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Abstract
Fleet operators rely on forecasts of future user requests to reposition empty vehicles and 
efficiently operate their vehicle fleets. In the context of an on-demand shared-use autono-
mous vehicle (AV) mobility service (SAMS), this study analyzes the trade-off that arises 
when selecting a spatio-temporal demand forecast aggregation level to support the opera-
tion of a SAMS fleet. In general, when short-term forecasts of user requests are intended 
for a finer space–time discretization, they tend to become less reliable. However, holding 
reliability constant, more disaggregate forecasts provide more valuable information to fleet 
operators. To explore this trade-off, this study presents a flexible methodological frame-
work to evaluate and quantify the impact of spatio-temporal demand forecast aggregation 
on the operational efficiency of a SAMS fleet. At the core of the methodological frame-
work is an agent-based simulation that requires a demand forecasting method and a SAMS 
fleet operational strategy. This study employs an offline demand forecasting method, and an 
online joint AV-user assignment and empty AV repositioning strategy. Using this forecast-
ing method and fleet operational strategy, as well as Manhattan, NY taxi data, this study 
simulates the operations of a SAMS fleet across various spatio-temporal aggregation lev-
els. Results indicate that as demand forecasts (and subregions) become more spatially dis-
aggregate, fleet performance improves, in terms of user wait time and empty fleet miles. 
This finding comes despite demand forecast quality decreasing as subregions become more 
spatially disaggregate. Additionally, results indicate the SAMS fleet significantly benefits 
from higher quality demand forecasts, especially at more disaggregate levels.
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Introduction

The growth of mobility services (e.g. Uber and Lyft) and the availability of large data 
sources (e.g. taxi and carsharing data) has prompted significant research in the trans-
portation literature. The advent of fully-autonomous vehicles (AVs) and their expected 
inclusion in mobility service fleets has further motivated research relating to the opera-
tion and management of shared-use AV mobility services (SAMSs). In terms of SAMS 
fleet operations, two research areas have proliferated, namely, forecasting demand/user 
requests (i.e. modeling arrival processes) and developing operational policies/strategies 
to efficiently operate a SAMS fleet dynamically.

The existing literature largely treats these two SAMS problems independently. To 
address the forecasting problem, researchers are developing and comparing demand 
forecasting methods (Sayarshad and Chow 2016). To address the problem of operat-
ing SAMS fleets efficiently, researchers are developing strategies to assign AVs to user 
requests (Alonso-Mora et  al. 2017; Hyland and Mahmassani 2018; Maciejewski et  al. 
2016) and reposition empty AVs (Dandl and Bogenberger 2018; Fagnant and Kockel-
man 2014; Hörl et  al. 2018; Pavone et  al. 2012; Sayarshad and Chow 2017; Spieser 
et al. 2016). The repositioning strategies rely on forecasts of future demand to reposi-
tion empty AVs; hence, these two SAMS subproblems are inherently interconnected.

Figure 1 shows the relationship between demand forecasting (i.e. predictive analytics) 
and SAMS operational decision-making (i.e. prescriptive analytics). Predictive analytics 
methods convert ‘raw’ data into (demand) forecasts; whereas, prescriptive analytics (i.e. 
optimization) methods rely on these demand forecasts to make informed (operational) 
decisions (IBM 2017). Hence, the efficient operation of a SAMS fleet requires reliable 
demand forecasts. Moreover, forecasts only provide real value to a SAMS provider if 
they improve decision making and fleet performance.

Motivated by the emergence of SAMSs and the inherent interconnection between 
demand forecasts and the operational performance of SAMS fleets, this study aims to 
connect these two research areas. This is not simply an academic exercise; mobility ser-
vice providers need to consider both problems (jointly). Specifically, this study aims 
to evaluate and quantify the impact of spatio-temporal demand forecast aggregation on 
the operational performance of a SAMS fleet. Given the sizeable market share of exist-
ing on-demand mobility services that do not allow shared rides (e.g. UberX, traditional 
Lyft, and taxi services), this study analyzes an on-demand SAMS with no shared rides, 
defined in Hyland and Mahmassani (2018).

The remainder of this paper is structured as follows. The next section provides an 
overview of the research problem and the study’s hypothesis. The following section 
briefly discusses the relevant literature. The next section presents the methodological 
framework employed to address the research problem. The following two sections pre-
sent the experimental design and computational results, respectively. The final section 
concludes the paper and presents limitations of the analysis along with future research 
directions.

Fig. 1   Schematic of process to convert data into better decisions
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Research problem and hypothesis

The purpose of this study is to evaluate and quantify the impact of spatio-temporal demand 
forecast aggregation on the operational performance of SAMS fleets. There is an inher-
ent trade-off in the selection of a spatio-temporal aggregation level. From an operational 
standpoint, holding forecast reliability constant, more disaggregate spatio-temporal fore-
casts—for smaller subregions—provide the fleet more valuable information. For example, 
knowing three users will request rides in a 100 m2 area between 9:00 a.m. and 9:05 a.m. 
is more valuable than knowing three users will request rides in a 1000 m2 area between 
9:00 a.m. and 9:30 a.m. However, it is likely that short-term SAMS demand forecast errors 
will increase as forecasts become very disaggregated in space and time due to the law of 
large numbers (statistical variability increases as the number of items to forecast decreases) 
and the underlying demand generation process (Makridakis 1988). Given the inherent 
trade-off associated with choosing a spatio-temporal aggregation level, this study’s work-
ing hypothesis is that:

SAMS fleet performance will initially increase as forecasts (and subregions) become 
more disaggregate; however, eventually, SAMS fleet performance will decrease, or at least 
stagnate, as forecasts and subregions become progressively more disaggregate.

