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Abstract
A sharing logistics platform for less-than-truckloads could increase efficiency in city 
pickup and last-mile deliveries under time window constraints by pairing (matching) truck 
bidders and last-mile logistics requesters. The platform will propose new tours based on 
localization data, travel time and time-window constraints; it operates a matching algo-
rithm to search for stable truck-sharing deals aiming to reduce the number of trucks in 
use as well as their operational costs. These sharing deals also reduce traveling distances 
and gas emissions. We simulate a model to understand the effects of fixed costs and vari-
able costs in the operations, we account for reductions, and we provide some managerial 
insights. Additionally, we perform sensitivity analysis to consider the effect of delivery 
time windows’ relaxation and additional travel distance constraints to evaluate the pro-
posed solutions under practical conditions.
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Introduction

City Logistics consists in searching for the optimal delivery of goods within cities, mostly 
using motorized vehicles while seeking to reduce its negative effects, such as gas con-
sumption, emissions, congestion and public safety. City Logistics is commonly related to 
last-mile transportation problems. Because of the current growth in e-commerce, retailers, 
wholesalers, and individuals have increased the number of deliveries to consumers as well 
as to small businesses. Several companies provide logistics services for a wide variety of 
customers, mostly in the form of customized transportation, logistics operations, and ware-
housing support. However, constant economic changes and sustainable logistics’ needs 
have pushed companies to expand their services beyond traditional logistics and to offer 
new value-added services. These changes have also triggered the concept of smart city 
(Eitzen et al. 2017). The consolidation of goods, also known as pooling, is one of the best 
practices when it comes to reducing costs and increasing synergy among truck fleets. Ben-
efits for truckers and shippers range from increased economies of scale, greater transporta-
tion offers, easier evaluation of offers, decreased collaboration costs, reduced gas emissions 
for transit systems, lower risks associated with transportation, and increased confidence 
with partners. Some strategic issues can equally see improvements, such as limiting price 
policy and market objective disclosures, and increasing fair competition without jeopard-
izing market prices.

Because of these potential benefits, creating a technological platform to solve an ‘on-
route pooling and consolidation of goods’ problem would seem to be a must; an online 
logistics trucking platform could provide individuals’ desirable solutions and a collective 
benefit. We could expect that an online logistics trucking platform could benefit from sev-
eral services, such as vehicle communication through Smart City’s sensors, command and 
control of city facilities, distress relief caused by incidents, or real-time alternative rout-
ing of trucks and/or goods. Besides, we could expect the matching and synchronization 
of customers and drivers to simplify intermodal operations, back-hauling, cross-docking, 
on route information (hazards warning), parking localization and payment, timing and 
delay forecasting, etc. This solution consists in strategically accepting pickup and deliver-
ies from new shippers in LTL (less than full load) trucks already on the road in order to 
allow a higher utilization of empty truck spaces. This innovative service is called ‘LTL 
Truck-Share’ and allows carriers to register and post their trucks on tour, and shippers to 
register their cargo characteristics. The platform should add (consolidate) as much cargo as 
possible in real time for LTL trucks. The purpose of this study is thus to simulate an LTL 
truck-sharing logistics platform and to propose new approaches to solve LTL transportation 
problems, based on the platform. The cargo ranges from small to medium-sized shipments 
and the solution is not limited to urban areas but also extends to the use of roads near urban 
agglomerations. In order to do so, our modeling framework is based on ‘Theory of sta-
ble allocations and the practice of market design’. This theory was developed by Lloyd S. 
Shapley and Alvin E. Roth and received the ‘Economics Nobel Prize’ in 2012. According 
to this theory, it is always possible to solve a Stable Matching Problem (SMP) and to make 
all marriages stable.

This paper is set out as follows: in “Literature review” section, the research begins 
with a panorama of trends and advances in transportation. In “Modeling framework” sec-
tion, the main part of this research, we present how the truck-sharing technological plat-
form operates in the context of a sharing economy, assuming a rational behavior of users 
with additional hypothesis. In “Results” section, we present an analysis of results, and in 
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“Conclusions and future research” section, we offer conclusions and remarks on the inter-
esting future of platforms and new avenues for research.

Literature review

Truck transportation is the most important form of goods transportation in the world. Nev-
ertheless, truck space vacancy remains high, a situation which has not changed consider-
ably over the last decade. For example, unloaded trucks in the European Union, measured 
by driven kilometers, dropped by only 2% between 2010 and 2017, going from 21.9 to 
20%, according to Eurostat (Eurostat 2018). In the face of this reality, City Logistics has 
become an active field of research (Savelsbergh and Savelsbergh 2016). City Logistics 
solutions have been applied in several cities, and their simulations represent an interesting 
means of studying the movement of goods and truck emptiness (Simo et al. 2018). Even 
‘Hyperconnected City Logistics’ has been proposed to allow the efficient design of sustain-
able urban transportation systems (Crainic and Montreuil 2016). Nevertheless, integrating 
short-term operations scheduling represents a huge challenge in City Logistics planning 
(Crainic et al. 2009).

On the one hand, the limited capacity of truck fleet sizes imposes a flow of empty or 
LTL trucks from the city going to satellite centers and urban distribution centers in a con-
tinuous way. On the other hand, City Logistics must consider reverse movements originat-
ing in the city that have a destination outside the urban perimeter, but often this is not the 
case. The reverse good movement can be associated with product returns, damaged goods, 
wrongly-addressed merchandise, new steps in the customization process and waste collec-
tion operations. Most of the time the movement of entering and exiting flows is imbalanced 
as fewer cities consider the operations of some small industries and/or fluvial ports in their 
cores. In addition, many companies consider return logistics planning as it is important for 
their business, but they do not consider the synergy available with the available outbound 
empty truck flow. As has been pointed out, the design balance of the service network in 
City Logistics operations is still an open field of research (Crainic et al. 2009).

Joint planning is one of the solutions for increasing sharing of logistic providers, which 
includes schemes such as ‘horizontal collaboration’ or ‘multi-agent decision models’ 
(Baykasoglu and Kaplanoglu 2011; Rakotonarivo et al. 2009). However, these schemes and 
their solutions must deal with pressures from frequent, small and short lead-time queries 
for shipments (Palmer et  al. 2012). Usually, efficiency can be increased when deadlines 
are long and when a centralized set-up is used (Kohn and Brodin 2008; McKinnon and 
Edwards 2010; McKinnon and Ge 2013; Zhou and Dai 2012). Possibilities of transporta-
tion sharing in long-haul cases have been studied by Islam and Olsen (2014), in particular 
for hinterland trucking. We note that sharing vehicle capacity can allow shippers to make 
fast deliveries when other regular shippers are present in the same delivery zones.

