportation in 
Table 3.

Error categorization is shown for trips in Table  4. To help better understand the 
errors present, certain attributes of the apps are included on the right side of the table. 
These are ‘Constant logging’ (whether an app logs points continuously, irrespective of 
movement), ‘Uniform recording frequency’ (whether traces are recorded with the same 
frequency irrespective of travel speed), ‘Median recording interval’ (in seconds) and 
‘Post-filtering accuracy’ (in metres).

The apps most likely to generate ‘duplicate’ trip ends (code F) are those which log 
continuously, with high frequency and also with high reported accuracy. TDx was ini-
tially developed with the explicit goal of being able to identify short, active transporta-
tion trips, and as such, it may be that small clusters of high reported-accuracy points at 
times are labeled as short ‘trips’ when in reality those short series of points are actually 
a continuation of prior or subsequent movement episodes. Native processing for certain 
apps that share these same attributes (Apps 11 and 12) appear to share this propensity.

Concerning trips inferred while not in movement (noise, or code E), there is a more 
even distribution among the apps. Most of the apps with higher than average noise trip 
detection rates record coordinates more infrequently (median recording frequencies 
higher than 20 s). Only App 9 recorded at high frequency and is also associated with 
increased noise trips. Truncated trips (code D) occurred in Apps 7 and 21 (low record-
ing frequency and post-filtering accuracy), and App 22 (low spatial accuracy). App 13 
makes use of an aggressive battery saving technique that resulted in both truncation 
(code D) and delays in detecting a significant movement in space (code C).

Figure 3 shows the overall percentage of the correctly identified trip ends; apps with-
out a native processing suite have no blue bar. This metric is calculated as follows:
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As can be seen, the trip-end identification performance of apps varied much more 
than the measures mentioned to-date, with performances as low as 15% and as high as 
81%. This would indicate that certain apps and processing suite combinations lead to 
considerable errors in terms of missed trips and incorrectly inferred trips; these may be 
related to truncated trips or noise points. On the other hand, there were both Android 
and iOS apps that produced results near or above 70%.

Two of the three apps with the lowest reported accuracies were specifically designed 
for very low battery consumption. To save on battery drain, these apps have median 
recording intervals over 60 s with average accuracy (post-filter) of 145-m. They were 
designed to run without the user being burdened and, consequently, are better suited to 
providing information on trips made over long distances, where activity durations are 
significant and where the path and mode inference are not needed. These apps demon-
strate the trade-offs inherent in focusing on high frequency and high accuracy logging.

While the result may not be generalizable to the processing of real-world move-
ment episode traces, TDx is shown to provide equal or greater performance to native 
processing approaches in all but one case within our test. This would appear to indi-
cate that for detecting trip ends, there is no considerable difference between a generic 
processing suite and that which is developed for a particular app. Since a diverse set of 
modes were selected in making trips in this assessment, app-specific processing suites 
not configured to reliably capture short and active transportation trips were at a dis-
advantage. This also demonstrates tailoring and calibrating algorithms to a specific 
desired output and locally relevant information can improve the accuracy of collected 
data. Concerning the operating system, both iOS and Android contained high perform-
ers, but iOS apps produced data that more consistently led to correct detection of trip 
ends.

Percent Trip Ends Correct =
Trip Ends Detected Correctly

Total Trip Ends in GT + Incorrectly Identified Trip Ends
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Trip start

The trip start is another important dimension to capture. Figure 4 demonstrates how trip 
starts can often be missed before corrections are applied. This is a result of the cold-
start issue. Cold-starts refer to situations where an app may take a long time to acquire 
location information, leading to a difference in the detected and actual location of the 
beginning of a trip. Large gaps in time and space lead to an inability to pinpoint when a 
respondent left a given location and when they arrived at another. If a respondent lives, 
works, or shops at a location connected to the subway, this can be especially problem-
atic. It is possible to miss the departure and find a user far away from their previously 
detected location hours later; in such a situation, it would be impossible to differentiate 
between a missed trip start and several missed trips.