This study also aims to determine the optimal spatio-temporal demand forecast aggre-
gation level to most efficiently operate a SAMS fleet. However, the optimal spatio-tempo-
ral aggregation level depends on a multitude of factors including the demand forecasting 
method, the SAMS operational strategy, and even the characteristics (e.g. density of user 
requests) of the service area. Hence, this study introduces a flexible methodological frame-
work that other researchers and mobility service providers can employ to determine the 
optimal spatio-temporal aggregation level for their own forecasting method, fleet opera-
tional strategy, and service area.

To obtain an upper bound on the operational performance of the SAMS fleet, the study 
runs experiments where the fleet has perfect demand forecasts, across all spatio-temporal 
aggregation levels. To obtain a lower bound, the study runs experiments where the fleet has 
no information about future demand forecasts.

Literature review

A SAMS fleet serving travelers who request rides and want service immediately represents 
a highly-dynamic and stochastic operational problem (Powell et al. 2012). Although, exact 
problem formulations vary based on the mobility provider’s business model and service 
offerings (Hyland and Mahmassani 2017), if the fleet provides on-demand service, the 
underlying problem is a stochastic dynamic vehicle routing problem.

Travel behavior research indicates that short user wait times are likely to be a key fac-
tor in the success of an on-demand SAMS (Krueger et al. 2016). Motivated by this finding, 
researchers addressing fleet management and fleet operational problems are trying to deter-
mine the necessary fleet size to provide high-quality service (Boesch et al. 2016; Brownell 
and Kornhauser 2014; Fagnant et  al. 2015; Spieser et  al. 2014; Vazifeh et  al. 2018) and 
develop operational strategies to efficiently assign AVs to open user requests (Alonso-Mora 
et al. 2017; Hyland and Mahmassani 2018; Maciejewski et al. 2016), respectively. Hyland and 
Mahmassani (2018) present and compare AV-user assignment strategies for an on-demand 
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SAMS without shared rides. Alonso-Mora et al. (2017) use an anytime optimization solution 
approach in which they enumerate feasible user-to-user sharing opportunities, as well as feasi-
ble matches between vehicles and groups of feasible users and then solve a bipartite matching 
problem.

The utilization of advanced (deterministic or stochastic) information can improve the oper-
ation of mobility services. In the context of goods transport, Yang et al. (2004) present the 
generic real-time truckload pickup and delivery problem and present computational results 
as a function of advanced information about demand requests. Tjokroamidjojo et al. (2006) 
and Jaillet and Wagner (2006) quantify the value of advanced deterministic information (i.e. 
known future requests) in dynamic freight routing problems. The on-demand SAMS modeled 
in this study does not allow users to request rides in advance; therefore, the SAMS fleet can-
not obtain advanced (deterministic) information. However, predictive analytics methods and 
big data can help SAMS operators forecast demand and reposition vehicles based on demand 
predictions, thereby reducing user wait times.

In the context of carsharing, Weikl and Bogenberger (2015) introduce an algorithm to relo-
cate vehicles, based on forecasts of future demand, in order to maximize profit. In goods trans-
port, Ichoua et al. (2006) use demand forecasts to decide whether a vehicle should wait in its 
current position for a future demand before continuing its planned tour. Some SAMS studies 
introduce empty vehicle repositioning strategies (Dandl and Bogenberger 2018; Fagnant and 
Kockelman 2014; Hörl et al. 2018; Pavone et al. 2012; Sayarshad and Chow 2017; Spieser 
et al. 2016); however, these studies do not focus on the implications of demand forecast aggre-
gation and/or quality on fleet performance.

The existing literature includes short-term demand forecasting studies related to carshar-
ing (Müller and Bogenberger 2015), taxi (Ihler et al. 2006; Moreira-Matias et al. 2013), and 
public transportation (Zhong et al. 2016). In their survey and comparative analysis of taxi user 
arrival process models, Sayarshad and Chow (2016) categorize forecast methods into offline 
models and online models. Offline models rely entirely on historic data; whereas, online 
models utilize real-time data. Sayarshad and Chow (2016) evaluate the prediction quality of 
two offline and three online forecast models using New York taxicab data. Recent demand 
forecasting research incorporates new features from other data sources (e.g. social media) to 
further improve the quality of online models (Chaniotakis et al. 2016; Tong et al. 2017). In 
a more general analysis (i.e. broader than transportation), Zotteri et al. (2005) present an in-
depth analysis of the impact of aggregation level on forecasting performance.

The current study makes several scientific contributions to the existing literature. First, as 
far as the authors are aware, this is the first study in the passenger or freight transportation 
literature to analyze the impacts of spatio-temporal demand forecast aggregation on the per-
formance of vehicle fleets, where forecast quality varies across aggregation level. Second, the 
research methodology introduced in this study provides a flexible approach that can easily be 
adapted by other researchers and mobility service providers to determine the optimal spatio-
temporal aggregation level with their own demand forecasting methods and fleet operational 
strategies for a particular service area.

