Transportation (2020) 47:2635-2669
https://doi.org/10.1007/s11116-019-10036-4

®

Check for
updates

Modelling the dynamics between tour-based mode choices
and tour-timing choices in daily activity scheduling

Md Sami Hasnine'® - Khandker Nurul Habib'

Published online: 13 July 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

The paper presents a dynamic discrete—continuous modelling approach to capture individu-
als’ tour-based mode choices and continuous time expenditure choices tradeoffs in a 24-h
time frame. The analysis of traditional activity-based models are typically limited to activ-
ity-type, location and time expenditure choices. Besides, mode choice is often simplified to
fit in a pre-defined activity schedule. However, decisions of tour departure time, tour mode
choice and time expenditure choice for out-of-home activities are intricately inter-related,
and common unobserved attributes influence these choices. This paper proposes a random
utility maximization based dynamic discrete—continuous model for joint tour based mode
and tour timing choices. Tour timing choice is modelled as continuous time allocation/
consumption choice under 24-h time-budget. In the case of the tour-based mode choice
component, it uses a modelling structure which harnesses the power of dynamic program-
ming and discrete choice. A cross-sectional household travel survey dataset collected in
the Greater Toronto and Hamilton Area in 2016 is employed for the empirical investigation
in this study. Empirical model shows the capability of handling all possible mode combi-
nations within a tour including ride-hailing services (e.g., Uber, Lyft). Empirical results
reveal that individuals variations in time expenditure choice are defined by activity type,
employment status, and vehicle ownership. In terms of mode choice, it is clear the emerg-
ing transportation service users have different travel pattern than conventional mode users.
This modelling framework has the potential to test a wide range of policies.
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Introduction

In the context of an activity-based modelling (ABM) system, the time constraint is shaped
by depleting time budget with increasing number of activities and the space constraint is
defined by activity locations and work/home locations. Such dynamic time—space con-
straint is a fundamental tenet of the ABM system; however, most of the operational ABM
tend to simplify the scheduling process that may force to overlook the dynamics of sched-
uling behaviour. In particular, in the case of out-of-home activities, tour departure time,
tour-based mode choice and time expenditure choice need to comply with the time—space
constraint and these elements are inter-related as well (Jara-Diaz 2003). A tour refers to a
chain of trips that starts from a point (e.g., home) and return to the same point (e.g., home)
at the end the trip-chain. Tour-based mode refers to the combinations of all trip-modes
within a tour. For example, in a three-trip tour the mode for the first trip is walk, second
trip is public transit and the last trip is Uber. Therefore, the tour-based mode choice will
be “walk-public transit-Uber”. The analysis of traditional activity-based models (ABM)
are preliminarily focused on activity types, location and time expenditure choices. Mode
choice component is often simplified to fit in the operational activity-based models super-
ficially. As a result, dealing with tour departure time, tour-based mode choice and time
expenditure choice comprehensively within a unified econometric modelling framework is
rare in the literature.

To address this issue, a few studies employed activity time expenditure as an exogenous
input to jointly model trip departure time and mode choice (Shabanpour et al. 2017; Habib
2013). A few other studies only modelled trip-based mode choice and work activity time
expenditure without incorporating departure time in the modelling framework (Munizaga
et al. 2006). Another interesting study used mode choice as an exogenous input to tour-
departure time and activity duration model (Vovsha and Bradley 2004). There are three
limitations to these approaches. First, a majority of this studies are trip-based and focused
only on commuting trip and work duration which are not compatible with most of the
operational ABM systems. Second, the analysis of traditional ABMs are primarily focused
on activity-type, location and time expenditure choices. Mode choice component is often
simplified to fit in the operational activity-based models superficially. The majority of the
operational ABMs use the main tour-mode, and each trip has a different mode, conditional
on the main tour-mode, location and previous trip’s mode choice (Bradley et al. 2010;
Davidson et al. 2010). This main tour-mode assumption apparently converts the tour-based
mode choice paradigm into the trip-based mode choice system and hence loses the dynam-
ics of inter-dependence among various aspects of mode choices. Third, there are obvious
tradeoffs between the tour departure time, tour mode choice and time expenditure choice
which are overlooked in the conventional approach. Despite the importance of jointly mod-
elling the tour departure time, tour-based mode choice, and time expenditure of the out-
of-home activities, which are well-established in the literature, methodological limitations
made it difficult to address such issues.

From the methodological perspective, to capture the inter-relationship between tour
departure time, tour-based mode choice and time expenditure choice, a robust modelling
technique is warranted which considers a dynamic time—space constrained scheduling pro-
cess and will avoid the arbitrary discretization of tour departure time. This paper presents a
dynamic discrete—continuous modelling approach to capture individuals’ tour-based mode
choices, tour departure time, and continuous time expenditure choices tradeoffs in a 24-h
time frame. For the empirical investigation of this paper, the time until an individual starts
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the tour (at-home activity) and the duration of out-of-home activities are the topics of inter-
est. To model the departure time of every tour and time expenditure for various out-of-
home activities, we adopted the Kuhn-Tucker demand system model which can explicitly
capture individuals travel behaviour through baseline preference and satiation effects. In
terms of mode choice, we adopted a dynamic discrete choice modelling (DDCM) approach
which is a combination of dynamic programming and random utility maximization (RUM)
principle. The proposed DDCM explicitly captures the state dependence and future expec-
tation at the end of every trip within the tour.

The modelling framework presented here is developed as a module of an operational
dynamic activity-based modelling framework named CUSTOM (Habib et al. 2017; Habib
2018). CUSTOM tackles the mode choice component exogenously. Therefore, this study is
a very first step to endogenously model tour-based mode choice with other elements of the
CUSTOM. To do so, we are experimenting with various joint discrete—continuous choices
(e.g., tour-based mode choice, departure time choice and time-expenditure choice). One
possible future work would be adding activity type choice and location choice within the
proposed modelling framework of this study. This next step will make CUSTOM robust,
and in this way all essential components of an activity-based model will be added to CUS-
TOM. In the literature, there is evidence of joint discrete—continuous models in terms
of trip-based or four-step modelling (FSM) paradigm. There is a series of studies which
developed joint discrete—continuous models to analyze three components (mode choice,
departure time choice and activity duration) from trip-based modelling aspect (Habib
2012, 2013; Shabanpour et al. 2017). So, we believe that applying the same concept in the
activity-based modelling paradigm contributes to the existing literature.

The next section presents an extensive review of time-expenditure choice and mode
choice models. This section is followed by sections explaining econometric model formu-
lations, data for empirical modelling, discussion about the model results, model validations
and policy scenario analysis. The last section presents the research summary and some
ideas for future research.