The best way to ensure that significant gaps do not occur is to periodically record 
locations, even at lower spatial accuracies, such that when a significant movement does 
occur, some information can be made available on where and when location information 
was last available. This is a very important aspect that is not properly handled by most 
apps. Apps that record data continually (9, 11, and 12) perform better in this respect.

Trip modes

In this assessment, trips were made using arbitrarily selected modes of transportation, 
such that there would be no correlation between particular OD pairs, time of day or 
broad location within the study region and mode of transportation used. Results from 
our comparison of trace processing algorithms (shown in Fig. 5) indicate that it is pos-
sible to infer mode with a maximum 65–75% certainty (Apps 17, 11 and 12), where 
all modes (Walk, Bike, Transit, and Car) are evenly weighted. Equally weighting each 
mode allows for a generalized measure of performance, independent of the mode split 
of a region.
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Mode inference in TDx is carried out using a point system, where attributes of trips 
and the points that make them up are used to infer whether the main mode of transporta-
tion used for a given travel episode is walk, bike, car, surface transit (bus/tram), subway or 
regional rail. Information on the road and off-road network (one-way or both, as well as 
road type—highway, access ramp or other), transit line shapefiles, ferry route and railway 
corridor, gaps created near subway or train station entrances, average, 85th percentile and 
maximum speeds, share of trip (time and distance) in different speed bounds, and distance 
covered are all used in various ways to assign points and determine mode of transportation 
(for a longer description of TDx’ mode inference approach, read appendix B.4 of Harding 
2019).

Native mode inference for other apps varied from team to team. To the best of our 
knowledge, no participant in the assessment modified their app to account for real-time 
transit information from Toronto’s regional transit agency. Any app that makes use of glob-
ally available routing, such as Open Streets Map, would have been able to work, but we 
were not made aware of any tailoring to apps or background processes.

In assessing the accuracy of mode inferences, we only looked at main mode of trans-
portation identified, not access and egress modes. TDx, for all intents and purposes, only 
assigns a mode of transportation to trips as a whole, and for multimodal trip cases makes 
use of the following hierarchy: walk, bike, car, transit (broad category that defaults to sur-
face transit), subway, regional rail. The same hierarchy was applied to modes inferred by 
Native processing, such that a trip with a regional rail component would be labeled as hav-
ing regional rail as main mode no matter what other modes its legs were detected as, and 
so on down the hierarchy.4 Use of the same hierarchy for comparing TDx and Native mode 
inference to ground truth to which only a main mode was assigned ensured consistency in 
results.

It should be stated that apps with intelligent pattern-matching algorithms that depend on 
learning from ‘respondents’ would have been unable to do so in our experiment. Therefore, 
accuracies estimated are lower than what those apps might achieve a few days into a data 
collection effort where respondents report their actual mode of transportation for previous 
trips.

Further, the types of public transit used within the Toronto area may also exhibit very 
different patterns in terms of speed, acceleration, and vibration compared with other cities 
where apps may have been calibrated. Accuracy can be increased by fine tuning the apps 
to a specific city transport network and use of General Transit Feed Specification (GTFS). 
Finally, no information on mobility tool ownership, preferences, or patterns could be uti-
lized to improve predictions. Taking these into account, the percentages correctly identified 
should be interpreted as very conservative estimates of the mode inference accuracies to be 
found during a full data collection effort.