Research methodology

To perform the computational analysis and test the hypothesis, this study employs an 
agent-based simulation tool. The simulation tool models the operations of an AV fleet, 
employs an algorithm to efficiently assign AVs to open user requests, and uses demand 
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forecasts to proactively reposition AVs to serve future user requests. After providing an 
overview of the simulation framework, this section details the user requests, the demand 
forecast model, and the SAMS fleet operational strategy employed in this study. The agent-
based simulation model in this study follows the general three-component framework for 
modeling SAMSs that includes a demand (i.e. traveler request) generator, an SAMS fleet 
operator/dispatcher, and some representation of the transportation network (Levin et  al. 
2017; Rigole 2014).

Agent‑based simulation framework

Figure  2 displays a flowchart of the agent-based simulation tool. The simulation tool is 
time-driven and updates the position and status of AVs and users every time step. To ini-
tialize the simulation, the current time, � , is set to zero, the AVs are positioned throughout 
the service region, and the statuses of all AVs are set to idle.

The simulation first updates the current time ( � ← � + Δ� ) by the simulation time step 
( Δ� ) and then checks if � is less than the length of the simulation period T  . If � ≥ T  , the 
simulation ends, otherwise the simulation moves en-route pickup AVs, en-route drop-off 
AVs, and en-route repositioning AVs one step ( Δ� × v , where v is vehicle speed) closer to 
their assigned destination.

Fig. 2   Simulation framework



1980	 Transportation (2019) 46:1975–1996

1 3

After the simulation moves the vehicles, it checks for new user requests with a request 
time ri = � , where ri is the request time of user i, and C is the set of user requests ( i ∈ C ). 
Then the simulation checks to see if it is time to assign AVs to open user requests and 
reposition AVs to different subregions. Every ID, the inter-decision time interval length, the 
fleet simultaneously assigns and repositions AVs. Figure 2 shows that the joint assignment-
repositioning strategy requires spatio-temporal demand forecasts, which are a key input 
in the operational strategy, as they determine how many, when, and where AVs should 
reposition.

The fleet only assigns and repositions AVs every ID for strategic reasons and due to 
computational constraints. Strategically, it is often beneficial to allow user requests to 
queue before assigning AVs to them, especially, if AV-user assignments are final (i.e. if AV 
diversions and user reassignments are not allowed). The constraint comes from the fact that 
it can take more than a few seconds to solve a decision problem that involves assigning and 
repositioning large numbers of AVs.

After moving the AVs, checking for new user requests, and assigning AVs to user 
requests and subregions, the simulation updates the system state via changing the statuses 
of AVs, users, and subregions, if necessary. For example, if an AV reaches its drop-off 
point, the simulation changes the status of the AV from en-route drop-off to idle.

The simulation ends when � = T  , even if AVs are still active and users are still unserved. 
The simulation can output metrics for individual AVs, users, and subregions, such as wait 
time and (empty) vehicle miles. As this study focuses on the performance of the SAMS 
fleet across different spatio-temporal aggregation levels, the computational analysis sec-
tion presents performance statistics at the system level, such as average user wait time and 
empty fleet miles.

User requests

The main input to the agent-based simulation model is the set of user requests. Each user 
request i includes an origin (oi), destination (di), and request time (ri). In the simulation, 
the fleet becomes aware of each user and her origin and destination, at her request time 
(i.e. when the user requests a ride on her smartphone). This study assumes that the SAMS 
serves every user request within the service region; moreover, it assumes users will wait 
indefinitely to be served.

Demand forecasts

As described previously, fleet repositioning algorithms require forecasts of future demands. 
This study employs two sets of demand forecasts to analyze the impact of spatio-tempo-
ral aggregation on SAMS fleet performance. The first set of forecasts come from a sim-
ple time-varying Poisson forecast model based on historical demand (Ihler et  al. 2006; 
Moreira-Matias et  al. 2013; Sayarshad and Chow 2016; Tong et  al. 2017), whereas, the 
second set of forecasts are perfect demand forecasts.

Demand forecast model

Like Moreira-Matias et  al. (2013), this study uses a simplified version of the time-var-
ying Poisson model in Ihler et  al. (2006), which exploits weekly periodicity in demand 
to make forecasts for future days. The model in this paper does not include seasonality 
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terms because it only uses three months of data. Historical request data ( 
{
oi, di, ri

}
∀i∈C

 ) are 
aggregated into spatio-temporal bins. The underlying assumption is that (for example) the 
requests on Sunday between 5:00 p.m. and 5:30 p.m. will be similar to the historic average 
of requests on previous Sundays between 5:00 p.m. and 5:30 p.m. Hence, the forecasted trip 
origin count for subregion k during period h on day-of-the-week d is based on the historical 
average of trip counts in subregion k during period h on day-of-the-week d. Although more 
advanced methods tailored to specific problem instances can likely produce better results, 
this study employs the ‘historical average’ model or time-varying Poisson model because 
of its wide-use in practice and in the literature due to its ease of implementation.

The Poisson distribution is defined in Eq. 1, where � is the rate of new user requests 
entering the system, n is the number of new user requests, and P(n;�) is the probability of 
exactly n new user requests entering the system over a specified time period, given rate �.

However, the rate � is not time-invariant and space-invariant in real-world shared-use 
mobility services; rather, it varies across space and time. Similar to the model in Moreira-
Matias et al. (2013), this study assumes the time- and space-variant rate �k(t) is a function 
of the day of the week d(t), the period of the day h(t), and the subregion k. This functional 
relationship is displayed in Eq. 2, where �k,0 is the average rate over the week in subregion 
k, �k,d(t) is the relative change for day-of-the-week d(t) in subregion k, and �k,d(t),h(t) is the 
relative change for period h(t) on day-of-the-week d(t) in subregion k.