Several economies of scale (Nguyen et al. 2014) can be achieved in ‘time-based con-
solidation’ (in a rolling horizon or deadlines) as well as in ‘quantity-based consolida-
tion’ (geographically, by freight centers or terminals). In some cases, ‘consolidation’ 
strategies encourage carriers to cooperate/coordinate in each other’s delivery zones or 
even to act in combinatorial auctions (Mesa-Arango and Ukkusuri 2013). In practice, 
consolidation can be achieved through ‘urban consolidation’ (in centers or parking 
lots), ‘in-truck consolidation’ or ‘destination perspective consolidation’ (package deliv-
ery logistics among carriers). Nevertheless, a trade-off exists between transportation 
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costs reduction, pickup and delivery operations speed and detours and handling costs. 
Moreover, cooperation requires associating companies that normally compete against 
each other and that wish to maintain fast procurement as their differentiation tool. In 
City Logistics, Urban Consolidation Centers (UCC) are not always successful due to 
high operating costs which are tied not only to insufficient number of carriers willing 
to outsource trucks but also to the lack of supporting incentives and measures such as 
regulation and access fees (Mes et  al. 2014; Marcucci and Danielis 2008; Regan and 
Golob 2005). According to Macharis and Kin (2017), a new classification of innova-
tive concepts for sustainable City Logistics could be considered by the private sector 
to deal with these challenges. These concepts are awareness, avoidance, act and shift, 
and anticipation of new technologies. Other authors (Arvidsson and Pazirandeh 2017) 
suggest the evaluation of ‘mobile depots’ to support low emissions last-mile deliveries. 
Crowdshipping appears as one of the sharing economy models that considers deliver-
ies made by tiers on their current way to certain neighborhoods. Small businesses or 
individuals can trust them to complete their deliveries. The integration of individual and 
freight transportation is based on a matching process through online platforms between 
logistics requesters and transportation suppliers (truck bidders).

As mentioned, transportation offers opportunities for people willing to share their 
unused assets for profit or at least to reduce expenditure by Crowdshipping. For example, 
Uber connects car owners with users willing to pay for these assets in taxi rides. Walmart 
uses customers in part of their deliveries to other customers, providing faster deliveries 
at low cost with reduced fleet sizes. These operation modes can be operated by stores or 
be outsourced through third-party applications to guarantee a certain quality of service or 
even same-day deliveries (Dayarian and Savelsbergh 2017). More professional Digital Bro-
kerage Services exist like Cargo and Uber Freight, where low to medium-sized compa-
nies agree to transport items for short periods for a fee. The operation engages drivers in 
time slots with minimum payments for their work, allowing better back hauling, small and 
irregular hauling. Powerpool LLC, an extension to Uber Freight, considers renting trailers 
to carriers for drop-and-hook, resulting in shorter tows and reduced waiting time for load/
unload operations. This service could be well suited for inner city or local logistics. Again, 
but in last-mile delivery, companies like Roadie, Deliv and PiggyBee created platforms 
for retailer parcels delivery and individual car owners (Dayarian and Savelsbergh 2017). 
One of the expectations for drivers in Crowdshipping is set in a way to avoid the need for 
additional driving legs but for a routing that exploits their frequent travel arrangements (Le 
and Ukkusuri 2019). The Crowdshipping platforms can prefer drivers closest to the deliv-
ery route or offering low fees, short reacting time and/or have good reputation (Le et al. 
2019). Port Community Systems (PCS) are neutral and open electronic platforms accord-
ing to the European Port Community Systems Association, which connect information and 
services from various public and private organizations, allowing the synergy to produce a 
much wider service. PCA container terminals allow fast e-reports for containers data from 
transport carriers, forwarding agent and shippers. The container can then be picked up or 
be delivered faster, thus maximizing goods flow. In order to reduce costs, collaboration by 
vehicles sharing could allow shipments deliveries to several importers under pressure from 
physical space and time-window constraints, as is studied in Irannezhad et al. (2017).

Nevertheless, crowdshipping can have both favorable and negative consequences for gas 
consumption, gas emissions and traffic congestion (Simoni et al. 2019). Time windows or 
deadlines are complex to fulfill and impose difficulties to the offering process and when 
deals are achieved, they remain complex for the deliveries. In most cases, large distribu-
tions are unlikely to be successful despite being more attractive (Ermagun et al. 2019).



2405Transportation (2021) 48:2401–2431 

1 3

To popularize sustainable transport innovation in truck-sharing, policymakers and 
potential bidders should understand the factors affecting the willingness of probable users, 
as happens for other car-sharing paradigms (Klein and Ben-Elia 2016). As stated in Wang 
et  al. (2019), research in behavioral economics shows that cooperation can be reframed 
to solve social dilemmas. For example, taxi sharing has been analyzed for potential ben-
efits and drawbacks using agent-based modeling (Lokhandwala and Cai 2018). The effects 
of competition in the vehicle sharing business have also been explored, allowing agents 
to make decisions based on a discrete choice model that includes car-sharing alternatives 
(Balac et al. 2019). Other agent-based approaches attempt to infer transport demand from 
agent’s needs to perform certain activities at specific places and times, as pointed out in 
Drchal et al. (2019), which could be very interesting to facilitate synergies among carriers, 
as well as compatible hardware, compatible load characteristics and good zonal covering 
(Caldwell and Fisher 2008; Cruijssen et al. 2007; Leshchynskyy 2013).

Similar to those studies, prior research in transportation sharing shows that even in 
favorable environments and with good business opportunities, collaboration requires avoid-
ing opportunistic behaviors and maintaining high levels of trust. Peetijade and Bangviwat 
(2012) using real data gathered from non-associated truckers, account for the possible sav-
ings in transportation costs when several independent trucks are managed considering the 
diminution of empty trips. Zolfagharinia and Haughton (2014) presents a model that, in 
Advance Load Information (ALI), considers implementing a dynamic rolling horizon con-
text to include trucks returning to base or the empty repositioning of trucks. It is also possi-
ble to consider in these models the short-term problem (distance minimization) vs the long-
term goals (future requests for pickups) on the same day, showing the relevance of having 
a company culture based on a long-term vision based on profits from short-term informa-
tion. These margins get reduced when advance information is much extended and becomes 
expensive. Prior studies have also highlighted the role of governmental involvement as a 
trust agent and facility provider. Other challenges behind collaboration are ‘transportation 
costs’ allocation, which is essential to determine transportation pricing (Toptal and Bingöl 
2011). A more compressive study on transportation cost allocation can be found in Gua-
jardo and Rönnqvist (2016) and Caprara and Letchford (2010).

Optimization may work well for one agent but become ineffective for other agents 
participating in the collaboration (Agarwal et  al. 2009). When centralized optimization 
is ineffective or too complicated, Cooperative Truckload Delivery (CTLD) (Hezarkhani 
et al. 2016) can assure agents’ self-interest through the use of several logistics providers, 
as well as their equipment and delivery requirements. In that case, the optimal delivery 
plan normally considers empty truck repositioning and slog warehouses and clients, and 
cost reductions are proportionally allocated based on performance measures. Despite this 
simplicity, collaboration outcomes are not necessarily fair nor consider the competitiveness 
of individual companies. For example, delivery shares do not always satisfy a given CTLD 
situation (Hezarkhani et  al. 2016). Besides, revenue distribution is complicated because 
the proposed agreement does not hold all the desired properties, even for a 2-agent case, or 
because supplementary optimizations for allocations are needed.

Moreover, under specific restrictions, or when cost and revenue are not easy to split, 
it becomes difficult either to find an agreement or to keep all the participants within the 
agreement. The most desirable properties would thus be the existence of a ‘no-disengage-
ment incentive,’ which intends to discourage participants from looking for more lucrative 
associations. Another more complex and important property is the ‘independence of irrele-
vant deliveries property (IID)’, which seeks that individual earnings from the coalition only 
consider the resources involved or engaged in the transportation solution. In that sense, 
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individuals do not have incentives to inflate contributions or to overdo the resources to 
diminish the competitiveness of small players.