Another way to present this information is to show inference accuracy by the main 
mode. Figure 6 shows the percent of modes inferred correctly for each app by the main 
mode of travel for the recorded trip. These figures provide insight as to where certain apps’ 
algorithms may perform particularly well, or less so for the main trip mode. The significant 
performance differences per app for each mode of transportation indicates that predictions 

4 People ‘access’ modes higher up in the hierarchy using modes below. While there can be cases where a 
trip’s access mode might be longer than the ‘main’ mode assigned (ex: if a suburbanite drives 30 km to a 
subway station, parks there and then takes the subway into town the last few kilometers), in more cases we 
would be dealing with walk or bike access to transit, as well as drive access to commuter rail.
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made by mode inference algorithms are greatly impacted by design, expected use cases, 
and geographical context. For example, TDx was originally designed for a very urban area 
with little data on car trips. As such, it performed most poorly when inferring car trips. 
Also, some of the native app processing suites aimed at better capturing active travel did 
not differentiate between motorized surface modes (car, bus and streetcar), significantly 
reducing the percent ‘correctly’ identified. Transit inference was very poor for apps’ native 
processing suites more broadly. While part of the blame for the poor performance can be 
attributed to differences in transit travel patterns between Toronto and the cities where the 
apps had previously been rolled out, the result remains underwhelming.

Finally, at least one of the apps (13) is designed to ignore walk trips entirely, not record-
ing location points unless a given speed threshold is passed; it is not surprising that it did 
not perform well when it came to detecting walk trips. This recording quirk makes it use-
less for recording walk trips, but also makes it extremely battery efficient, presenting a 
clear trade-off.

There exist many different methods by which the mode inference can be tackled, from 
rule-based methods to Bayesian Models, Fuzzy Logic, machine learning with Neural Net-
works or Support Vector Machine, etc., some of which exhibit very high reported accura-
cies (Stenneth et al. 2011; Xiao et al. 2015) (for a review of methodologies, see Wu et al. 
2016). The work of Stenneth et al. (2011) will be addressed directly, as an example that 
demonstrates why we are reticent to detailing the exact mechanics of any one app or pro-
cessing suite, and instead opt to report on the spread of performances obtained. In their 
paper, the authors detail a method of matching app-recorded trips with real-time transit 
feed data to obtain high accuracy transit mode inference. Their method is not only reliant 
on the availability of high-quality real-time transit location data from all operators in a par-
ticular geography of interest (more and more common, but not simple or straightforward to 
clean and integrate), but also on high frequency and high accuracy location data generated 
on the app side.
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With these two components, Stenneth et  al.’s method allows for travel episodes to be 
labeled correctly, but is dependent on significant local tuning, as well as transfer points 
being correctly identified such that legs can be matched with transit data. While these are 
attributes that would be very desirable in any given data collection location, these can not 
be guaranteed moving forward operating systems are increasingly federating requests for 
location information (Marra et  al. 2019), nor are real-time transit feed available every-
where. Another example of high accuracy mode inference is the work done by Xiao et al. 
(2015). The app developed for their analysis recorded GPS traces for every second and thus 
resulted in heavy battery drain and thus an additional battery package was provided to par-
ticipants which is not applicable for large-scale surveys.

The mode inference methods described in literature, can all be put to use in increasing 
accuracies for mode inference, but the existence of an approach does not mean that it can 
be realized in any and every context, or easily integrated to any app and processing suite—
were it so simple and straightforward, the apps tested by our team in 2016 would have 
performed significantly better at identifying surface transit modes. And to drive home the 
point that any specific format of location trace recording should not be relied upon when 
building a processing suite.

While a mode inference algorithm that works perfectly in all types of setting would be 
ideal, results indicate this is unrealistic. As a result, any app used for collecting data from 
the general public should feature some form of validation, whether in real-time or in the 
form of a travel diary to be verified at the end of the day.

Route overlap

Much like the issue with ‘correct’ ends or modes being quantifiable in multiple ways, route 
accuracy can also be measured in different ways. The difference between app-inferred links 
and ground truth links needs to be quantified in a way that does not disregard either trunca-
tion or incorrectly identified links. Thus, a hybrid quantification approach was chosen, with 
non-matched trips ignored. As such, if an app only recorded 50% of all trips, but that 50% 
of the whole was perfectly matched to the GT shapefile, then the result produced is 100%, 
not 50%. This distinguishes the link-matching from overall recording accuracy issues.