Literature review

A unified econometric modelling framework that captures the tour departure time, tour-
based mode choice and time expenditure choice is rare in the literature. As such, given
the nature of the study, this section is split into two main sections. First, we discussed how
operational ABMs capture these interconnected elements. Then, we focused on examining
various stand-alone models that tried to model mode choice in conjunction with departure
time and time expenditure choice.

Conceptually, ABMs acknowledge the interrelationships between several interconnected
elements such as activity type choice, time expenditure choice, location choice and mode
choice at the disaggregate level. In CEMDAP, the scheduling model systems are consti-
tuted of pattern-level, tour-level and stop-level model system. Tour-level model system
takes care of the tour-mode and tour duration, and the trip-level model system takes care of
the trip-level mode and duration (Bhat et al. 2004). TASHA simulates activity frequencies,
start time, and durations based on random draws from observed joint probability distribu-
tion functions (Miller et al. 2005). These predicted activity schedules are used as an exog-
enous input to the tour-based mode choice models. In the CT-RAMP, an ABM platform,
departure time and activity duration (including travel time) are discretized to represent
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time as a discrete entity (Davidson et al. 2010). In the DaySim modelling structure, main
tour mode and tour time-of-day (TOD) are modelled in the tour-level model and trip-based
mode and departure time, conditional upon the primary destination of the tour, are mod-
elled in the trip-level model (Bradley et al. 2010). Similar to CT-RAMP, tour time-of-day
is represented as a discrete value. CUSTOM is a unified econometric modelling framework
which jointly models activity type choice, location choice and activity duration (Habib
2018). Currently, the mode choice component is exogenous to the CUSTOM framework.
Mode-specific parameters are incorporated to capture the modal influences in this dynamic
ABM.

Mode and departure time choices are particularly crucial in terms of commuting trips.
Therefore, joint mode and departure time choice models received considerable attention in
the literature.

Bhat proposed a multinomial logit (MNL) model for mode choice and ordered general-
ized extreme value (OGEV) for the departure time choice in the context of urban shopping
trips (Bhat 1998). This study finds that MNL-OGEYV provides flexible correlation structure
among choices and outperforms the MNL and nested logit (NL) models. Ding et al. (2014)
presented a series of generalized extreme value (GEV) models for modelling mode choice
and departure time choice jointly. Their proposed cross-nested logit (CNL) model allows
non-proportional substitution patterns between a pair of alternatives. Besides, two NL
models are presented. In the first NL model, the upper tier is the mode choice, and lower
tier is the departure time choice. In the second NL model, the upper tier is the departure
time choice, and lower tier is the mode choice. The work of Yang et al. (2013) highlights
the similar approach (CNL and two different NL) for modelling a joint choice of residential
location, travel mode, and departure time.

Multiple discrete—continuous extreme value (MDCEV) model is a robust modelling
framework to model multiple discreteness and continuous choices (Bhat 2005). MDCEV
uses Random Utility Maximization (RUM) principle to model discrete and continuous
choices. The MDCEV model adopts classical Kuhn—Tucker demand modelling system to
model the continuous choice (e.g., time expenditure choice). The model assumes that an
individual tries to maximize the total utility in allocating time-use for a specific activity.
The Kuhn-Tucker demand modelling system explicitly considers 24-h time budget con-
straint within the modelling framework. Bhat and Sen (2006) jointly model vehicle types
and miles of usage of each vehicle type using MDCEV model. MDCEV is adopted in
numerous studies to account for activity duration and activity type choice. In a seminal
paper, Bhat et al. (2006) developed a joint modelling framework for activity type choice
and time-expenditure choice. Spissu et al. (2009) employed MDCEYV for modelling activity
duration and activity-participation. Bhat et al. (2013) applied MDCEV model that jointly
models household members activity participation and their activity duration. Due to the
complex nature, MDCEV modelling framework is challenging while forecasting the model
for policy scenarios. Though, there have been a few efforts to find efficient forecasting pro-
cedure for MDCEYV such as Pinjari and Bhat (2010).

Habib (2013) argues in favour of adopting a joint discrete—continuous model that fol-
lows random utility maximization (RUM) principle for both discrete and continuous
choice. In this modelling framework, mode choice is considered as a discrete choice and
departure time choice is considered as a continuous choice under a 24-h daily time budget
constraint. Similar to Habib (2013) and Shabanpour et al. (2017) treated departure time as
a continuous variable but modelled by log-linear regression, without explicit consideration
of time-budget constraints though. They used a Copula approach to capture the depend-
ency between the mode choice and departure time choice. The significance of modelling
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activity duration in conjunction with mode and departure time choice model is well estab-
lished in the literature. Habib (2012) jointly modelled activity duration with other decision
processes (trip-based mode choice and departure time) considering that activity duration is
not just an exogenous factor, but an endogenous factor to the modelling framework.

In terms of tour formation, the bottom-up approach is one of the most commonly
adopted approaches where tours and their associated attributes (i.e. mode, number of stops,
and their locations) are determined in a dynamic fashion (Bowman and Ben-Akiva 2001).
In the bottom-up approach, lower level decisions are conditioned upon higher-level deci-
sions and higher-level decisions get feedback from lower-level ones through logsum meas-
ures (accessibility measures). Bowman et al. (1999) presented an operational activity-based
model where the bottom-up approach has been adopted. Expected maximum utilities from
the stop location choice model are fed into the mode and destination choice model. Then,
expected tour mode and destination utilities are fed into the time-of-the-day choice model.
Eventually, time-of-the-day utilities are plugged into the activity pattern model. Both the
Portland and San Francisco models follow a bottom-up approach (Ruiter and Ben-Akiva
1978; Bowman et al. 1999). In CT-RAMP, simplified tour-level logsum (accessibility
measures) is integrated into the upper-level models (Davidson et al. 2010). These accessi-
bility measures facilitate capturing the sensitivity of the model to level-of-service and land-
use attributes. SACSIM also implements a similar bottom-up approach. However, to avoid
computational burden SACSIM only includes the most important accessibility measures.
More details can be found in Bradley et al. (2010). TASHA also uses bottom up approach
where activities are generated at the beginning from random-draws and scheduling is per-
formed by applying various rule-based approaches (Miller et al. 2005). Table 1 shows a
summary of the relevant studies discussed above.

From the discussion above, it is evident that none of these studies mainly focused on
developing a unified tour departure time, tour-based mode choice and time expenditure
model. To address this research gap, this paper presents a dynamic discrete—continuous
modelling approach to capture individuals’ tour departure time choice, tour-based mode
choice and continuous time expenditure choice tradeoffs in a 24-h time frame. The pro-
posed RUM based model structure explicitly complies with dynamic time—space con-
straints and endogenously captures various choice dimensions in the context of ABM.