A useful KPI for IID is the “average minimal cost of the delivery (requirements) divided 
by the full distance (of delivery)” (Hezarkhani et al. 2016). A lower average implies rev-
enues at lower prices. Future cooperation could alter the costs of the network, so a situation 
with multiple agents requires a complex balance to keep equivalent competitiveness of the 
agents after the sharing. These combinatorial paradigms need sharing costs methods and 
concessions to find good-quality solutions. In Dai and Chen (2012), the particular problem 
of pickup and delivery is studied and three methods for revenue allocation are proposed.

As pointed out in prior literature, horizontal cooperation in logistics (Cruijssen et  al. 
2007) must deal not only with partner selection and revenue sharing, but also with infor-
mation sharing, protection and real-time decisions. From a practical perspective, only an 
approximate real-time solution is needed because platforms will simultaneously solve 
complicated constraint-satisfaction problems (cargo affinities, origins, destinations, sizes, 
weights, time window precedency, etc.) on a small number of users. Once the solution is 
accepted, a more detailed routing problem can be solved. Goods could be tracked precisely 
from one position to another and thus transparency will avoid unethical behaviors. We 
argue that logistic collaboration through the online platform could be solved as a matching 
problem and market design. To our knowledge, there are no studies that tie online sharing 
platforms with matching theory in order to introduce rewards that help to find solutions that 
simultaneously attain cost reductions and satisfy the needs of trucks bidders and pickup-
and-delivery requesters. As a result of the matching solutions, it is possible to reduce travel 
distances tied to gas emissions. Our contribution is a numerical simulation that shows how 
the rewards operate on stable matches and the effect on reducing the travel distance under 
several conditions of fixed costs and variable costs. The results also show the phenomena 
of association even under harsh economic conditions in variable costs.

Modeling framework

A Stable Matching Problem consists in finding a stable matching between two equally-
sized sets, given an ordering of preferences for each element in the sets. The most common 
example consists of: given a group of n men ( M ) and n women ( W ), find a suitable’ match-
ing. Participants can rank members of the other sex and list the members through a best-to-
worst order of preference. Matches are possible between the two groups.

Stable matching is defined as given m,m� ∈ M and w,w� ∈ W , with w ≠ w
′ , a match-

ing is stable when there is no match (m,w) by which both m ∈ M and  w ∈ W would indi-
vidually be better off than they currently are, i.e. there is no incentive for any pair of par-
ticipants to undermine the assignment: e.g. (m,w) dominates any pair 

(

m,w′
)

 and any pair 
(

m
′,w

)

 . The algorithm that allows achieving a stable matching can be seen in Fig. 1 (Shap-
ley 1962). This theory has allowed the development of similar algorithms for finding super-
stable and strongly stable cases, if any. Nevertheless, stable does not imply optimal for all. 
For instance, the solution is optimal for the suitor but not for the reviewer (Shapley 1962) 
and the algorithm can be manipulated by participants using faked preferences.

Regarding market design, it is understood as a place where bidders and request-
ers usually interact for information, goods or services. Anything can be valuable for 
trade as long as it follows the prevalent demand and the subjacent offer. The market is 
summarized as the aggregation of all buyers and sellers in place. Trade mechanisms 
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are rules and operations procedures to which markets must comply, such as price fixa-
tion, price notification channels, deal engagement, transaction or exchange security 
and logistics for delivering goods (Roth 2007). To optimize market functioning, it is 
expected that markets must be self-regulated by perfect competition. In established 
markets, unstable mechanisms are abandoned because it is unsustainable to keep the 
benefits of some actors at the expense of others. Moreover, the lack of market optimal-
ity can also play a role in dismissing the market. Therefore, in order to achieve a high 
degree of optimality, a third party is usually needed to balance smaller participants. On 
the one hand there are regulatory institutions, and on the other hand, there are the pub-
lic, managers, workers, dealers and entrepreneurs (Roth 2018). Market design is also 
used in other fields such as game theory, computer science and marketing (Roth 2018). 
There are many specific matching market problems that have been studied in the past 
50 years such as the hospitals/resident’s problem, the hospitals/resident’s problem with 
couples (Roth 2018), the college admissions problem among others which are mostly 
focused on allocations and assignments. Stability and incentives are some of the most 
interesting topics in these studies (Roth 2018).

The theory of stable matching is applied to find feasible matches, given the short 
time window to decide. In our model, we have considered a matching model that is 
derived from the classical model where two sets, bidders and requesters, exist. A sta-
ble match exists when there is not another match between a bidder and a requester 
by which both would be independently satisfied. Doubtless, every match is perfectly 
distinguishable in terms of its beneficial partnership and there are not two or more 
matches that have identical demands. Both the truck bidder and the logistics requester 
input their initial truck warehouses and their pickup and delivery sites with their 
respective time windows. The platform will check the feasibility of the trips and will 
estimate the fixed costs for the trucks as well as the variable costs, which are mainly 
gas consumption and drivers’ hourly wage, based on the projected travel distance to 
the warehouse.

Fig. 1  Gale–Shapley: differed acceptance algorithm (1962)
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Modeling approach

The truck-sharing logistics platform simulation is developed in 4 phases, as shown in 
Fig. 2. A simulated sharing logistics platform will perform all the basic features of reg-
istering clients, shippers and carriers in the simulation. Then the system will allow agents 
to register ‘origin to destination’ needs and offers using a generation algorithm. The plat-
form will consider a journey of pickup-and-deliveries and an algorithm will seek to reduce 
the number of trucks and thus reduce emissions by matching clients with compatible time 
constraints. In the simulation, another algorithm will consider the most suitable matches, 
appealing to the rational behavior and to the theory of stable allocations and market design. 
For the match, the shippers have to sign a contract with the other carrier which is on the 
pod. We aim to show that the platform operation could achieve important efficiency, 
reducing cost and gas emissions for last-mile delivery, which opens new opportunities for 
research particularly in restricted routing problems. The Truck Sharing logistics platform 
thus allows contact between truck bidders and logistic requesters. In this platform, the bid-
ders offer their available spaces in their trucks in a zone or neighborhood for pickup and 
delivery operations. The requesters need to do pickup and delivery within a time window 
known in advance. The platform is able to match compatible goods with compatible trucks 
in order to make the pickup and delivery operations in the specific time frames. The plat-
form is not intended for dangerous goods, live animals or food liquids but for most urban 
common goods in Type 1: general cargo (packed products), like packages, baskets, boxes 
barrels, bags, bottles, crates and pallets. We consider compatible goods those that fit in the 
truck’s empty space, given the truck dimensions. The algorithm discriminates size (length, 
width, and height), quantities and weights for goods and will check the geometrical and 
technical restrictions in the available space. The bidders must write this information in the 
platform. Type 4 (refrigerated transport) has its own requirements and regulations to com-
ply with using extra constraints that can also be analyzed under these criteria for accept-
ance or rejection. We did not include these analyses on the algorithm to not distract atten-
tion from the model. The sharing logistics platform is capable of finding several matches 
between offers and requests in almost real time (in the same journey), so agents would need 
to make decisions, either accepting or refusing the matches, in a reduced time frame.