A buffer of 20 m was used when comparing GT legs to app-inferred legs assigned to the 
road network, while a 50-metre buffer was used when comparing GT subway and regional 
rail to routed, point-to-line and app-provided shapefile polylines. The values of 20 and 
50 m were decided upon based on prior work in the same region by the authors (Miller 
et al. 2016), as well as tests run in GIS using recorded traces before and after filtering to 
remove noise, as well as verifying the accuracy when assigning points to the road network 
using the link matching algorithm built into TDx. There is no hard and fast rule about what 
distance is appropriate universally.

More specifically, if points are associated to the right road network link, 20 m works 
even in cases where roads with multiple lanes are coded as 2 parallel links, one for travel 
in each direction. For regional rail and highway travel, 50 m is sufficient as trains follow a 
track, whereas travel along highways wider than roads also justifies an increase in buffer 
distance. This is very region specific however, and we make no claims that these values are 
to be used in a context other than Toronto.

Routed polylines refer to app data assigned to the road network using a link-matching 
algorithm within TDx and then connected using ArcGIS with the shortest path assign-
ment to fill in gaps within a given trip. Point-to-line polylines are produced by sequentially 
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linking filtered points (as per TDx). Finally, the app-provided “Shapefile” bars present 
results comparing the GT shapefile with the shapefile for the two apps which made such 
an output available. Each approach has its strengths and drawbacks. The routed link match-
ing can be used to identify exact links for input into path-choice models while permitting 
gaps in recording and sparser data. In contrast, the point-to-line approach is very simple 
and straightforward, but exact links are not identified and paths may be drawn along areas 
where no streets are present. The filtering applied in TDx removes much of the scatter that 
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would generate jagged lines and leads to a smoother path being drawn with less confusion 
as to overall distance traveled.

The results obtained for route overlap vary significantly from app to app. Substantially 
higher matches, relative to TDx, were obtained for apps where the developers provided a 
shapefile for the travel recorded. Figure 7 shows the percent of route length correctly iden-
tified by mode as opposed to one holistic number. In it, no attempt is made to present only 
the best performance. Instead, all apps’ outputs are averaged.

To better understand the performance of the apps, Figs.  8 and 9 present the percent 
accuracy of each app for different modes. The accuracy in path inference was calculated 
based on the percent of the trip distance accurately inferred from the total length of the 
trip. As such, it is expected that walk trips, for which cold-starts account for a more signifi-
cant proportion of overall travel distance, have lower reported accuracies. Further, travel 
along non-represented links such as through parks and alleyways, along uncharted foot-
paths or any other non-network locations are of more substantial concern for walk trips. 
In the case of car trips, it was promising to see such a high share of overall distance prop-
erly link-matched: around 80% of all travel distance was accurately link-matched across the 
board. This may have been a result of the low percent of access and egress mode as a share 
of travel; however, for most applications, this bodes well. Subway trips are not expected to 
be adequately matched by any method given that the trips take place underground. Look-
ing for route overlap for the subway is not a particularly informative task; instead, what is 
essential is ensuring high accuracy in assigning subway mode to subway trips.

Battery drain

One of the greatest challenges in designing an app that produces decent quality data is to 
not excessively deplete a phone’s battery when running. The battery drain imposed will 
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play a significant role in whether users run the app for long periods, but what level of bat-
tery drain might be ‘acceptable’ to respondents is not clear. The acceptable drain is signifi-
cantly affected by the day’s technology, as well as what respondents expect of their phone 
in terms of battery life. In our analysis, the battery drain expected from running the current 
generation of apps is examined.