This study varies the size of the period h(t) and the size of each subregion k in order 
to determine the impact of temporal aggregation and spatial aggregation, respectively, on 
demand forecast quality and SAMS fleet performance. The parameters in Eq. 2 are cali-
brated using historical trip request data for various period h(t) sizes and subregion k sizes. 
Multiplying �k(t) by the size of the period h(t) gives the expected number of new user 
requests in subregion k, on day d(t), during period h(t) that is used by the SAMS fleet 
operator.

Perfect demand forecasts

Obtaining perfect demand forecasts requires aggregating the actual request data into dif-
ferent spatio-temporal bins. If spatial aggregation is set at the census tract level and tem-
poral aggregation is set at the one-hour level, then, with perfect forecasts, the SAMS fleet 
knows the exact number of users who will request service originating at each census tract 
every hour of the day. However, the SAMS fleet does not know the exact location within 
the census tract, nor does it know the exact time within the one-hour interval the requests 
will occur. Hence, more disaggregate subregions and time intervals provide the SAMS fleet 
more valuable information.

SAMS fleet operational strategy

This section describes a SAMS fleet operational strategy that jointly assigns AVs to open 
user requests and repositions AVs between subregions.

(1)P(n;�) =
e−��n

n!

(2)�k(t) = �k,0 × �k,d(t) × �k,d(t),h(t)
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Let V denote the set AVs in the SAMS fleet and let j ∈ V  denote an AV in the fleet. 
Moreover, let VI, VP, VD, and VR be the set of idle, en-route pickup, en-route drop-off, and 
en-route repositioning AVs respectively; V =

{
VI ,VP,VD,VR

}
.

Similarly, let C denote the set of open user requests (meaning, they have not been 
assigned to an AV yet) and let i ∈ C denote an open user request. If � is the current time 
and ri is the request time of user i, then user i’s elapsed wait time ( wi ) is wi = � − ri.

Additionally, let R denote the set of subregions in the service area, and let k ∈ R denote 
a subregion. The expected imbalance between AVs and open user requests in subregion 
k ∈ R over the prediction horizon hp is denoted Ik. The expected imbalance Ik is determined 
by taking the difference between expected future demand and planned future supply in 
subregion k between the current time � and the end of the prediction horizon � + hp . The 
expected future demand is the sum of:

•	 the number of open user requests currently in subregion k
•	 the expected number of future requests in subregion k over the prediction horizon hP 

(this value comes from the demand forecasts).

The planned future supply is the sum of:

•	 the number of repositioning AVs and idle AVs currently in subregion k
•	 the number of en-route drop-off and en-route pickup AVs assigned to users who have 

destinations in subregion k (the AVs must drop off their users in subregion k within the 
prediction horizon hp)

The current distance between AV j and open user request i is denoted dij. The distance 
between AV j and the demand-weighted centroid of subregion k is denoted djk.

To solve the stochastic dynamic problem of operating a SAMS fleet, this study employs 
a rolling-horizon solution approach, where every ID the fleet solves an optimization prob-
lem. In this study, the fleet can only control the AVs that are currently idle VI or repo-
sitioning VR. In fact, from the perspective of the fleet, at the decision epoch (every ID), 
there is no difference between AVs that are currently repositioning and AVs that are cur-
rently idle, both sets of AVs can be assigned to travelers or assigned to reposition. Hence, 
let V � =

{
VI ,VR

}
 denote the subset of AVs the fleet controller can (i) assign to open user 

requests, (ii) reposition to subregions, or (iii) choose to be idle and remain in its current 
position.

To model these decisions mathematically, let xij equal one if AV j is assigned to pick 
up user i, and zero otherwise. Moreover, let rjk equal one if AV j is assigned to reposition 
to subregion k, and zero otherwise. Equation 3 displays the objective function driving the 
fleet operator’s decisions. Equation 4–7 constrain the decision set.

(3)
min
xij,rjk

cED
∑

i∈C

∑

j∈V �

xijdij − rasgn
∑

i∈C

∑

j∈V �

xij + cImax

(

0,
∑

k∈R

(

Ik −
∑

j∈V �

rjk

)

− Imin

)

+cED
∑

j∈V �

∑

k∈R

rjkdjk − cVOT
∑

i∈C

wi

∑

j∈V �

xij

(4)
∑

i∈C

xij +
∑

k∈R

rjk ≤ 1 ∀j ∈ V �
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The objective function contains five separate terms that are associated with a penalty 
or a reward. The first term is a penalty term that denotes the cumulative distance between 
each newly assigned AV j and the user i it will pick up. The second term rewards the fleet for 
assigning an AV j to an open user request i. The third term penalizes the fleet for allowing an 
imbalance, greater than the minimum imbalance parameter Imin, in subregion k. The fourth 
term is a cost term that denotes the cumulative distance between each AV j and the demand-
weighted centroid of subregion k it is assigned. The fifth term further rewards the fleet for 
assigning AVs to user requests with a long elapsed wait time.

The parameters set 
(
cED, rasgn, cI , cVOT

)
 convert units of empty vehicle distance, passen-

gers assigned, expected subregion imbalances, and elapsed wait time into monetary units. The 
objective function implicitly makes trade-offs between assigning AVs to open requests now, 
reducing subregion imbalances now, and waiting until later (when other AVs become avail-
able) to assign AVs to open requests or balance subregions.