The basic premise behind the algorithm is that truck bidders have a default solution, 
which corresponds to making their pickup and delivery alone. Therefore, logistic request-
ers can always rely on renting a truck at full price to make their delivery. Besides, the 
algorithm considers whether there are available trucks to hire (bidders) and customers with 
transportation needs. Both parties are willing to inform their needs in a competitive market, 
which means that there is always a risk that an early deal could fall apart because another 
better deal has appeared. Therefore, finding good deals for both parties could be very cum-
bersome because both sides can act opportunistically. A simple way to characterize the 
performance of a deal is through its cost, i.e. the lowest cost will always be preferred. We 
assume that every participant will evaluate the performance of a deal and will prioritize 
the most interesting one. The stable matching algorithm devised for the problem of city 
delivery thus evaluates several possible interactions to propose deals that are convenient 
for both parties in terms of the distance, which reduces variable costs but also implies the 
decrease of one truck and the reduction of fixed costs.
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Fig. 2  Flow chart for the numerical simulation
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Algorithm development

An important issue is how to allocate the sharing cost of the association. The cost-sharing 
formula considers a repartition based on the original travel distance for every party. The 
match implies a new routing with a different total distance. The sharing cost is thus the 
performance indicator for the truck-sharing deal. This value is important to help the deci-
sion process. As every party can evaluate all the possible deals, the logistics platform can 
use all these values and prepare a ranking, for every participant, from the lowest sharing 
cost to the highest sharing cost (the most interesting deal to the least interesting deal). The 
algorithm will use these ranks to evaluate a stable match and to evaluate the gain from 
the original situation to the matched situation. Deals positioned at the end of the rank will 
not be considered because both parties will only accept deals that provide at least a mini-
mum saving, proportional to the original cost. In the other cases, the bidder or the requester 
will keep its current solution, which is to use its own truck or to rent a truck respectively. 
The lowest minimum saving, proportional to the original cost is given by a parameter α 
( 0 < 𝛼 ≤ 1 ). This implies that at least the shared cost must be lower in α times to the origi-
nal cost, as shown in (1) and (2).

In the Gale–Shapley, Differed Acceptance Algorithm “for solving the matching prob-
lem”, there are suitors and reviewers that have different roles in the matching. However, in 
the problem that we aim to solve with the platform, it is difficult to consider an active suitor 
and a very passive reviewer. Both logistics bidders and logistic requesters could be equally 
tempted to propose and review different proposals interactively. The devised algorithm will 
thus try to find a stable match that creates a benefit, such as a reduced cost sharing.

The purpose of the algorithm in Fig.  3, is to generate a match between bidders and 
requesters. In the algorithm, the first loop chooses a truck bidder (or a truck requester) to 
find a match following the rank from very interesting (low sharing cost) to less interesting 
(high sharing cost). If the opposite partner is available, or the opposite partner is willing to 
break its current deal, the match would be possible, but if this is not the case, it will walk 
to the next available partner following the ranking list. It is important to notice that the 
algorithm allows an already-engaged opposite partner to evaluate a new proposition from a 
truck bidder (or a truck requester) and thus to drop its current match in order to generate a 
new one. When it is not possible to continue with this process, the loop is broken.

In the second loop of the algorithm in Fig. 3, the matched couples can continue to pro-
pose to other opposites only if they have passively accepted a proposition, so they have a 
chance to improve their condition following their ranking list. This loop finishes when any 
participant passively matched has proposed to many opposites in its rank list. Some par-
ticipants could remain unmatched at the end of the loop. The main loop keeps rotating the 
flow between matchings and challenges cycles. In the worst case, every participant would 
remain with its default solution and the algorithm will always finish.

In the end, the algorithm will have matched deals with very close delivery points (from 
truck bidders and logistic requesters). In other words, the matching algorithm will find 
shortest routing from truck bidder to logistics requester or will default to keep them as sin-
gles in the worst case, which is the initial case.

In a real situation, the devised algorithm will have limited time to calculate, as pickup 
and delivery situations are constrained. Bidders and requesters will receive a detailed origin 
to destination list with the ordering of the visits. With this information, the routing process 
is simplified because every arc in the path can be routed with the current available technol-
ogy. The platform does not consider complex routings, such as those that consider complex 
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solutions for the Travel Salesman Problems, because the ordering of nodes is known in 
advance. We consider the number of pickup and delivery locations in practice as very low, 
3 or 4 locations at most. The reason is to model common city logistics needs, where there 
are a limited number of trucks, high concentration of populations and stores, dense vehicu-
lar congestion, simple tools for handling, few parking places and tied schedules for servic-
ing, which naturally force coalitions’ changes in real time. Most vehicles will have plenty 
of free space and will work under considerable time slacks, providing their operations in 
a small district with few free parking spaces. Therefore, there is almost no need for pub-
lic enforcing sharing rules or truck sharing incentives. More complex delivery problems, 

Fig. 3  Stable matching algorithm for bidders and requesters



2412 Transportation (2021) 48:2401–2431

1 3

completing dozens of transactions, will also be related to flexible scheduling with prob-
able trans-docking facilities to multi-depot situations and long trucking hours. The plat-
form shields bidders and requesters from knowing details of each other. Indeed, the bidders 
and the requesters will receive only a matching list with approximate zones and timings in 
order to avoid providing any information that could give them a market advantage.

An interesting issue is how to improve cost-sharing benefits considering the distance 
that every user face before a truck sharing. This is important to avoid behaviors where 
truck bidders are too interested in traveling long distances to fulfill logistic requests, paying 
for the ride at the expense of the logistic requester that in the end will perceive the behavior 
as unfair. A simple way to avoid this behavior is by accommodating the rewards model to 
discourage excessively long trips making the extra distance also a charge of the opportun-
istic user.

Reward and ranking system to reduce gas consumption

Truck bidders and logistics requesters must comply with a reward system imposed by the 
platform that helps to limit (feasible) long hauls and to rank Truck Bidders and Logistics 
Requesters. As mentioned before, for simplicity we consider Fixed costs = rental cost and 
Variable costs = fuel costs ∗ distance . We introduce the following notations in Table  1. 
We note that usually d

T
≥ d

s
+ d

r
 , but it would be possible that d

T
≈ d

s
≈ d

r
 when a match 

is very favorable. In the scheme, we note that the ranking procedure is the sum of the fuel 
cost for the tour and the renting cost for the truck.

The shared costs for Truck Bidders and Logistic Requesters are based on the ranking; 
they can be expressed in (1) and (2):

Table 1  Notations

Sets

S Set of truck bidders
R Set of logistics requesters
d
s

Truck bidder travel distance
d
r

Logistic requester travel distance
d
T

Combined truck bidder-logistic requester travel distance

Initial routing Costs (variable costs + fixed costs)

C
s

Truck bidders costs
C
r

Logistic requester costs
T
i

Combined costs (for both, truck bidder and logistic requester routing)  
T
i
= d

T
∗ variable_cost + fixed_cost, ∀i ∈ R ∪ S

Shared routing Costs

S
S

Truck bidder shared costs
S
r

Logistic requester shared costs

Parameters

� Threshold benefit, 0 < 𝛼 ≤ 1
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Truck bidders shared costs is the portion of Combined Costs that is related to the Com-
bined Truck Bidder-Logistics Requester trip. The formula implies that the longer the indi-
vidual distance the bigger the share of the cost. The formula also considers T, which is the 
combined distance for the route. In the case of very good deals, hopefully this combined 
distance would be very low and the shared beneficial for both parties, so related to half, by 
example. Therefore, there is enough margin to accomplish for a minimum absolute savings 
given by � . All possible combinations among Truck Bidders and Logistics Requesters are 
set in the ranking lists.