Econometric model

The proposed modelling framework has two components: 1. Discrete tour-based mode choice
and 2. Continuous time expenditure choice. In the case of the tour-based mode choice, we
make use of an innovative modelling structure which harnesses the power of dynamic pro-
gramming and discrete choice. Regarding time expenditure choice we employed the Kuhn-
Tucker demand system model which can explicitly capture individuals time expenditure
choices through baseline preference and satiation effects. Figure 1 shows a home-work-home
tour which is a two-trip tour. Figure 2 shows a home-work-gym-home tour which is a three-
trip tour. In this study, tour-based mode choice model is used to model all tour combinations.
Figure 3 shows how dynamic time constraint (24-h time budget) is applied in the proposed
modelling framework. Figure 4 reveals graphical illustration of the modeling components and
behavioral assumptions underlying the framework. One prerequisite of the proposed model-
ling framework is the number of trips in a tour, the activity schedule (sequence of activities)
and the location choice information is required to know before the model estimation.
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Trip 1: Mode Choice
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Trip 2: Mode Choice

Fig. 1 Home-work-home tour (two-trip tour)

Trip 1: Mode Choice
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Trip 3: Mode Choice

Gymnasium

Fig.2 Home-work-gym-home tour (three-trip tour)

Trip 2: Mode Choice

I Longitudinal Time Scale (24 hour)

time=0 time=24 h
Trip Mode Choice | o
m Rest of the day 1
Trip Mode Choice
Rest of the day
Trip Mode Choice

AN

Fig. 3 Dynamic discrete—continuous approach to model tour departure time, tour-based mode choice and

time-expenditure choice
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Beginning of the day(the number
of trips in a tour, the activity
schedule and the location choice
are known)

At-home time expenditure
choice

Mode choice (location Temporarily return No trip for the entire day
choice is known before) home

Time-expenditure
choice for out-of-home home
activity

Permanently return

Another out-of-home
activity

Fig.4 Graphical illustration of the modeling components and behavioral assumptions underlying the frame-
work

The time expenditure choices are modelled as a continuous variable where balances
between the time expenditure to a particular activity and the rest of the activities (composite
activity) are explicitly taken into consideration. Time expenditure choices are modelled based
on RUM-based direct utility function of time expenditure which is proposed by Habib et al.
(2017) and Habib (2011). Let’s assume that T is the time expenditure to the scheduling activ-
ity, and T, is the time expenditure to composite activity. @ is the satiation parameter for time
expenditure to the scheduling activity and a, is the satiation parameter for time expenditure
to the composite activity. Also, £2 is the parameter vector, and x is an attribute vector, and &
is the random utility component of the baseline utility of time expenditure choice. Now, the
total utility (U)) of the time expenditure (7)) to a scheduling activity (j) under time budget T
(T =T; + T,) can be written as:

o= (L)1) (L)em-n

j e

Now, if we adopt Kuhn-Tucker optimality condition assuming Type I Generalized
Extreme Value (GEV) distribution for the random utility component, the probability of
spending time (7)) to the scheduling activity can be written as follows:
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2

1 —a _ —#y \ V= Vr,
PT,=< 5,1 a")u,- ol (V=v7))

In Eq. (2) utility of the scheduling activity (V; ) and utility of the composite activity
VT/ can be defined as follows:

Vr, = (a,—1)In(T-T)) 3)

Vi, = 2+ (@ = 1) In (7)) “)

In the case of tour-based mode choice, the dynamic discrete choice method (DDCM) is
adopted (Aguirregabiria and Mira 2002, 2007; Rust 1987). The DDCM approach assumes
that individual maximize their expected future utility during their current choice. To for-
mulate the tour-based mode choice, we assume a finite time horizon. In this study, we
adopted the DDCM approach for tour-based mode choice proposed by Hasnine and Habib
(2018). The value function for expected discounted future utility can be written:

V(Xf) = / d!gfzit) {m(xt’ct) + Et(ct> +5 Z / V(xt+l’8t+l> 'p<xt+l |xt,cr) }p(d5t+l |xt+])
X1 €X
1 (5)

Here, m=mode choice utility which depends on two vectors of state variables m(x,, €,)
which follow controlled Markov process, x, is the attribute vector for a certain trip at time
t, €,is a random error component with variance o2, ¢, 1s a decision variable which indicated
the transition from one trip (x,) to another trip (x,,) using Markov transition probability
DX 15 €41 1%, €5 €,), B is a discount factor which should be in between zero to one.

In Eq. (5), if we assume that p(de|x) is given by a multivariate extreme value distribu-
tion, this assumption simplifies Eq. (5) as follows:

V(x,) =In 2 €{m(x”c’)+ﬂEV(Xf’cl)} (6)

ceC(x,)

Now the conditional probability p(c|x, n) can be written as an MNL formulation:

e{m(xl COFBEV (x¢,) }

(clx,n) =
plelx,n () oA mCc)+BEV (3.6)) } o

Here, 7 is the set of parameters which we need estimate and EV is the expected value
function. Tour-based mode choice is a finite-horizon problem since we know the full day
activity schedule beforehand. To handle this non-stationary problem, we adopted the log-
sum enumeration approach. Now, the likelihood of any tour-based mode choice in conjunc-
tion with the time expenditure choice to the scheduling activity can be written as
L,r = p(clx,n) - PT] . Maximum likelihood estimation technique is adopted to estimate the
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parameters (7) of this joint likelihood equation. This joint discrete—continuous model is
estimated by a program written in the GAUSS matrix programing language (Aptech 2018).

Data description

The data came from a household level travel survey, which represents 5% of the house-
holds within the Greater Toronto and Hamilton Area (GTHA). This survey is well known
as Transportation Tomorrow Survey (TTS) 2016. A total 162,700 numbers of households
are surveyed in this survey which consists of 395,885 individuals and around 798,000 trip
records. TTS 2016 collected a wide range of household and personal attributes. In addition,
this survey collected a single-day travel diary for all household members which includes
origin, destination, start time, activity purpose of each trip. For the empirical investigation,
we retrieved two subsets where individuals performed two-trip and three-trip tours. Despite
the proposed dynamic discrete—continuous modelling structure can model any number of
trips, due to space constraints we only presented the models for tours with two trips and
three trips.