The constraint in Eq. 4 ensures that each AV j is assigned to at most one open user request 
or subregion k. The constraint in Eq. 5 ensures that no more than one AV is assigned to a 
single open user request. The constraints in Eqs. 6–7 ensure the two sets of decision variables 
take on binary values.

The third term in the objective function with the max() term is nonlinear. Fortunately, it 
is easy to convert this term and the mathematical program in Eqs. 3–7 into a linear integer 
programming problem. The term Zk in Eq. 8 replaces the max() term in Eq. 3. The constraints 
in Eqs. 9 and 10 ensure that Zk takes a value greater than or equal to the original value in the 
max() term of Eq. 3, and zero, respectively. The constraints in Eqs. 4–7 remain.

Fortunately, the constraint matrix (Eqs. 4–7 and 9–10) is totally unimodular; therefore, the 
linear relaxation of the integer program in Eqs. 8–10 and 4–7 always produces integer solu-
tions. Hence, even for large instances of this problem, solutions can be obtained in a reasona-
ble amount of time. This is quite beneficial as the fleet needs to repeatedly resolve the problem 
every ID.

(5)
∑

j∈V �

xij ≤ 1 ∀i ∈ C

(6)xij ∈ {0, 1} ∀i ∈ C,∀j ∈ V �

(7)rjk ∈ {0, 1} ∀j ∈ V �, k ∈ R

(8)

min
xij ,rjk

cED
∑

i∈C

∑

j∈V �

xijdij − rasgn
∑

i∈C

∑

j∈V �

xij + cI
∑

k∈R

zk + cED
∑

j∈V �

∑

k∈R

rjkdjk − cVOT
∑

i∈C

wi

∑

j∈V �

xij

(9)Ik −
∑

j∈V

rjk − Imin ≤ zk ∀k ∈ R

(10)zk ≥ 0 ∀k ∈ R

Constraints Eqn.4 − 7
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Fleet strategy with no demand forecasts

As mentioned previously, this study aims to create a lower-bound on fleet performance 
via testing scenarios that only allow myopic operational strategies that do not consider 
demand forecasts, to replicate the case in which short term demand forecasts are not 
available. Using the variable definitions described above, Eqs. 11–14 define the myopic 
user assignment strategy with no AV repositioning. This math program parallels the for-
mulation in Eqs. 3–7, except it does not include the repositioning terms and constraints.

Experimental design

NYC taxi data

This study utilizes taxi data from New York City provided by the NYC Taxi and Limou-
sine Commission (2017). The yellow taxi data was filtered for trips starting and ending 
in Manhattan since this simplifies the process of aggregating data into subregions of dif-
ferent sizes. The simulation treats the recorded taxi trip start times in the NYC taxi data 
as the users’ request times.

Averaging over all days in April 2016, the number of trips per hour varies between 
2500 trips per hour between 4:00  a.m. and 5:00  a.m. and more than 21,300 trips per 
hour between 06:00 p.m. and 08:00 p.m. For trips per day, the mean is 314,796 trips and 
the standard deviation is 69,122 trips. The mean taxi trip length is 2.8 km (1.7 mi) with 
a standard deviation of 2.0 km (1.2 mi).

We transform the origins and destinations of all taxi records into a metric system and 
create a minimum bounding rectangle. To create the largest forecast subregions, we cut 
the short edge of the minimum bounding rectangle in two and the long edge in eight 
pieces to create approximately square areas. To generate more disaggregate subregions, 
the edges of each subregion are cut in half. Figure 3 displays the resulting forecast sub-
regions for four spatial aggregation levels. This method produces large differences in 
the number of trips per zone (i.e. a high coefficient of variation for daily trips per subre-
gion), but provides an efficient means to test different spatial aggregation levels.

Since the simulation framework only allows movements along the x-axis and y-axis, 
the coordinate system for Manhattan, along with user’s origins and destinations, were 
rotated to align with the gridded street network.

(11)min
xij

cED
∑

i∈C

∑

j∈VI

xijdij − rasgn
∑

i∈C

∑

j∈VI

xij − cVOT
∑

i∈C

wi

∑

j∈VI

xij

(12)
∑

i∈C

xij ≤ 1 ∀j ∈ VI

(13)
∑

j∈VI

xij ≤ 1 ∀i ∈ C

(14)xij ∈ {0, 1} ∀i ∈ C,∀j ∈ VI
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Simulating a full day and using a realistic spatio-temporal demand distribution adds 
practical value to the results presented in the next section. Moreover, given the natural 
spatio-temporal fluctuations in demand throughout a typical day, the SAMS fleet relies 

Table 1   Parameter Settings that 
do not vary across scenarios

Parameter Math notation Value Units

Fleet size 5000 Vehicles
Vehicle speed v 5 Meters/sec.
Drop-off time 15 Sec.
Pickup time 45 Sec.
Simulation length T 21 Hours
Simulation time step Δ� 1 Sec.
Inter-decision interval ID 30 Sec.
Value of time cVOT 21.6 $/hr.
Empty distance cost rate CEDCR 0.3 $/km
Assignment reward rasgn 2.1 $/user
Imbalance penalty cI 1.5 $/user
Minimum imbalance Imin 1 User
Prediction horizon hp 30 Minutes

Fig. 3   Subregion layout for different spatial aggregation levels (official NYC taxi subregions for Manhattan 
are drawn in the background)
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on demand forecasts to reposition AVs in advance of future demand surges. The demand 
forecast model was calibrated based on three months of historical data.