It is also important to consider that in most cases users will be interested in matches that 
produce a tangible cost–benefit, so they would impose a threshold saving. In this case, this 
threshold benefit is chosen, � = 0.1 which corresponds to 10% of the routing costs (e.g. the 
costs of single riding before any match). This threshold saving is supposed to cover any 
other expenses for using the platform and it was chosen to represent a reasonable amount. 
We can have that the parameter is as 0 < 𝛼 ≤ 1 for most practical cases.

In this ranking-reward system T
i
= T(d

s
, d

r
)
i
,∀i ∈ R ∪ S will be minimized among all 

the participants that are available, i.e. participants will first try to match with other partici-
pants that minimize the total distance in increasing order. In this minimization, the dis-
tances consider the ‘origin’ and ‘destination’ points and also the warehouse. For example, 
for a bidder s, this is similar to get min

s∈S

{

d
s
T

(d
s
+d

r
)
, if s is available

}

.

Cost estimation for a journey

The total cost estimation can be resumed in Fig. 4. For a given pair of parameters (“fixed_
cost”, “variable_cost”), after applying the matching algorithm, the effective number of 

(1)Suitor Shared Cost ∶ S
s
=

{

d
s
T

(d
s
+d

r
)

if
d
s
T

(d
s
+d

r
)
≤ � C

s

No match else.
,∀s ∈ S.

(2)Reviewer Shared Cost ∶ S
r
=

{

d
r
T

(d
s
+d

r
)

if
d
r
T

(d
s
+d

r
)
≤ � C

r

No match else.
,∀r ∈ R.

Fig. 4  The total cost estimation considers the sum of FC (parametrized by “fixed_cost”), associated with 
insurances, leasing or renting trucks and VC (parameterized by “variable_cost”), usually characterized by 
fuel costs and depreciation. Different parameters result in significant differences. A reduction in the total-
cost is the combination of a reduction in trucks and the reductions in routing distance
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Ridding-Trucks (trucks on road) is usually lesser than the original: every feasible match-
ing would reduce by one the total number of used trucks and the FC (Fixed cost sum) is 
proportional to the number of effective trucks circulating. Also, the routing distance is the 
combined routing for bidder and router in a stable match, but all the bidders and requesters 
(without a match) will kept their original routing distance. The VC (Variable cost sum) cost 
is proportional to the routing distance, which is usually lesser. The total cost is then the 
sum of FC and VC. We want to take advantage of these reductions in costs.

There are particular cases for very low fixed costs and variable costs. When fixed costs 
and variable costs are 0, the shared costs are also 0 for any possible feasible match. The 
ranking mechanism cannot make distinctions among users. The stable algorithm would ini-
tially choose at random. This case is not reported. When variable cost is 0, for any fixed 
cost bigger than zero, every user will be willing to share. The number of matches will be 
the maximum attainable for truck bidders and logistics requesters. In the converse situa-
tion, when fixed cost is 0, and the variable cost is bigger than 0, the total costs increase 
only with the distance. To obtain cost reductions, all matches must have many points in 
common, so the offered truck almost does not de-route from the unmatched cases.

For a given set of parameters “fixed_cost” and “variable_cost”, let us consider an exam-
ple with 5 bidders and 3 requesters, as shown in Tables  2 and 3. We will consider that 
only the 1-A, 2-B and 3-C have stable matches, in the begging situation. They present 

Table 2  Initial situation with 5 bidders and 3 requesters in independents routes (no sharing)

The column CF shows the fixed costs and the column CV shows the variable costs for the independent 
routes. Feasible matches would be 1-A, 2-B and 3-C, Bidders 4 and 5 would not have matches. The sum of 
independent costs for all cases is presented in the column Row Sum Total Costs

Bidders 
trucks

CF Distance CV Requesters 
trucks

CF Distance CV Shared case Row sum 
total cost

1 10 50 250 A 10 55 275 545
2 10 60 300 B 10 65 325 645
3 10 70 350 C 10 75 375 745
4 10 91 455 465
5 10 105 525 535

Table 3  Situation after 3 matches

Now 1-A, 2-B and 3-C have shared routes. The column CF shows the fixed costs and the column CV show 
the variable costs times the distance for the shared cases. Bidders 4 and 5 do not have matches and continue 
having the same values than before. The updated sum of costs is presented in the column Row Sum Total 
Costs

Bid-
ders 
trucks

CF Distance CV Request-
ers 
trucks

CF Distance CV Shared distance CF CV Row sum 
total cost

1 A 94.5 10 472.5 482.5
2 B 110.0 10 550.0 560.0
3 C 124.7 10 623.5 633.5
4 10 91 455 465.0
5 10 105 525 535.0
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expensive routes as shown in the “Row Sum Total Costs”, which represent the sum of Total 
Costs and Variable Costs, column in both tables. After the matching process there is a 
benefit expressed in the “Row Sum Total Costs” as variable costs and fixed costs have been 
reduced because of the sharing, as presented in the Fig.  4. All the process relies in the 
algorithm for stable matching. The next step is determining how to assign savings from a 
feasible match to the algorithm, as shown in (1) and (2), as a weighting repartition based 
on effective traveled distance. 

In summary, the general problem of finding compatible pickup and delivery partners 
with time delivery constraints is not as complex. For this reason, it is possible to use a 
greedy heuristic capable of solving the problem: the use of the truck for a period [Si, Fi] 
as an interval. A request and an offer are compatible if they do not overlap and if there is 
enough time to go from an Origin to a Destination, as shown in Fig. 5.

The platform simulation

At the beginning, several parameters are defined to initialize the main variables of the sim-
ulation, such as the size of the plane, the number of bidders’ trucks and requesters’ trucks 
and the costs. The simulation consists in considering a journey in a city where there are 
two vehicle warehouses located far from downtown. In this city, most pickup and deliv-
ery operations will be taking place in the city center. Trucks begin their routing journey 
performing several scheduled pickups and deliveries. The route to the pickup and delivery 
site is done under feasible conditions of speed, distance and time schedule, with consid-
erable time slacks. The problem generation algorithm simulates feasible cases of deliv-
ery trucks and possible requests, because this is a very general delivery problem in cities. 
To make plausible comparisons, an identical number of simulations is done changing two 
main parameters, fixed costs and variable costs. The simulation reports all the feasible sta-
ble matches. With this information, it is possible to estimate the total cost of the operation 
for bidders and requesters along with the reductions. The total cost is the sum of cost for 
the trucks in match and all the trucks without match. A match always implies the reduction 
of one truck. A large number of matches implies an important reduction in trucks, but the 
main impact is achieving higher savings because of the existence of both reductions, gas 
consumption and trucks’ utilization. To consider the process during the simulation, we can 
see the algorithm in Fig. 6, which presents an estimation of the central tendency of total 
cost for every pair of fixed and variable costs.

Time

Truck TruckRequest Request

Request Request

Truck Truck
Current trucks’ tour

Request Trucks’ tour

Resul�ng Trucks’ tour
with added requests

Truck segment �me
Request segment �me

Slack �me

Fig. 5  Pickup and delivery with fixed timing as an interval scheduling problem
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The algorithm also considers that truck bidders and logistics requesters follow a rational 
behavior and thus they select the most convenient alternative from the list proposed by the 
platform. To simulate this process, an ad-hoc modification to the classical Gale–Shapley 
algorithm (already presented in Fig. 3) allows different numbers of bidders and requesters 
and at the same time, it allows randomly considering everyone as a suitor or as a requester. 
At the end of the iterative process, not everyone is matched, but every match is stable. 
The single ones remain with their original trip. The natural match has a truck bidder and a 
logistics requester together on a trip, which is costly but less costly than both doing inde-
pendent trips. These costs are allocated in such a way that they respect the proportion of 
their single trip distances. We note that neither user has interest in lying in terms of the 
location of their initial truck warehouse, because the most preferable match considers 
reductions in distance for both the bidder and the requester, so fake information reduces the 
possibility of finding interesting deals, if any, and it will not improve the benefits of doing 
it. Because the cost reduction is mainly due to reductions in trucks, in the transported dis-
tance and/or in truck emptiness, the model has a direct implication in reducing greenhouse 
gases and vehicle congestion.