While it is true that smartphone design—form factor (size, shape, and style), bat-
tery capacity and associated performance—is a rapidly evolving space, we would like 
to preface this section by stating that it would be incorrect to see the rapidly evolving 
situation with devices as an indication that the battery drain issue is solved only because 
time has elapsed since the data were collected. This is primarily because GPS remains a 
battery-intensive source of location information, while at the same time being the most 
reliable means by which frequently updatable and accurate location information can be 
obtained in any context (as long as there is a relatively clear line of sight to the sky). 
Wi-Fi and cell tower triangulation can provide some information on location, but do not 

Table 5  Battery drain per hour, linear model with mAh drain as dependent variable

Coefficients highlighted in green indicate lower drain associated with a particular app, while coefficients in 
red indicate high drain relative to the other apps in the assessment

Variable Coef. SE t-stat Variable Coef. SE t-stat

App iOS App-TravelTime iOS
App8 41.13 7 5.88 travMinApp8 0.59 0.34 1.76
App12 59.58 8.01 7.44 travMinApp12 1.84 0.35 5.27
App13 21.45 6.59 3.25 travMinApp13 0.7 0.38 1.84
App14 72.44 7.12 10.18 travMinApp14 0.15 0.38 0.39
App16 48.98 6.42 7.63 travMinApp16 1.49 0.36 4.15
App18 35.96 6.37 5.65 travMinApp18 0.96 0.37 2.61
App19 78.45 7.46 10.52 travMinApp19 0.13 0.37 0.35
App22 22.67 7.59 2.99 travMinApp22 0.47 0.35 1.34
App24 42.89 6.75 6.35 travMinApp24 1.08 0.35 3.11
App android App-travel time android
App7 8.26 5.77 1.43 travMinApp7 0.19 0.37 0.51
App9 24.37 6.58 3.71 travMinApp9 0.85 0.34 2.46
App10 20.45 7.51 2.72 travMinApp10 1.01 0.37 2.73
App11 9.47 6.87 1.38 travMinApp11 1.5 0.34 4.39
App15 13.01 6.45 2.02 travMinApp15 0.01 0.37 0.03
App17 20.86 5.92 3.52 travMinApp17 0.32 0.37 0.87
App21 13.68 6.67 2.05 travMinApp21 Omitted
App23 7.23 7.29 0.99 travMinApp23 0.73 0.35 2.11
Device OS
iPhone 6 7.51 3.24 2.32 iOS − 13.4 5.8 − 2.31
iPhone 5 Omitted Android Omitted
Nexus 17.04 4.22 4.04 Travel time (min) 0.22 0.26 0.86
Life One − 11.46 4.4 − 2.6 60 Hz Freq Error 22.71 14.77 1.54
Dash 5.3 3.21 1.65 Constant 16.74 4.08 4.11
Studio G LTE Omitted Number of observations 1040
Bad Handset 64.86 4.26 15.24 R2 0.61 Adjusted R2 0.60
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allow for precise information to be recorded about the movement occurring from one 
point to another (required for mode inference), nor do they provide reasonable accuracy 
away from dense urban centres.

To perform this analysis, battery recordings were taken on all phones throughout the 
data collection process. Of the 1063 battery drain recordings taken, 750 included epi-
sodes with travel. The remainder were recordings with an app running but no move-
ment (218), or episodes with no apps running (95). Since the phones have different size 
batteries, the apps were assessed by the battery consumption in mAh (milliamp hours) 
instead of percentage drain.

Given the many parameters involved in battery consumption, in place of simple sum-
mary statistics, a linear regression model was constructed. Attributes considered include 
both general attributes, such as operating system, device type and travel time, as well 
as app and travel time-specific attributes. Key app attributes, such as continuous log-
ging, frequency, and accuracy, are explored in Table 5. One of the variables included 
as a control was ‘Bad Handset’, as one of the refurbished iPhones exhibited poor bat-
tery performance irrespective of the app installed. Binary variables were tested for other 
devices, but this was the only one that proved statistically significant and to have a sub-
stantial effect.

Certain apps experience a much higher battery drain per hour than others. This drain is 
further broken down into that from simply running an app for an hour (having it active in 
the background—‘App##’ in the table) from that which is associated with the number of 
minutes spent traveling in a given hour while having the app turned on (“travMinApp##”).