A preliminary analysis of the NYC taxi trip request data supports the choice of a 
historical average forecast model that segments the data by day-of-the-week. In the case 
of hourly demand forecasts for the entire borough of Manhattan, not segmenting by day-
of-the-week results in a coefficient of variation (CV) for taxi trip count of 20%. The 
CV is between 3% (Wednesdays) and 7% (Saturdays) when the data are segmented by 
day-of-the-week.

Fig. 4   Taxi trip density during the morning (a–c) and evening (d–f) on Wednesday, 2016-04-06 for trip 
origins (a and d), trip destinations (b and e), and net trips (c and f) where red (green) areas represent more 
(fewer) trip origins, trip destinations, and net trips, respectively. (Color figure online)
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Figure  4 displays demand density across Manhattan during the morning 
(8:00 a.m.–11:00 a.m.) and evening (5:00 p.m.–8:00 p.m.) for taxi users. These plots were 
created using the ArcGIS ‘kernel plot’ function. The density plots on the left-side and in 
the middle display the density of trip origins, and destinations, respectively. The density 
plots on the right-side display the net difference between trip destinations and trip origins. 
In the density plots on the right-side, areas in red (green) denote areas where there are 
more (fewer) trips terminating than originating. As the fleet serves demand throughout the 
day, without repositioning AVs, red (green) areas are likely to have a surplus (deficit) of 
AVs. Hence, repositioning empty AVs, from surplus areas to deficit areas, should improve 
the operational performance of SAMS fleets.

Parameter settings

Table  1 displays the parameter settings in the computational analysis that do not vary 
across scenarios. Test simulations with 3500 to 6000 AVs indicate fleet size is a crucial 
parameter for this study. On the one hand, very small fleet sizes essentially preclude repo-
sitioning trips because all vehicles are continuously busy serving a growing queue of open 
user requests. On the other hand, very large fleet sizes allow the fleet to easily serve all user 
requests without any subregions ever experiencing a deficit of AVs. Test simulations indi-
cated that 5000 AVs was a reasonable fleet size to both operate an on-demand SAMS with 
no shared rides, and to answer the research problem in this study.

The 5000 AVs travel at a fixed rate of 5 m/s (11 mph) because this is approximately the 
average taxi speed in Manhattan. The simulation assumes AVs take 15 s to drop off a user 
and 45 s to pick up a user.

Each simulation runs from 3:00 a.m. to 11:59 pm (i.e. T = 21 h); however, user requests 
only enter the system between 3:00 a.m. and 10:30 p.m. The AVs finish picking up and 
dropping off users between 10:30  p.m. and 11:59  p.m. This procedure ensures the fleet 
can serve all requests in all scenarios. In all scenarios, all the AVs are initially located 
(at 3:00 a.m.) in one location. This forces the AVs to reposition before the morning peak 
period.

The simulation time step Δ� is one second. The inter-decision interval ID is 30 s, which 
is long enough to solve the optimization problem instances in this study. Allowing user 
requests to queue over 30 s also allows the fleet controller to make efficient AV-user assign-
ments. The impact of ID on the operational performance is another interesting research 
area; however, it is beyond the scope of this study.

The value of wait time cVOT and the empty distance cost rate cED used in the objective func-
tion are $21.6/hr. and $0.3/km ($0.48/mi), respectively. These values coincide with estimates 
of value of time in the literature and the U.S. governmental mileage rate (Internal Revenue 
Service 2018). The reward for assigning an AV to open user request rasgn is $2.1/user. Given 
the empty distance cost rate cED of $0.3/km, AVs will not be assigned to new user requests if 
the AVs are more than 7.0 km (minus cVOT × wi) away from the new request. A smaller assign-
ment reward value would increase user wait times but decrease empty fleet kilometers. The 
imbalance penalty cI is $1.5/user, indicating an empty AV will only be considered for reposi-
tioning to an imbalanced subregion, if the AV and subregion are less than 5.0 km away from 
each other. The parameter values chosen by an SAMS fleet operator will likely depend on how 
they want to position themselves. If the SAMS fleet is concerned with user wait times they can 
choose larger values for value of wait time cVOT, and the assignment reward rasgn. If they are 
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more concerned with offering low prices through keeping their operational costs down they 
can decrease the assignment reward rasgn and the imbalance penalty cI to avoid empty miles.

In this study, the minimum imbalance parameter Imin is set to 1 vehicle. This parameter 
allows the fleet to control the aggressiveness of empty AV repositioning. Larger values of Imin 
should decrease empty repositioning miles while increasing average user wait times; however, 
this analysis is beyond the scope of this study. The prediction horizon hp is 30 min.

Scenarios

Given the parameter values listed in the previous subsection, the computational analysis 
involves simulating the performance of a SAMS fleet under a variety of scenarios. The 
scenarios vary:

•	 Forecast type: Perfect and model forecasts
•	 Spatial partition for demand forecasts (side 1 length| side 2 length| area):

•	 2.83 km | 2.65 km | 7.49 km2

•	 1.41 km | 1.32 km | 1.87 km2

•	 0.71 km | 0.66 km | 0.47 km2

•	 0.35 km | 0.33 km | 0.12 km2

•	 Temporal aggregation for demand forecasts: 5-min, 30-min, and 60-min
•	 Request data: 30 days of taxi data from April 2016

In combination, this represents 2 × 4x3x30 = 720 simulations/scenarios. The analysis 
also includes 30 experiments for the no forecast/no AV repositioning case. In the scenarios 
with no repositioning, the fleet solves the math program in Eqs. 11–14 every ID.