Figure  7 presents an example in which Truck 1 has a working journey between 
[04:30, 23:00]. We have this time range to consider for the wider operating conditions 
for a truck rental service. It begins from warehouse A at [04:30] and must pickup at 
point B at [18:06] and deliver at 2 different sites, point Cat [18:06] and in point D at 
[19:08], when it should come back to warehouse A at [23:00]. Truck 1 can be offered to 

Fig. 6  Algorithm which estimates the median of total-cost for “n”  replications, given a pair of fixed cost 
and variable cost. In the algorithm, every replication is very unpredictable because of the random pick-and 
delivery points generated each time, therefore the median is chosen to represent the central tendency of 
values
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do other pickup and delivery operations during the journey. Under these circumstances, 
it could be possible to find a requester that will ask for a pickup and delivery in the slack 
time available. In the case of Fig.  8, a requester could think about renting a Truck 2 
from a warehouse at point F, to pickup goods from point B at [11:30] to deliver to point 
E at [14:48]. Because the need happens in the middle of the working day, a new solution 
can be found by re-routing Truck 1, and still respecting the schedule, to do the pickup at 
point B and the delivery at point E, as shown in Fig. 9. Then the final route for Truck 1 
consists in the sequence of points A–B–E–C–D–A. However, in order to conclude that 
this case is fair and efficient, a numerical simulation within the platform is required.

Route 1: A-B-C-D-A

Truck 1

End [23:00]

Delivery [18:06]

Pick [19:08]

Delivery [11:31]

Begin [04:30]

A

D C

E

B

F

Fig. 7  Original routing example. Routing for Truck 1, from warehouse to pickup and delivery points, and 
coming back to the warehouse

Route 2: F-B-E-F

Truck 1

End [23:00]

Delivery [18:06]

Pick [19:08]

Delivery [11:31]

Delivery [14:48] Begin [04:30]

Truck 2

Pick [11:31]

A

D C

E

B

F

Fig. 8  Truck 2 pickup and delivery operation on one site, from warehouse F
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The numerical simulation

A simulator was developed in Python 2.7 and NumPy, coded to use independent parallel 
threats in a server machine with a CPU  Intel®  Xeon® E5-2670 v3, 12 cores at 2.60 GHz, 
64  Gb Ram. The machine used Microsoft Windows Server 2012 R2 Datacenter [V. 
6.3.9600]. For the simulation, the cost values were set as integer numbers to simplify the 
analysis. For the fixed costs, the range was set between [0, 60] monetary units and the 
variable costs in the range between [0, 10] monetary units. A time window of 30 min was 
applied to enforce any delay. We consider a total of 40 bidders’ trucks and 40 (additional) 
requesters. We consider a threshold benefit ( � = 0.1 ) of 10%. The dimension was settled in 
the rectangle to allow a rectangle of 3:4 to allow rides lesser or equal to 50 km in the long-
est side. The number of pickup/delivery points ranges in [1,4] based on the information 
from the truck industry.

The simulation took approximately 12 h. In the simulation, an equal fixed number of 
delivery trucks (the bidders) and delivery requesters is chosen to compare the behavior 
of the main independent variables, the fixed costs and the variable costs. We note that the 
number of bidders (offers) and requesters is kept constant during the simulation, as the 
generator considers a uniform distribution of pickup and delivery points in a rectangular 
Euclidean plane and also contemplates a uniform distribution of timings to be considered 
as the time windows for pickups-and-deliveries. The journey is estimated at 8 h of work for 
the timings. The simulation also studies 4 predetermined warehouses near the corners of 
the Euclidean plane. The simulation ponders that the requester can deliver the products by 
using its own fleet of trucks (or renting a truck) and consequently it will perform the rout-
ing of its own vehicles starting from the warehouse, followed by the pickup and delivery 
schedule, and returning the truck back to the warehouse, so the total cost considers all the 
variable and fixed costs.

Final Route: A-B-E-C-D-A

Truck 1

End [23:00]

Delivery [18:06]

Pick [19:08]

Pick-up and Delivery [11:31]

Delivery [14:48] Begin [04:30]

A

D C

E

B

F

Fig. 9  Truck final routing including new pickup and delivery points from warehouse A
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Results

Our analysis aims to showcase to what extent the matching between the bidders and 
requesters could reduce traveling distances and the number of trucks required to deliver all 
products. The points (dots) in the following figures represent a journey simulation with an 
identical number of bidders (40 trucks) and requesters (40 additional trucks).

Figure 10 presents the number of trucks on road after running the matching algorithm, 
i.e. the trucks that will do the pickup and delivery, which includes the trucks in a match and 
the trucks from bidders and requesters that could not find an interesting match. As the fixed 
cost increases, it is very likely to find suitable matches, because the fixed cost becomes 
more and more important; then the truck company is inclined and willing to partner with 
another truck company to share the burden of this high cost. This implies that bidders and 
requesters will accept to deliver products (deliveries) that are distant. However, when the 
variable cost increases, they are more inclined to choose deliveries to customers who are 
located in the closest locations to reduce the total traveling distance. The number of feasi-
ble matches is small because any connecting link to a new site would be too expensive and 
will not leave profit for the cooperation, as can be seen in Fig. 10.

The points in the mantle are the median of several simulations. When the variable cost 
is relatively low, the number of trucks used to deliver products gets its minimum value and 
ranges between 45 and 55 out of the total 80 available trucks. When the variable cost is 
large, the number of used trucks for deliveries is higher and fluctuates between 70 and 80.

In Fig. 11, it is possible to see a plot of the Total Cost split as Fixed Costs and Vari-
able Costs. This total cost consists in the variable costs and the fixed costs for all the 

The mantle plot represents the median of the number of trucks in the Z axis for several paired values of fixed-
costs and variable-costs.

Fig. 10  Relation between # of trucks on road based on fixed cost and variable cost
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pickup and delivery operations. The points in the mantle are the median of several simu-
lations and it shows the behavior of the total cost of matched and non-matched solu-
tions. Total cost increases linearly with the fixed cost, but even more with the variable 
costs. We note that for very low fixed and variable costs, there is almost no incentive to 
share routes and collaborate with other companies. We have arbitrarily imposed that the 
savings of the match must be at least 10% of the actual cost. When the value of the vari-
able cost is equal to 3 there is a change in slope, which is given by the sudden increase 
in trucks used for deliveries.

As the variable cost increases, fewer and fewer profitable solution matches are pos-
sible. The profitable matches would occur where warehouses and pickup and delivery 
points are very close to each other. On one side, the average distance would be very high 
for very few cases because the bidder and the requester have almost identical pickup and 
delivery points, and these points could be quite separated. In those cases, the reduction 
in the distance of the solution match is high. We note that this odd situation happens 
more frequently with lower fixed costs, as the incentive to share is even lower, so the 
case requires that bidders and requesters will use similar routes. Nevertheless, the ten-
dency remains constant considering all the simulations.