There was considerable variation in collected and modelled values for the apps’ bat-
tery drain. Other than device-specific coefficient estimates, app-specific travel time 
coefficients proved to be significant in many cases, with a statistically non-significant 
generic travel time coefficient found once the app-specific ones were included. “60 Hz 
Freq Error” was also included as a control variable, as one of the apps was accidentally 
run at 60 Hz instead of 12 Hz on three separate days. The traces were modified pre-TDx 
by removing 4 of 5 points, while the effect on battery drain was captured by labeling the 
drain observations as being recorded on days where this error occurred, with the binary 
variable for this error included in the model.
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To have a clear understanding of the impact on battery drain of the actual travel pat-
terns of individuals in a given environment, reported travel data in the Toronto region were 
extracted from the regional household travel survey (TTS 2011) (Data Management Group 
2016). Then, the mAh drain over 12 h in the region is calculated for each app and shown in 
Fig. 10 (with the 25th percentile, 50th, 75th, and 95th shown). It should be noted that indi-
viduals who did not report travel on a given day were counted as 0 km and 0 min-traveling 
individuals, not removed from calculations. This pulled the average drain down but pro-
vided a more representative depiction of the actual travel patterns in the region.

As can be seen in Fig. 10, there are a few Android and iOS apps with very similar drains 
associated—17, 10 and 9 for Android, and 13 and 22 for iOS. This being the case, the drain 
associated with the most battery-intensive location logging apps running iOS is still con-
siderably higher than for Android apps.

For a variety of reasons, we believe that it is important to build an app for the 75th or 
even 95th percentile. First, because the actual travel times of individuals are likely to be 
somewhat longer than regional household travel survey-reported travel times as a result of 
trip under-reporting. Second, because periods of ‘motion’ where the device is not perfectly 
immobile, but also not legitimately engaging in a travel episode may lead to increased 
drain. Third, because travel time varies both between respondents, but also between days 
for a given individual. This last point is important, as any attempt to solve the battery drain 
issue by adding a pause button or accepting that respondents will at times manually shut 
down the location logging function means that there will not only be a bias in who runs 
the app for extended periods (fewer travelers with significant commutes experiencing more 
significant drain burden), but also what complete days of data are reported for the individu-
als who do report travel using the app (fewer days with large cumulative amounts of travel).

Looking, for example, to App 11 on Android, or 12 on iOS in Fig.  10, a significant 
difference is seen between the drain in terms of mAh for a long travel day from that of a 
short travel day over 12 h. The data used (the 2011 TTS, movement episodes only) have 
a median in-movement travel time of 19 min, a 75th percentile time of 56 min and a 95th 
percentile total travel time of 2  h and 26  min. If for those reported in-movement travel 
times additional time is added for unreported errands, dropping off children, going for a 
walk or even simply being away from known Wi-Fi hotspots, it is not difficult to imagine 
3 h or more of movement recording time being required at least once a week. It is neces-
sary to design apps for this potential drain.

One way to categorize apps broadly in terms of their accuracy and drain is to represent 
these attributes on a scatterplot, with a drain on the x-axis and accuracy on the y-axis.

Using the hypothetical trade-off matrix in Fig. 11, apps can be situated in one of the four 
quadrants. As can be seen in the Android and iOS portions of the figure, some apps with a 
lower drain outperform others.

• Apps (and processing suite combination) in quadrant 1 are the best, in that they lead to 
high rates of correct trip attribute inference with a low drain;

• Apps in quadrant 2 have high accuracies in terms of the trace and travel episode 
data they produce but lead to important battery drain. This indicates a large burden 
to respondents and potentially reduced number of days respondents would be willing 
to participate. With the advances in battery technology, however, these apps might 
become more appealing;

• Apps in quadrant three subject respondents to a low level of drain, but also collect data 
of lower quality—such apps could be used to identify longer distance trips, but would 
not be suited for the analysis of urban movement or mode identification;



2454 Transportation (2021) 48:2433–2460

1 3

• Apps in quadrant four should never be rolled out, as they provide lower quality data 
with significant battery drain.