Results

Demand forecast results

This subsection presents statistical error measurements for demand forecasts across dif-
ferent spatio-temporal aggregation levels. The following two metrics are used to measure 
statistical error:

where NT is the number of time intervals and Znz is the set of subregions containing 
demand ( Nnz =

|
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|
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h
k
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Figure 5 displays the average statistical error values for all days in April 2016 for dif-
ferent aggregation levels. The figure shows that errors increase with both shorter time 
intervals and smaller subregions. This finding is consistent across the two error measures 
employed in this study—root mean squared relative error (RMSRE) and symmetric mean 
absolute percentage error (sMAPE). In general, the RMSE metric penalizes large individ-
ual errors between actual and observed demand ( Xh

k
− Zh

k
 ) more severely than the sMAPE 

Fig. 5   Average demand forecast errors for different spatial (x-axis) and temporal (line type) aggregation 
levels according to RSMRE (top) and sMAPE (bottom) error measures
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metric. However, the trends in Fig.  5 are similar for both error measures. The relation-
ship between temporal aggregation as well as spatial aggregation and statistical forecast 
error appears to be non-linear. A rigorous analysis of these relationships requires more data 
points and is beyond the scope of this paper.

SAMS fleet performance results

This subsection presents the results of the computational analysis that was designed to 
evaluate and quantify the impact of spatio-temporal demand forecast aggregation on SAMS 
fleet performance. It includes two key performance metrics: average user wait times and 
the share of empty fleet miles.

Figure 6 displays average user wait time as a function of spatial aggregation and fore-
cast type (the temporal aggregation level is 5 min in Fig. 6). Each point on the model and 
perfect forecast lines represents the mean of thirty separate experiments (i.e. the 30 days of 
April 2016) for a single spatial aggregation level. As the scenarios with no repositioning 
do not depend on forecast aggregation, the dotted line represents the mean of one set of 30 
experiments.

There are several important findings displayed in Fig. 6. First, average user wait time 
increases significantly with spatial aggregation; i.e. using more disaggregate demand fore-
casts and smaller subregions significantly improve fleet performance in terms of average 
user wait time. Second, it is not until demand forecasts are spatially highly-disaggregate 
and subregions are small that a fleet using perfect demand forecasts begins to significantly 
outperform a fleet using model forecasts.

These first two findings provide some evidence to reject (and support) the study’s 
hypothesis. Although Fig.  6 shows continued improvement at progressively more disag-
gregate levels, a comparison of the SAMS performance under perfect forecasts and model 

Fig. 6   Average user wait time as a function of subregion edge length (x-axis) and forecast type (line color)
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forecasts suggests that it becomes progressively more difficult to improve fleet performance 
at highly-disaggregate levels using model forecasts with significant errors. This indicates 
that SAMS providers should benefit from improving demand forecast methods, especially 
at more spatially disaggregate levels.

Third, a fleet using no information about advanced requests and no empty AV reposi-
tioning outperforms a fleet using perfect demand forecasts in terms of average user wait 
times, when subregions are large in this study. This finding suggests that the SAMS opera-
tional strategy employed in this study is suboptimal in general, but especially when the 
service region is divided into large subregions. One potential method to improve the SAMS 
operational strategy includes making sure the AVs do not cluster in subregion centroids or 
at the edge of subregions. The operational strategy could force the available/empty AVs 
to spread out within their current subregions. This would decrease the distance between 
new user requests and the available AVs in their subregion. This improvement would likely 
have the biggest positive impact when subregions are large. Additionally, adjusting the 
parameters in Eq. 9 to emphasize reducing wait times and de-emphasize reducing empty 
fleet miles, may improve the average user wait times for large subregions.

Figure  7 displays the percentage of fleet miles that are empty across different spatial 
aggregation levels. The solid lines at the top of the figure represent total empty miles; 
whereas, the small vertical dash lines in the middle represent empty pickup miles and the 
horizontal dashed lines at the bottom represent empty repositioning miles. Total empty 
miles are the summation of empty pickup miles and empty repositioning miles.

The results in Fig. 7 are quite interesting, especially in the context of Fig. 6. Once again, 
fleet performance (measured in total fleet miles) improves with more disaggregate demand 
forecasts and smaller subregions. This finding suggests that there is not a trade-off in terms 
of operational costs and service quality when choosing a spatial aggregation level; rather, 
more disaggregate forecasts and smaller subregions perform better across both metrics.

Fig. 7   Empty fleet miles as a function of subregion edge length (x-axis), type of empty miles (line type), 
and forecast type (line color)
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Additionally, Fig. 7 indicates why/how more disaggregate forecasts and smaller subre-
gions produce the shorter wait times in Fig. 6. Empty pickup miles significantly decrease 
for smaller subregions, meaning AVs are positioned closer to new user requests when sub-
regions are smaller, effectively decreasing user wait times. This significant decrease in 
empty pickup miles more than offsets the increase in empty repositioning miles for smaller 
subregions.