Figure 12 presents the total travel distance for all trucks in the road divided by the 
number of trucks in the road, so it is an average. This distance is estimated for every 
fixed cost and variable cost. Figure  12 shows the relationship between the fixed cost 
and variable cost vs the average distance traveled by used truck to deliver the products. 
When the variable cost is low, the average distance per truck is very high as the compa-
nies are willing to travel further to deliver products. On the other hand, when variable 

The mantle plot represents the Total cost of transportation for all the trucks in the Z axis, considering several 
paired values of fixed-costs and variable-costs.

Fig. 11  Total cost of trucks transportation based on fixed cost and variable cost



2421Transportation (2021) 48:2401–2431 

1 3

costs are high, the average traveling distance per truck is very low and trucks deliver 
products to closer destinations, as the price is high.

Sensitivity analysis considering delays and distance constraints

The number of possible matches depends on the traveling distances between the bidder 
pickup and delivery points as well as to the requester points. A first sensitivity analysis, 
performed with an original case, either allows the occurrence of late arrivals or adds a 
restriction to the travel distances. Another scenario combines both sensitivities (late 
arrivals and travel distance restriction). We note that as the number of possible matches 
increases, it becomes more difficult to achieve a stable matching. This would occur, for 
example, when there is a concentration of pickup and delivery points within a city.

Figure  13 presents the analysis of customers’ locations on the required numbers of 
trucks, i.e. the number of trucks needed (those that stay on the road after matching) when a 
restriction on the distance between the pickup and delivery points is imposed. The restric-
tion accounts for the unwillingness to drive excessively. The result is reported in function 
of the fixed cost and variable cost. A complementary analysis considers the transportation 
total cost for the same situation, which is presented in Fig.  14. The distance restriction 
scenario consists in limiting the distance for the generation of random points for pickup 
and delivery for bidders and requesters. This behavior attempts to reproduce the interest 
of bidders in fulfilling the needs of close customers, such as those in main neighbors with 
commercial or industrial sites’ concentrations. This distance restriction also follows the 
interest in reducing truck traveling time and increasing charging/discharging operations or 

The mantle plot represents the ratio conforming to the sum of all the distances traveled by the trucks divided by 
the number of trucks in the Z axis, considering several paired values of fixed-costs and variable-costs.

Fig. 12  Relationship between road distances by # of trucks, based on fixed cost and variable cost
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The mantle plot represents the median of the number of trucks in the Z axis for several paired values of fixed-
costs and variable-costs. The sensibility considers that customers’ locations are closer than in the original case.

Fig. 13  Sensibility analysis over customers’ locations on the required # of trucks, based on fixed cost and 
variable cost

The mantle plot represents the Total Cost of transportation for all the trucks in the Z axis, considering several 
paired values of fixed-costs and variable-costs. The sensibility considers that customers locations are closer

than in the original case.

Fig. 14  Sensibility analysis over customers’ locations on the trucks’ transportation total cost, based on fixed 
cost and variable cost
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just freeing the truck for further operations. We note that this scenario reduces the distance/
truck ratio, but the number of matching trucks remains very similar or equal. This result is 
because distance is already penalized through the variable cost and routing timing. Better 
results could be achieved when the truck’s warehouse coincides for bidders and requesters 
because adding new sites in the same route is highly feasible and inexpensive. 

The scenario that allows late arrival is represented in Figs. 15 and 16. This scenario rep-
resents when we allow trucks to arrive late to their commitments, Fig.  15 presents the 
number of total trucks in the road in these conditions and Fig. 16 represents the total cost 
of this situation. In order to increase the number of deliveries, time windows are enlarged. 
This policy of accepting delayed trucks considerably increases the number of matches, but 
this gain is rapidly offset by the increase in the variable cost that penalizes the longest rout-
ings. The reason is that new routes become economically unattractive and thus it is not an 
acceptable match. 

The combination of both distance restriction and late arrival is represented in Figs. 17 
and 18; Fig. 17 represents the number of trucks when we allow trucks to arrive late at their 
commitments but there is also a restriction on the travel distance; Fig. 18 represents the 
cost of the solutions for this situation. The results are not different compared to the ones 
previously obtained for the distance restriction. This is because pickup and deliver sites are 
few, they are fixed, and thus distance restrictions impede long trips. Trucks cannot increase 
their travel distances and reach farther sites that could be reached with wider travel times. 
We can conclude that there is no advantage in having this extra time because there are no 
more sites to reach. We note that in this situation warehouse localization plays an important 

The mantle plot represents the median of the number of trucks in the Z axis for several paired values of fixed-
costs and variable-costs. The delays consider a truck delayed visiting a customer.

Fig. 15  Sensibility analysis over trucks customer visiting delays on # of trucks on road (ridding trucks), 
based on the fixed cost and variable cost
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role in allowing a large number of possible new matches using extra-time. When trucks 
come from the same origin (the warehouse), cost savings for sharing are higher with almost 
the same travel distance. Consequently, the neighborhood would be better served by a 
unique nearby warehouse, if warehouses allow the late arrival. In contrast, in the presence 
of important travel distance restrictions, the farthest neighborhoods still cannot be served 
(so no feasible matches) and the logistic services will remain costly despite any freedom to 
arrive late.

Discussion and managerial insights

In the following tables, we present a projection of emissions reductions obtained from 
the instances we simulated in previous sections. The interest is in knowing how much 
savings can be obtained by the stable matching that reduces one truck. On average, it 
is possible to see a distance saving by an adequate tour that usually departs and arrives 
at the same warehouse. Table 4 presents the average total traveling distance that trucks 
would have traveled when there is a feasible stable match, so those interesting cases 
that are prone to gas reductions. Table 5 presents the distance saved after finding and 
executing those stable matchings, thus reducing one truck. Finally, Table 6 shows the 
percentages of change. We note that these percentages are bigger when there are high 
variable costs. As mentioned before, when variable costs are higher, almost all matches 
are the ones happening in a common neighborhood. A neighborhood corresponds to a 
zone with many pickup and delivery sites, each near to another, and with a proximate 

The mantle plot represents the Total cost of transportation for all the trucks in the Z axis, considering several 
paired values of fixed-costs and variable-costs. The delays consider a truck delayed visiting a customer.

Fig. 16  Sensibility analysis over trucks visiting customer delays on total truck transportation costs based on 
the fixed cost and variable cost
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The mantle plot represents the median of the number of trucks in the Z axis for several paired values 
of fixed-costs and variable-costs.

Fig. 17  Sensibility analysis on truck delays and customers’ locations on the # of trucks on road (ridding 
trucks) based on the fixed cost and variable costs

The mantle plot represents the Total cost of transportation for all the trucks in the Z axis, considering several 
paired values of fixed-costs and variable-costs.

Fig. 18  Sensibility analysis on truck delays and customers’ locations on the total cost
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warehouse. With the three tables it is possible to understand the reductions of traveled 
distance by subtracting one truck and re-rerouting its nodes with one single truck. These 
actions are directly related to gas consumption reductions and GHG emissions reduc-
tions but also related to the amount of variable costs, which plays an important role in 
forcing matches to happen in neighborhoods.  