The TTS 2016 survey sample, which is used for empirical modelling, is compared to
the Census 2016 sample for the Toronto census metropolitan area (CMA). For the exter-
nal validity of our finding, it is essential to compare the TTS 2016 and the Census 2016.
Table 2 shows a comparison between the vital descriptive statistics for the TTS 2016 sam-
ple and the Census 2016. Table 2 shows that the average individual age in the Census 2016
is 40.6, whereas the average respondents’ age in the TTS 2016 is 49.713 (two-trip tour) and
51.61 (three-trip tour). The TTS 2016 only collects travel diaries from individuals aged
more than 12. This is the reason behind this skewed age distribution in the TTS 2016.
In terms of gender distribution, male and female have equal representation (nearly 50%)
in the TTS 2016 and Census 2016. The average household size is 2.4 in Census and 2.7
in the TTS, which is very close. In terms of dwelling type, Census and TTS do not have
similar classification. In the TTS, more people are living in the apartment (65.211%), and
in the Census, only 44.323% of people are living in the apartment. Since the Census only
includes a building that has five or more storeys as an apartment, this may be the cause
behind the low percentage of apartments in Census. In terms of mode choice, Census only
collects commuting mode choice information whereas TTS collects detail travel diaries of
individuals for all purposes. Therefore, it is not straightforward to compare mode choice
between the TTS and the Census. However, the underlying trends in mode choice for both
the Census and the TTS are close. Since the overall descriptive statistics are close, it can be
reasonably concluded that the TTS sample is a good representation of the population.

It is found that individuals who performed tours with two trips stayed at home on an
average 15.45 h (after midnight) before the first out-of-home activity while the individuals
who performed three-trip tours stayed 15.68 h (after midnight) before the first out-of-home
activity. This means an individual who makes two or three-trip tours tend to leave home
around 9 am in the morning. In the case of tours with two trips, it is found that the aver-
age activity duration for the out-of-home activity is 6.43 h. In the case of three-trip tours,
it is found that the average activity duration for the first out-of-home activity is 3.93 h and
average activity duration for the last out-of-home activity is 2.57 h. For the three-trip tours,
working activities are spread in between the first and second out-of-home activity. Hence,
the average activity duration is less than the two-trip tours. In terms of mode choice, 26 dif-
ferent tour mode combinations are observed in the two-trip tours, and 34 different tour mode
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Table 2 Comparison between Census 2016 data and TTS 2016 data (two-trip tour and three trip tour)

Attribute TTS 2016 (two-trip tour) TTS 2016 (three-trip tour) Census 2016
Gender (%) Female: 48.638 Female: 54.819 Female: 51.911
Male: 51.362 Male: 45.181 Male: 48.089
Average age 49.713 51.61 40.6
Average household 2.723 2.677 24
size
Dwelling type (%) Apartment 65.211 Apartment 66.362 Apartment in a 44.323
building that
has five or more
storeys:
Townhouse 24.869 Townhouse 23.977 Single-detached 24.231
house
House 9.920 House 9.661 Other 31.446
Mode choice (%) AP-AP 64.487 AD-AD-AD 69.6989 AD 45.982
(Note: For census AP-LT 8.244 PR-LT-Reverse PR  0.6452 AP 4.570
only commuting AP-W 0.786 PR-W-LT 0.1046 LT 37.009
mode choice) AP-Taxi 0.491 AP-AP-AP 12.8575 w 8.606
LT-AP 0.037 AP-AP-LT 0.4011 B 2.746
LT-LT 0.473 AP-AP-W 0.3139 Other modes 1.087
LT-KR 13.714 AP-LT-LT 0.3662
LT-W 0.035 AP-LT-AP 0.2674
LT-Uber 0.348 AP-KR-LT 0.1918
LT-Taxi 0.037 AP-W-W 0.1104
PR-PR 0.108 AP-W-AP 0.4824
KR-AP 2.319 LT-AP-AP 0.4243
KR-LT 0.050 LT-LT-AP 0.6161
BR-BR 1.121 LT-LT-LT 5.5627
W-AP 0.027 LT-LT-W 1.1393
W-LT 0.136 LT-LT-Uber 0.0698
W-W 0.170 LT-LT-taxi 0.1337
B-B 4.631 LT-W-LT 1.5113
Uber-LT 1.310 LT-W-W 0.1744
Uber-Uber 0.030 KR-LT-AP 0.2093
mc-mc 0.119 KR-LT-LT 0.1511
Sbus-Sbus 0.116 B-B-B 0.9416
Taxi-AP 0.783 W-AP-AP 0.3023
Taxi-LT 0.034 W-LT-AP 0.1104
Taxi-Taxi 0.055 W-LT-LT 0.7847
0.339 W-LT-W 0.1104
W-W-AP 0.1337
W-W-LT 0.1221
W-W-W 1.5462
Taxi-Taxi-Taxi 0.1221
MC-MC-MC 0.1279
Sbus-AP-AP 0.1569
Sbus-W-AP 0.0407
Sbus-Sbus-AP 0.0698

AD auto drive, AP auto passenger, LT local transit with walk access, PR park and ride, KR kiss and ride, BR
bike and ride, W walk, B bike, Uber, Taxi, MC motorcycle, Sbus School Bus

combinations are observed in the three-trip tours. In terms of the two-trip tour, the most
dominant tour mode is auto-drive (64.49%) and the second dominant tour mode is transit-
walk access (13.72%). In terms of the three-trip tour, the most dominant tour mode is also
auto-drive (69.70%) and the second dominant tour mode is transit-walk access (5.56%).

To generate level-of-service information, a Google application programming interface
(API) based tool was developed (Hasnine et al. 2017). Using origin, destination and departure
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time as inputs, this API based tool can accurately predict travel time and distance for vari-
ous modes including public transit, auto-drive, walk and bike. The common practice in travel
demand modelling is to develop various traffic assignment models and generate level-of-ser-
vice matrices based on these models. In the four-stage modelling (FSM) paradigm, these traf-
fic assignment models are aggregated at the traffic analysis zone (TAZ) level. Due to this spa-
tial aggregation, it is hard to calculate the exact travel time and distance between two points.
Such traffic assignment models also suffer from temporal aggregation. Typically, we divide
the entire day into multiple discrete time periods (e.g., AM peak, midday, PM peak, evening,
night). Such an approach could not differentiate between a trip starting at 8 am versus at 9 am
because both are considered as AM peak. To get rid of this spatial and temporal aggregation,
Google application programming interface (API) based framework, namely Tool for Incor-
porating Level of Service attributes (TILOS), is adopted in this study (Hasnine et al. 2017).
TILOS can generate level-of-service information from the exact origin (longitude and lati-
tude), destination (longitude and latitude) and departure time (date and time). TILOS collects
auto-drive data from a mix of historical travel data and real-time travel information. There-
fore, it provides a very close match to traffic assignment model results but naturally, TILOS
is more precise and accurate. The transit level-of-service information is mainly retrieved from
The General Transit Feed Specification (GTFS) data. Thus, transit level-of-service is sensi-
tive to daily changes of transit service provision that might affect the mode choices of the
individuals. In TTS 2016, individuals reported their origin, destination and departure time
for each trip. These inputs are feed into the TILOS, and level-of-service matrices are gener-
ated. To generate cost by motorized mode and transit fare we employed a list of available cost
matrices which are widely used for transportation planning by various government and public
agencies in this region (Natural Resources Canada 2018). For ride-hailing services such as
Uber and Taxi, a distance-based fare matrix is used for estimating the fare.