Conclusion

The paper investigates the potential and limitations of smartphone apps as travel diary data 
collection instruments. The traces were collected using 17 different apps (Android and 
iOS combined) installed on 21 phones carried together at all times. At the same time, the 
ground truth information was recorded.

Results show that accuracy in terms of the trip ends detected is high in most cases, but 
performances are more highly varied for mode inference. This indicates that until signifi-
cant improvements can be made to mode inference algorithms, the collection of user-sub-
mitted validation data is required. This can take the form of real-time prompts when trips 
are detected or travel diaries to be completed at the end of the day. This is especially true 
in a setting where the mix of travel modes is diverse, as well as where multi-modal trips 
account for a significant share of overall travel.

While it may seem problematic to hear that purely passive apps are not ready for rollout, 
what we would instead conclude from the work presented and our experiences launching 

Fig. 11  Hypothetical trade-off matrix (above) and actual drain/accuracy matrices (below)—battery drain as 
a percent of device battery (x-axis) and its relation to combined correct % trip end and mode inference 
(y-axis), Android on left and iOS on right
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multiple apps, is that a few key pieces of information should be collected from respondents 
at first launch in any app-based travel data collection effort, in addition to location traces. 
These include (1) home and anchor locations, as well as (2) habitual and other commute 
modes. To these essential questions, we also highly recommend adding an initial launch 
question on (3) frequency of use of different modes and (4) trip prompts or diary valida-
tion for a handful of trips. The initial launch questions (1, 2 and 3), presented towards the 
middle of the “burden spectrum” in Fig. 12, add only a minute or two to the overall burden 
placed on users, comparable to download, install and setup time for sensor permissions, 
while massively improving the utility of the data recorded. A handful of validated trips in 
turn greatly improve the potential for accurate inference of mode used for travel episodes 
with passive location trace data alone, with an even greater improvement in the realm of 
discretionary travel as non-commuting trips will generate data which vary more greatly in 
attributes, while also being impossible to compare with reported commute modes through 
isolating comparable OD pairs.

As described in Harding (2019), users are not annoyed with answering a few simple and 
well-phrased questions. What they are annoyed with is being asked poorly worded ques-
tions, being prompted when not actually traveling and apps that drain their battery. And 
as the much greater challenge is recruiting respondents, not convincing them to answer 5 
questions instead of 1, we must reiterate that some information should always be collected.

Significant differences in battery drain were observed between Android and iOS apps 
overall, with no pronounced difference in trip and mode detection accuracy. Battery drain 
differences were much more significant among the iOS apps (modeled spread of 42.9%) 
than among the Android apps (modeled spread of 8.4%). Regarding accuracy, while both 
iOS and Android contained high performing apps, iOS apps were more consistent. The 
trend toward higher accuracy with iOS is something likely to remain for years to come, and 
should be kept in mind when preparing datasets; the same way a response may be labeled 
as having been given over the web or the phone, self or proxy reported, the OS on which an 
app was run should become a standard field for smartphone app user tables.

Further, results indicate that higher recording frequency and location accuracy lead to 
improved trip end and mode inference accuracies, as expected. The relationship between 
frequency, accuracy, and overall performance, however, is not linear in form, which is what 
one might have expected. More accurately detected travel is somewhat associated with 
higher battery drain. There is, however, a point beyond which more frequent logging at 
high accuracy does not improve performance, but merely leads to higher respondent bur-
den in the form of battery drain. This is indicative of the potential for a high performing 
app to be designed and tailored for regional travel survey needs that would perform well 
without causing excessive battery drain.