As shown in the previous figures, the variable cost is the most influential independ-
ent variable that impacts the number of matches, number of trucks and average traveling 
distance. In practice, variable costs are usually fuel cost, maintenance costs and driv-
ers’ wages, but it could also consider other government taxations based on traveled dis-
tance. A reduction in gas consumption entails a reduction in GHG emissions. At the same 
time, the increase of variable costs is a deterrent to the platform’s use because feasible 
matches become economically uninteresting, based on the conceived scheme of sharing 
costs. Moreover, classical centralized solutions suggested in the literature would be more 
appropriate for cases with very high costs because they will effectively reduce distances of 

Table 4  Average of total 
traveling distance of the 
matching cases in the simulation

Fixed cost Variable cost ($/unit)

1 2 3 4 5 6 7

5 5799 5829 3619 1426 624 296 173
10 5847 5801 3648 1470 664 340 201
15 5822 5909 3834 1465 701 330 205
20 5995 5851 3914 1546 691 377 208
25 6031 5909 4081 1570 729 386 214
30 6116 5820 4266 1612 757 395 210
35 6119 5947 4432 1661 747 419 235
40 6233 5970 4510 1750 756 426 236
45 6318 6008 4700 1844 807 409 237
50 6333 6024 4785 1781 827 429 267
55 6414 6116 4959 1934 859 461 271

Table 5  Average of total 
traveling distance for matches 
cases and one truck has taken the 
pickup and deliveries

Fixed cost Variable cost ($/unit)

1 2 3 4 5 6 7

5 9611 9618 7074 3520 1910 1065 720
10 9613 9591 7057 3610 1993 1219 830
15 9517 9766 7346 3594 2092 1157 817
20 9781 9662 7357 3769 2046 1316 841
25 9781 9689 7609 3779 2141 1331 832
30 9892 9491 7858 3858 2211 1345 810
35 9843 9698 8030 3944 2184 1432 906
40 9988 9743 8084 4114 2164 1444 906
45 10,079 9790 8306 4290 2268 1348 894
50 10,074 9739 8422 4071 2299 1403 1017
55 10,206 9889 8678 4386 2370 1496 986
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particular interest. However, the existence of high fixed cost is a good incentive for sharing 
trucks.

Allowing delays in the deliveries increases the number of matches, but this effect is 
reversed by the increases in variable costs, which penalize the number of matches, as is 
shown in the prior figures. The distance restriction added to the simulation, which tries to 
emulate pickups and deliveries within a neighbor, did not increase the number of matches 
because there is an important dependence on the distance to the warehouse and to the first 
point for pickup and delivery.

In summary, our results focus attention on interesting theoretical behaviors related to 
coalition development and stability, usually misled in the sharing economy literature’s 
focus on complex truck routing. For example, we note that despite the fact that high fixed 
costs push users to share, variable costs penalize long distances. In fact, we notice that 
variable costs can be very restrictive to finding feasible matches at the beginning and to 
make those matches stable, because shared benefits become small or even null. However, 
we have shown that the platform is useful for allowing bidders and requesters to find suit-
able savings and reduce gas emissions.

Conclusions and future research

This study shows the high potential of using a cooperative decentralized decision-sup-
port system for reducing travel distances and transportation costs in urban context. The 
decision-support system is an online and web-based platform service for cooperative LTL 
trucking using a bidder-requester model for delivering freight in cities. The model repre-
sents vehicle routing operations of several fixed pickup and delivery schedules where new 
deliveries are allowed from requesters within a time-window constraint. The decisional 
process for bidders and requesters is modeled following perfect matching market-design 
mechanisms and the profit-sharing mechanism is inspired from prior studies in goods con-
solidations and sharing economy. The simulations to validate the experiments rely on cer-
tain assumptions such as uniform distribution of locations in a plane with schedules for a 
fixed number of bidders and requesters. The main purpose of the decision-support system 

Table 6  Presents the difference 
of Tables 4 and 5 in percentage, 
showing the distance reductions 
which is directly related to the 
reduction of gas emissions

Fixed cost Variable cost ($/unit)

1 2 3 4 5 6 7

5 40 39 49 59 67 72 76
10 39 40 48 59 67 72 76
15 39 40 48 59 66 72 75
20 39 39 47 59 66 71 75
25 38 39 46 58 66 71 74
30 38 39 46 58 66 71 74
35 38 39 45 58 66 71 74
40 38 39 44 57 65 70 74
45 37 39 43 57 64 70 73
50 37 38 43 56 64 69 74
55 37 38 43 56 64 69 73
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is to promote transportation cost reductions which leverage gas consumption and green-
house gas emissions. Similar to other economic games, the online decision-support system 
shows the importance of fixed and variable costs in finding fair matches for bidders and 
requesters.

This platform facilitates the run of several small business-like stores, florists, franchises, 
restaurants, wine cellars and food yards on the one hand and parcel delivery contractors (on 
their own), on the other. They can develop loose relationships using the platform to keep 
pickup and delivery in the same journey. Another group could be tow trucks which have 
more than 1-car capacity and serve municipalities, police departments, insurance compa-
nies, car dealers and car rental companies vs the small internal fleets of these services. A 
final group could be construction contractors like painters, roofers, plumbers, isolation spe-
cialists, landscapers and gardeners, etc. which need to move equipment and tools for days. 
Some of them have truck rentals and also profit as specialized drivers and machine opera-
tors trying to keep their schedule full.

In order to enhance the performance of the platform, we propose to conduct additional 
real case studies based on real data, which will allow modeling actual bids and requests 
within real zones in urban areas. The use of real data provided by several rental trucks and 
delivery truck companies could help to refine the definition of a specific case study. Such 
case study could allow us to determine precisely the saved traveling distances and GHG 
emissions per hour and per day in urban context. Other important data to consider for the 
case study would be volumes, weights, and compatibility of cargo, which are very impor-
tant characteristics in the city logistics business.

Further studies could also consider that optimal solutions might not always be achieved 
because the stable matching model that we propose could require extensive calculation 
time in real cases, which could discourage bidders and requesters from waiting for the final 
result of that ‘best match’. Therefore, the platform could be modified to calculate and pro-
pose ‘a second best’ match if users want to rely on it. The platform could also incorporate 
price adjustments to protect the entire system of faked requests or offers. Other sharing 
costs techniques, based on a fixed number of rewards, could also be explored in future 
research. Another future studies would consider the simulation of large disruptions that 
could destabilize stablished cooperation and thus decentralization may help to find tempo-
ral solutions using the platform.

It is important to notice that gas emissions reductions were calculated using Euclidean 
distances. However, distances within a city must deal with obstacles and natural fences 
(rivers, mountains, highways, etc.), which mean that distances are non-Euclidean and non-
symmetrical and thus matching and routing could be more difficult than they actually are. 
Moreover, the platform only approximates the neighboring effect. We acknowledge that 
real distance between blocks and travel time between neighbors are important elements 
for simulating the matching process. Therefore, we suggest that future studies concentrate 
simulations in neighborhoods near a warehouse, which is also proposed in the literature.

We also plan to address in future research the problem of large disruptions that may 
destabilize cooperation. Decentralization may help to find temporal solutions considering 
an organised multi-delivery process to transition to a multi-independent platform, for offers 
and requests, and observe the case for short time decisions.

Another important issue is that carbon taxes pressure the industry to undergo carbon-
emissions savings usually through emission-reduction technologies, like fuel-efficient 
engines or self-driving trucks. Nevertheless, truck sharing and cargo consolidation on last-
mile delivery are major changes in the operational behavior that can cut emissions and 
reduce equipment or driver needs, thus reducing costs.
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