Regarding trip-mode, twelve types of trip-modes are observed in both datasets. Auto
drive and motorcycle modes are available for an individual if the respondent has a driv-
ing license and the household has an automobile. The auto passenger is available if the
household owns an automobile. Transit-walk access and bike and ride are available if the
Google API tool shows transit availability. Park and ride is available if Google API shows
transit availability, if park and ride designated stations are available based on the origin and
access distance to park and ride station, and if the auto drive mode is available for the indi-
vidual. Kiss and ride is available if Google API shows transit availability and if auto pas-
senger mode is available for the individual. Bike and walk mode availability depend on the
threshold commuting distance of 10 km and 5 km respectively. Uber and Taxi are available
for everyone. The school bus mode is available if the school bus is available in the home
location zone of a student. The dynamic discrete—continuous model presented in this paper
tracks the status of the automobile, transit and other modes availability and generate the
feasible choice set at the beginning of every trip within a tour. For instance, if an individual
does not choose the auto-drive on the first trip, then auto-drive is not available for the rest
of the tour. The following section presents the empirical results.

Empirical model
The summary of the empirical models is presented in Tables 3, 4, 5, and 6. The model

results for each type of tour is split into two tables: 1. tour departure time and time expend-
iture choice model, 2. tour-based mode choice model. In the case of model estimation, we
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employed a subset of randomly selected 80% of the total sample, and the remaining 20%
are treated as a holdout sample for model validation. In the case of the two-trip tour model,
we estimated a total of 99 parameters while in the case of the three-trip tour model we
estimated a total of 92 parameters. A majority of the parameters presented in this study are
statistically significant with a 95% confidence interval. Various types of level-of-service,
trip-level, household-and person-level of variables are incorporated in the systematic utility
equation of the final models. A list of these variables are mentioned as follows:

Level-of-service attributes: Travel time, cost and distance for all modes

Trip-level attributes: Trip purpose, activity duration

Household-level attributes: Number of vehicles in the household, transit pass informa-
tion

Person-level attributes: Gender, age

The goodness-of-fit of the joint model is estimated using adjusted Rho-squared val-
ues against the null model. For the joint model of the two-trip tours, the adjusted Rho-
squared value against the null model is 0.15 while for the joint model of three-trip tours
the adjusted Rho-squared value against the null model is 0.143. Since this is a multi-com-
ponent joint discrete—continuous model, the goodness-of-fit is reasonable considering the
complex modelling structure.

Tour departure time choice for the first tour of the day: time expenditure choice
for at-home activities before the first out-of-home activity

Tables 3 and 4 present the estimated parameters for the tour departure time choices for two-
trip tour and three-trip tour. For both types of tour, departure time is treated as a continuous
choice at home before the first out-of-home activity. The time-expenditure choice model
has two components such as a baseline utility of time expenditure and satiation parameter.
The baseline utility component reveals the baseline preference of spending time at-home
before leaving home in comparison to the rest of the activities (composite activities). In the
case of satiation parameter, the positive value of satiation parameters indicates that individ-
uals tend to spend a longer duration for a specific activity and vice versa. According to the
econometric specification, the satiation parameter should be less than one. To ensure such
restriction, we adopted the following specifications of satiation parameter, @ = 1—exp(—0y).
In this equation, y is a vector of attributes and 0 is a parameter vector.

The baseline utility component of an individual’s time expenditure is defined as an
exponential function which is parameterized as a function of employment status, individu-
al’s age, activity type and vehicle ownership. A high constant value is found for both tour
types which essentially suggest that there are some unobserved determinants which are not
captured by this dataset and these unobserved determinants influence the marginal utility
of the departure time choice for the first tour of the day. It is found that full-time employ-
ees tend to leave home earlier than the part-time employees. The model results reveal
that older people are more likely to leave home later than younger people. These findings
echo the finding of another research where the study area was another Canadian region,
the Ottawa—Gatineau metropolitan region (Habib 2018). It is challenging to find attributes
which capture the satiation function for at-home activities. We incorporated only dwelling
type and a constant as explanatory variables in the satiation function for both two-trip and
three-trip tours. It is found that apartment owners tend to spend more time at home before
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Table 5 Dynamic mode choice model (tours with two trips)

Number of observations

Number of estimated parameters

Adjusted Rho squared against a null model

Parameters

First trip: Alternative Specific Con-
stant (ASC)

ASC of the second trip when the first
trip is made by auto passenger

ASC of the second trip when the first
trip is made by Transit-walk access

ASC of the second trip when the first
trip is made by Kiss and Ride

ASC of the second trip when the first
trip is made by Walk

ASC of the second trip when the first
trip is made by Uber

ASC of the second trip when the first
trip is made by Taxi

Cost: First trip

Cost: Second trip

Travel Time: First and second trip

Mode

Auto drive

Auto passenger
Transit-walk access
Park and Ride

Kiss and Ride

Bike and Ride
Walk

Bike

Uber

Motorcycle

School bus

Taxi

Auto passenger
Transit-walk access
Walk

Taxi

Auto passenger
Transit-walk access
Kiss and Ride
Walk

Uber

Taxi

Auto passenger
Transit-walk access
Auto passenger
Transit-walk access
Walk

Transit-walk access
Uber

Auto passenger
Transit-walk access
Taxi

Auto Drive, Auto Passenger,
Transit-walk access, Park and
Ride, Kiss and Ride, Bike

and Ride
Uber and Taxi

Auto Passenger, Transit-walk
access, Park and Ride, Kiss
and Ride, Bike and Ride

Uber and Taxi
All motorized mode

All motorized mode

70,476

99

0.15

Estimates t-stat
4.012 19.944
1.754 8.777
0.000 -
—-1.927 —2.846
-2.975 —11.608
—2.827 —8.796
0.501 2.059
1.974 9.165
—2.824 —9.840
—2.307 —17.695
3.139 10.827
—1.174 —4.870
0.000 -
—1.288 —15.102
-1.376 —12.999
—4.657 —20.842
0.000 -