Fig. 12  Travel diary app burden spectrum
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Also, if the point is simply to get a better understanding of the prevalence of trip under-
reporting or of distances traveled and not reported, where very short trips or mode use is 
not of interest, it should be stated that apps have a great potential to be of use. Many of 
the problems exhibited by apps in our experiment result from short dwell times (minimum 
dwell times of 3 min instead of 10, 20 or more minutes), short distances traveled and dif-
ficult to distinguish modes in congested urban areas. If more information on these phenom-
ena are not of interest, then the TDx results for trip identification with 80–90% accuracy 
are a clear indication that apps can be a tool to provide the answer to these questions if the 
data are processed properly. It becomes a question of what the point of the study is.

We can get total distances traveled by personal vehicle by asking for odometer readings, 
but perhaps it is of interest to better understand the timing of under-reported trips, in addi-
tion to their aggregate sum of travel distance.

If the goal of the smartphone data collection effort is to serve as a satellite for a regional 
and national household travel surveys, where the core is collected via telephone or web 
survey,– as is the case in most regions of the world at this time-, the smartphone app should 
aim at being a multi-modal travel diary app to be run for 5 to 7 days, collecting informa-
tion in a mostly passive manner, allowing for mode of transportation to later be inferred 
(at least in the aggregate), and limiting the amount of short trips missed. Given the results 
obtained in our work, we would recommend the ideal app configuration would employ:

1. Constant recording if possible with low drain OR periodic logging of lower accuracy 
points to fill in gaps if high accuracy location recording is discontinuous;

2. Uniform or non-uniform recording frequency (neither appears to have a clear benefit);
3. Recording interval of 5 s while in motion (appears to be sufficient, with no clearly 

observable benefits of higher frequency);
4. Median recording accuracy of 15 or so metres (appears to be sufficient).

Such a survey then would allow for a greater understanding of trip under-reporting, 
active transportation demand, weekend and multiday travel patterns, trip chaining, travel 
time reliability, route choice and discretionary travel more broadly, to name the most obvi-
ous applications.

Finally, there is a problem with the lack of a standard data format or processing suite. 
This could mean that additional time and resources need to be allocated to merge datasets. 
More significantly still, differences in performance observed for the apps would be very 
difficult to control for over time.

One aspect of the data collection protocol that had a significant effect on the reported 
mode accuracy is that no within-respondent patterns could be observed in the travel data. 
As the modes used each day were random, there were no patterns to be observed, and it 
was not possible for processing suites which can learn and improve over time to apply 
these methods. Further, because of the design of the trip recording protocol, very short 
trips were only made a few times, with almost every single trip being at least 5 min long. 
As a result, the data produced can not be used to answer the question of whether purely 
passive traces can be used to differentiate, for example, an individual stepping into a store 
for 1 min before waiting for transit, from an individual who simply walked to a transit stop. 
There are ways to make use of sensor information like loss of GPS signal to better under-
stand these grey areas with short stops, but our work does not shine a light on this. Given 
many surveys, the Transportation Tomorrow Survey in Toronto notably, do not currently 
include such ‘incidental’ stops (stepping into the dry cleaner or convenience store on the 
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way to work, for example) (Malatest 2018), any improvement to the capture of short trips is 
an increase in the accuracy of reported travel.

The assessment should not be received as an indictment of smartphone apps, but a call 
for their roll-out to be carried out in a strategic manner that maximizes the likelihood of 
high-quality data being produced. The analysis in this paper does show that while smart-
phone apps are a promising tool for travel data collection, given their current performance, 
caution must be exercised in using the collected data. Some apps and approaches led to 
highly reliable travel diaries being reproduced from less-than-ideal traces (with shorter 
dwell times, higher randomness, absence of respondent preferences, limited learning from 
travel patterns, or using external dataset such as GTFS), while other apps and approaches 
are not fairing well in this specific testing context. Further, it is important to remember that 
the study has evaluated the 2016’s state of the art. As smartphones evolve and new ways to 
interact with them emerge, the app performances are expected to improve. That being said, 
this paper should remain a valuable resource, as it guides as to what to look for, and look 
out for, in the apps that are employed for travel data collection.
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