3711 43.345
—2.181 —10.123
1.255 10.153
-2.209 —-9.941
—0.845 —5.356
0.000 -

4.661 23.595
0.000 -

1.427 7.907
3.447 26.213
0.000 -

1.667 6.418
0.000 -

1.137 4.368
3.100 12.684
—0.238 —23.763
-0.039 —9.765
—0.039 —9.765
—0.027 —5.704
—0.057 —48.619
—0.005 —5.703
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Table 5 (continued)
Distance: Trip one Walk and Bike —0.625 —26.986
Distance: Trip two Walk and Bike -0.077 -3.12
Local transit pass ownership: First Park and Ride 3.909 63.914
trip
Kiss and Ride 3.124 20.747
Bike and Ride 3.584 26.857
Regional transit pass ownership: Park and Ride 1.367 35.697
First trip
Kiss and Ride 3.349 39.959
Bike and Ride 2.552 27.452
Number of vehicles: First trip Auto drive 0.438 44.102
Number of vehicles: Second trip Transit-walk access —0.306 —11.053
Auto passenger 0.914 24.084
Dummy variable for female: First trip Transit-walk access 0.312 9.453
Kiss and Ride 0.989 12.345
Bike —0.998 —13.583
Motorcycle —1.448 —4.782
Age less than or equal to 25 years: Auto passenger 2.056 29.388
First trip
Transit-walk access 0.877 12.785
Kiss and Ride 0.775 4.973
Walk 0.992 9.307
Age less than or equal to 25 years: Auto passenger —-0.975 —14.783
Second trip
Age greater than 25 years and less Walk 0.945 10.827
than or equal to 30 years: First trip
Bike 0.586 5.138
Age greater than 25 years and less Transit-walk access 0.249 3.311
than or equal to 30 years: Second
trip
Auto drive —1.411 -6.312
First trip purpose: school trip Auto passenger —0.630 —2.838
Transit-walk access 0.519 2.315
Park and Ride 0.712 2.438
Kiss and Ride 1.346 4.642
Walk 1.304 5.388
Bike 1.494 6.12
Auto drive 0.440 2.908
Auto passenger —-0.515 —-3.377
Transit-walk access 1.176 7.771
First trip purpose: work trip Park and Ride 2.148 10.472
Kiss and Ride 1.884 9.087
Walk 2473 15.679
Bike 2.715 15.922
Uber 1.507 5.857
Motorcycle 1.139 3.874
Second trip purpose: returning home  Park and Ride 1.344 2.087
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Table 5 (continued)

Coefficient of the function of Auto passenger, Transit-walk 1.226 14.376
forward-looking term: Number access, Kiss and Ride, Walk,
of Car per number of household Uber, and Taxi
members

Coefficient of the function of Transit-walk access —-1.319 —4.697
forward-looking term: Constants Walk ~1.263 —4.942

the first tour of the day. In Toronto, the majority of the apartments and work locations
are situated in the downtown core. Thus, the majority of the apartment owners live near
to their work location, and they require less travel time to reach work. Since the majority
of the houses are situated outside of the downtown core, it requires higher travel time for
homeowners to reach to the work location (if the work location is in downtown). Therefore,
homeowners tend to leave home earlier than the apartment owners.

Time expenditure choices for out-of-home activities

Tables 3 and 4 present the estimated parameters for the time expenditure choices for out-
of-home activities for two-trip tour and three-trip tour, which are defined by a baseline
utility function and a satiation parameter function. The baseline utility function indicates
the constant marginal utility of spending time for a specific activity. A positive value for
baseline utility means that individuals tend to spend more time in current activity than the
other activities scheduled later part of the day. Various activity types are incorporated in
the baseline utility function.

In terms of out-of-home activities, empirical model reveals that individuals tend to
spend more time at work than at the school, which is intuitive. Besides, individuals com-
paratively spend much less time in facilitating a passenger. In the time expenditure choice
model, departure time-of-day (as a fraction of 24 h) for a specific trip is interacted with dif-
ferent activity types and these variables depict significant influences on the baseline utility
function. Individuals are likely to spend a longer duration at work or school if they start at
home early in the morning. On the other hand, individuals likely to schedule other activi-
ties such as shopping and facilitating a passenger at later parts of the day.

The positive value of satiation parameters reveals that individuals tend to spend a longer
duration for a specific activity and vice versa. The empirical model shows that work and
school activities have the lowest constant satiation parameters which mean individu-
als do not enjoy spending long hours on such activities and they have little flexibility on
such activity durations. Model results indicate that individuals enjoy spending more time
in shopping activities. Departure time-of-day (as a fraction of 24 h) for a specific trip is
interacted with various activity types and these variables have significant influences on the
satiation parameter. The model reveals that individuals like to enjoy shopping and facilitat-
ing passenger if they can schedule these activities in the later part of the day and vice versa.

Mode choice

Tables 5 and 6 present the estimated parameters for the tour-based mode choices for two-trip
tour and three-trip tour. The majority of the alternative specific constants (ASC) are highly
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Table 6 Dynamic mode choice model (tours with three trips)
Number of observations 17,204
Number of estimated parameter 92
Rho squared against a null model 0.143
Parameters Mode Estimates t-stat
First trip: Alternative Specific Constant (ASC) Auto drive 4.233 26.256
Auto passenger 1.604 9.142
Transit-walk access 0.000 -
Kiss and ride —1.410 —2.837
Walk 2.363 14.623
Park and ride 0.420 2416
School bus 0.379 1.318
Bike 1.970 9.23
Taxi -2.314 —7.788
Motorcycle —2.365 -9.03
ASC of the second trip: the first trip is auto Auto passenger 2.560 5.035
passenger Transit-walk access 0.000 -
Kiss and ride 0.009 0.018
Walk 2.945 6.698
ASC of the second trip: the first trip is transit- Auto passenger —0.822 —1.359
walk access Transit-walk access 0.000 -
Walk 3.384 5977
ASC of the second trip: the first trip is walk Auto passenger 0.502 0.96
Trans it- walk access 0.000 -
Walk 4.335 8.339
ASC of the second trip: the first trip is park and ~ Transit-walk access 0.000 —
ride Walk 3.117 5.286
ASC of the second trip: the first trip is Auto passenger 0.000 -
school bus Walk 2.821 5.057
School bus 0.063 0.136
ASC of trip three: when the first and second trips Auto passenger 3.012 22.834
are auto passenger Transit-walk access 0.000 -
Walk 2.562 12.116
ASC of trip three: when the first trip is auto Transit-walk access 0.000 -
passenger and the second trip is transit-walk Auto passenger —0.376 —1.841
access
ASC of trip three: when the first trip is Walk 0.000 —
auto passenger and the second trip is walk Auto passenger ~1.732 ~5.163
ASC of trip three: when the first and Auto passenger 0.000 -
second trips are transit-walk access Transit-walk access 1.048 8.367
walk 3.483 19.178
Uber —2.191 -4.979
Taxi -1.213 —2.853
ASC of trip three: when the first trip is transit- Transit-walk access 0.000 -
walk access and the second trip is walk Walk 2.245 7474
ASC of trip three: when the first trip is kiss and ~ Auto passenger 0.556 1.937
ride and the second trip is transit-walk access  Transit-walk access 0.000 _
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Table 6 (continued)

ASC of trip three: when the first trip is walk and
the second trip is auto passenger

ASC of trip three: when the first trip is walk and
the second trip is transit-walk access

ASC of trip three: when the first and second trips

are walk

Travel cost: all trip

Travel cost: first trip
Travel cost: second trip

Travel time: all trip

Travel distance

Regional transit pass ownership: first trip
Local transit pass ownership: first trip
Regional transit pass ownership: second and

third trip

Local transit pass ownership: second and third

trip
Number of vehicles

Dummy variable for female: first trip

Age less than or equal to 25 years: first trip

Age greater than 25 years and less than or equal

to 30 years: first trip

Trip purpose: first school trip of the day: first trip
Trip purpose: first work trip of the day: first trip

Coefficient of function of forward-looking term
in the first trip: Number of car per number of

household members

Constant

Constant

Coefficient of function of forward-looking term

in the second trip
Constant

Constant

Constant

Auto passenger

Auto passenger
Transit-walk access
Walk

Auto passenger
Transit-walk access
Walk

All motorized mode
except Uber and taxi

Taxi

Uber and taxi

All motorized mode
Walk and bike: first trip

Walk and bike: second
and third trip

Transit-walk access
Transit-walk access

Transit-walk access
Transit-walk access

Auto drive

Auto drive

Auto passenger
School bus

Bike

Auto passenger
Transit-walk access
Auto passenger
Transit-walk access
Transit-walk access
Transit-walk access

First trip mode: auto
passenger, transit-walk
access, walk, park and
ride, school bus

First trip mode: auto
passenger

First trip mode: transit-
walk access

Second trip mode is
transit-walk access

Second trip mode is walk

Second trip mode is auto
passenger

0.000

—1.180
0.000
2.288
0.556
0.000
4.866
—-0.026

—0.025
—0.066
-0.014
—0.543
—1.184

1.132
3.708
0.465

1.153

0.198
—0.542
0.620
0.497
—0.893
1.749
1.103
—0.080
0.441
—1.442
-1.789
3.182

-1.070

-1.974

-0.935

0.463
—0.696

—-4.28

6.579
1.654

16.727
—3.052

-3.052
-2.509
—17.492
—17.339
—24.647

11.563
32.187
4.774

10.768

591
—17.521
7.633
1.515
-5.31
14.389
10.085
-0.526
3.05
—10.466
—21.258
8.28

—5.003

—4.831

—0.699

0.463
—0.565
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statistically significant. All level-of-service (LOS) parameters are showing proper signs, and
they are statistically significant. Based on the paired ¢ test value, tour-specific parameters are
estimated for few LOS variables while trip-specific parameters are estimated for the rest of the
LOS variables. The tour-based mode choice model reveals that values of travel time savings
(VOTYS) are higher for first trips than those of the second and third trips. In terms of two-trip
tours, VOTS for auto-drive, auto-passenger and all transit mode is $14.244 per hour for the
first trip, while the VOTS for the same modes for the second trip is $8.265 per hour. In addi-
tion, VOTS is much higher for Uber and Taxi passengers. In terms of mode selection, Uber
passengers typically don’t choose Taxi and Taxi passengers typically don’t switch their mode
to Uber. The model results reveal that possessing local and regional transit passes increases
the likelihood of choosing local or regional transit mode. The model results show that indi-
viduals with a higher number of automobiles in the household tend to drive more.

For both models, we tested the effect of different age cohort and genders on tour-based
mode choice. The empirical model shows that millennials are inclined to choose auto pas-
senger, transit-walk access, kiss and ride and walk. A majority of the individuals who are aged
less than 25 years old don’t own a car. As such, they are dependent on another household
member to drop them off, or they use public transit or walk. Students are inclined to choose to
walk, bike or public transit as a commuting mode on their first trip which echoes other studies
on students’ mode choice in this region (Hasnine et al. 2018). An interesting trend is found for
individuals aged more than 25 years where individuals are less likely to choose auto-passenger
or kiss and ride mode. Both models reveal that when the activity type is work, individuals tend
to choose Uber, auto-drive, various transit modes, walk, and bike.

According to the random utility maximization (RUM) theory, the parameter of the future
expectation of mode choice () must be in between zero to one (Swait et al. 2004). To ensure
such a constraint, we employed the following specifications: f=1/(1+exp(constant+ ux)). In
this equation, X is a vector of attributes and p is a parameter vector. The forward-looking agent
of mode choice is parameterized as a function of the number of the cars per number of house-
holds and a constant. The results show that household auto ownership is statistically signifi-
cant which means the number of cars in the household has a significant influence on the future
mode choice. In terms of two-trip tours, if the first trip mode is auto-passenger, kiss and ride,
transit-walk access, walk, Uber, or Taxi, there is a high correlation exists between the feasible
future trip modes. For instance regarding two-trip tours, if the first trip mode is walking, the
possible future modes are a walk, auto-passenger, transit-walk access, kiss and ride, Uber and
Taxi. According to the empirical model, these possible future modes are highly correlated.
The future expectation has 61.63% weight factor for local transit and 60.37% weight factor for
walk mode. This result indicates that the forward-looking agent represents a substantial por-
tion of the systematic utility in the current mode choice. In terms of three trip tour, auto own-
ership is not included in the systematic utility of the future expectation function for the second
trip. The parameter was not significant, and this is intuitive since, after the first trip, auto avail-
ability is deterministic. If auto-drive is not chosen in the first trip, the auto-drive mode will not
available for the entire tour.

Model validation and policy scenario analysis
For model validation, a holdout sample is used (20% of the total sample). Figures 5, 6,

and 7 show the validation results of the time-expenditure and mode choice component of
the two-trip and three-trip tours. Figure 5a, b shows the validation result of the departure
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Fig.5 Validation Results of time expenditure choice and mode choice two-trip tour (n=17650). AD: auto
drive, AP: auto passenger, LT: local transit with walk access, PR: park and ride, KR: kiss and ride, BR: bike
and ride, W: walk, B; bike, Uber, Taxi, MC: Motorcycle, Sbus: School Bus

(b) Duration distribution of the last out-of-home
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Fig.6 Validation Results of time expenditure choice and mode choice three-trip tour (n=4411). AD: auto
drive, AP: auto passenger, LT: local transit with walk access, PR: park and ride, KR: kiss and ride, BR: bike
and ride, W: walk, B; bike, Uber, Taxi, MC: Motorcycle, Sbus: School Bus

time distribution of the first tour and the validation result of the duration distribution of the
last out-of-home activity. The validation result clearly shows that the proposed dynamic
discrete—continuous modelling structure can accurately predict the time expenditure choice
for at-home and out-of-home activities. A similar result has been found for the three-trip
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Tour-based Mode Choice: Three trip tour
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Fig.7 Validation results of tour mode choice (n=4411). AD: auto drive, AP: auto passenger, LT: local
transit with walk access, PR: park and ride, KR: kiss and ride, BR: bike and ride, W: walk, B; bike, Uber,
Taxi, MC: Motorcycle, Sbus: School Bus

tours. The tour-based mode choice model provides the probability of the tour-mode. The
trip-based mode choice probability is estimated using the conditional probability. Fig-
ure 5c—e show that the estimated model is capable of accurately predicting both tour-based
mode choice and trip-based mode choice. Similar validation results are found for the three-
trip tours (Figs. 6¢c—e, and 7).

The presented models are tested to predict the effect of various transportation policies
on tour-mode choice. A difference between predicted demand and base case demand is
showed in Fig. 8. Figure 8a shows the effect of providing transit pass incentive on two-
trip tour modes. Figure 8a shows that reducing transit fares by 10% will increase transit
tours by 0.17% and decrease auto-drive tours by 0.13%. Interestingly, decreasing transit
fare reduces the utilization of tour patterns where an individual used transit for the first
trip but used a taxi or Uber for the second trip. Figure 8b shows the effect of providing a
reduced transit fare (10%) on three-trip tours. Similar to two-trip tours, transit tours are
increased by 11% and auto-drive tours are decreased by 0.10%. Figure 8c shows the effect
of increasing auto-drive cost by 200% and providing free transit services to individuals.
Figure 8c shows that increasing auto-drive cost by 200% and providing free transit services
will decrease auto-drive tour by 5.86%. Figure 8c also shows that increasing auto-drive
cost by 200% and providing free transit services will increase transit tour by 1.36%. This
policy scenario is particularly tested to see whether we can “stretch” the estimated model
to extreme situations and test the model’s ability to simulate scenarios that are outside the
range of the observed inputs. A wide range of policies can easily be tested using the mod-
els presented in this study.
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(a) Two-trip tour: Decreasing transit fare by 10%
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Fig.8 Policy scenario test. AD: auto drive, AP: auto passenger, LT: local transit with walk access, PR:
park and ride, KR: kiss and ride, BR: bike and ride, W: walk, B; bike, Uber, Taxi, MC: Motorcycle, Sbus:
School Bus

Conclusions and recommendations of future research

The dynamic RUM based model presented in this paper endogenously captures the inter-
actions of sequential discrete—continuous choices and is a significant step towards better
understanding the tangible benefit of jointly modelling tour-based mode choice, tour depar-
ture time and time expenditure behaviour. In the case of the tour-based mode choice model,
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we used a combination of dynamic programming and discrete choice which explicitly cap-
tures the forward-looking behaviour of trip modes and state dependency.

The tour departure time and time expenditure to the scheduling activities are mod-
elled adopting Kuhn-Tucker optimality condition, which captures the time expenditure
behaviour through baseline utility function and satiation parameter. The proposed closed
form joint dynamic discrete—continuous modelling structure has far broader applicabil-
ity than to activity-based model only. The model validation and policy scenario test
results are promising which states that the proposed modelling framework is compatible
with existing operational activity-based modelling framework.

In terms of tour departure time, it is found that full-time employees and younger indi-
viduals tend to leave home earlier than the part-time employees and older individuals.
This finding echoes the other studies which were conducted in different study areas in
Canada and Switzerland (Spissu et al. 2009; Habib et al. 2017; Habib 2018). It is found
that individuals likely to spend long hours at work or school if they leave home early.
Individuals are likely to schedule non-mandatory activities such as shopping activity
at later parts of the day. It is found that individuals do not enjoy spending long hours
on work or school activities, but they enjoy spending long hours in shopping activities.
These results are consistent with Habib (2018) time-expenditure choice model results.

The tour-based mode choice model can handle all types of tour combinations and
reveals various behavioural insights. The VOTS of ride-hailing services is much higher
than auto-drive and transit modes. Interestingly, investigating the tour pattern, it is found
that Uber users typically don’t change their mode to Taxi and vice versa. The policy
scenario test reveals that subsidized public transit will encourage individuals to choose
transit. It is also found that if the mode for the first trip is auto-passenger, Uber, or Taxi,
transit-walk access, kiss and ride, walk, there is a high correlation exist between the
available future modes. A majority of the cases, it is found that forward-looking com-
ponent represents a substantial portion of the systematic utility of current mode choice.
The validation result shows that the models presented in this paper are capable of accu-
rately capturing both time expenditure choice and tour-based mode choice.

One caveat of the model is we need to know the number of trips, the activity sched-
ule, and location choice before the model estimation. Since we modelled the tour depar-
ture time and time expenditure choices, the time-constraints is explicitly tackled by the
Kuhn-Tucker optimality condition. Since one assumption made in this study is, we
know the activity schedule and locations beforehand, the spatial constraint is also inher-
ently considered within the modelling framework. Besides, the modelling formulation
presented in this paper is ‘tightly coupled’ model, since a single function is used to
model discrete—continuous choices. Possible future work would be developing ‘loosely
coupled’ modelling framework which will explicitly capture the correlation between all
three components such as departure time, mode choice and time expenditure choice. If
we use multi-day travel diaries, there are possibilities that idiosyncratic errors are spa-
tially dependent and serially correlated (Pesaran and Tosetti 2011). In this study, we had
access to a single-day travel diary only. Besides, we did not estimate the location choice
model in this study. Therefore, spatial dependence and spatial correlation are not con-
sidered in this study. We added this limitation in conclusion.
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