Table 2 shows the computational results in tabular form for all three temporal aggre-
gation levels. The table indicates that for the SAMS operational strategy in this study (i) 
temporal aggregation level had minimal impact on fleet performance, and (ii) the relation-
ship between spatial aggregation and fleet performance holds across temporal aggregation 
levels. This first result likely does not hold in general. In fact, it suggests that the SAMS 
operational strategy employed in this study fails to effectively use higher-resolution tem-
poral forecasts to improve operational performance. The authors are working to improve 

Table 2   Complete SAMS fleet performance results as a function of forecast type, spatial aggregation, and 
temporal aggregation

Forecast type Edge length (km) Avg. user wait 
time (min)

Empty pickup 
miles share (%)

Empty reposition 
miles share (%)

Total empty 
miles share 
(%)

None NA 1.95 16.7 0.0 16.7
5-min temporal aggregation
 Model 2.7 2.05 17.0 3.1 20.1

1.35 1.91 15.4 3.7 19.1
0.68 1.80 13.8 4.6 18.4
0.34 1.77 12.2 5.3 17.5

 Perfect 2.7 2.06 17.0 3.2 20.3
1.35 1.90 15.5 3.9 19.4
0.68 1.76 13.9 4.9 18.8
0.34 1.65 12.1 6.2 18.3

30-min temporal aggregation
 Model 2.7 2.05 17.0 3.1 20.1

1.35 1.91 15.4 3.7 19.1
0.68 1.80 13.8 4.6 18.4
0.34 1.78 12.2 5.3 17.5

 Perfect 2.7 2.06 17.0 3.2 20.2
1.35 1.91 15.5 3.8 19.3
0.68 1.79 13.9 4.7 18.6
0.34 1.74 12.2 5.6 17.7

60-min temporal aggregation
 Model 2.7 2.05 17.0 3.2 20.1

1.35 1.91 15.4 3.8 19.1
0.68 1.80 13.8 4.6 18.4
0.34 1.77 12.2 5.4 17.5

 Perfect 2.7 2.06 17.0 3.2 20.3
1.35 1.91 15.5 3.8 19.4
0.68 1.78 14.0 4.8 18.7
0.34 1.69 12.2 5.8 18.0
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the SAMS operational strategies in this paper to properly capture the temporal aspects of 
demand forecasts.

Conclusion

Summary and implications

This study evaluates and quantifies the impact of spatio-temporal demand forecast aggre-
gation on the operational performance of an on-demand SAMS with no shared rides. This 
research problem combines two timely research areas, namely, forecasting demand for 
mobility services and developing strategies to dynamically operate SAMSs efficiently. The 
existing literature largely treats these problems independently despite their inherent inter-
connection. Hence, the research problem and methodological framework presented in this 
paper have significant practical value to SAMS providers who need to forecast demand in 
order to efficiently operate their AV fleets.

The computational analysis illustrates that more disaggregate forecasts significantly 
improve SAMS fleet performance in terms of empty fleet miles and user wait times. As 
forecasts become more disaggregate, the SAMS fleet more effectively repositions AVs into 
smaller subregions, thereby decreasing average user wait times and empty pickup miles. 
The decrease in empty pickup miles more than offsets the increase in empty repositioning 
miles. Additionally, the results indicate that while demand forecast quality has little impact 
on fleet performance when spatial aggregation is high, as demand forecasts become more 
disaggregate, forecast quality begins to significantly impact operational performance.

These findings suggest that (i) there are significant benefits associated with divid-
ing service areas into smaller subregions to forecast demand and reposition AVs, and (ii) 
improvements in demand forecasting methods, particularly for disaggregate spatial scales, 
can produce significant value to on-demand SAMSs in terms of operational performance.

Limitations and future work

This study presented a variety of challenges in terms of conducting a truly scientific analy-
sis to test the study’s hypothesis. The study design clearly defines the demand forecast-
ing model, the SAMS operational strategy, the NYC taxi data, and the modeling assump-
tions. Nevertheless, the SAMS operational strategy (i.e. the assignment and repositioning 
algorithm) is not an optimal strategy because it is highly unlikely that an optimal strategy 
exists for such a highly-dynamic, stochastic, and large problem. Hence, there is no way to 
guarantee results will hold across SAMS operational strategies. Moreover, there is no way 
to guarantee the results will hold across different demand forecasting methods, and in dif-
ferent service areas.

This limitation suggests the research problem presented in this paper along with the 
flexible methodological framework represent more significant scientific contributions than 
the results for one demand forecasting method, one set of taxi data, and one SAMS opera-
tional strategy. Future research should employ the methodological framework presented in 
this study, but use different SAMS operational strategies, demand forecasting methods, and 
different user request data to further test this study’s hypothesis.

The 0.34-km edge length is the smallest spatial scale presented in this study due to 
computational constraints. Smaller edge lengths increase the computational time to solve 
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the joint assignment-repositioning problem. The authors are working to improve compu-
tational performance and test more disaggregate spatial subregions. The authors are also 
working to improve the SAMS operational strategy and its exploitation of the demand fore-
cast output.

Another future research area of interest is the impact of demand forecast errors on 
SAMS operational performance. The authors plan to test different demand forecast models, 
which will undoubtedly vary in terms of their demand forecast errors, to determine the 
relationship between demand forecast errors and SAMS operational performance. It is also 
possible to employ a single model, or perfect forecasts, and systematically create errors in 
the forecasts to answer this research question. In this study, forecast errors are also a func-
tion of the different demand data; i.e. the different days in the taxi data. A study design, 
which only varies forecast errors while keeping demand and aggregation level constant, 
could also highlight if any forecast error measure correlates better with fleet performance 
results.

Finally, the authors are working to more effectively handle temporal components of the 
short-term demand forecasts within the repositioning strategy.
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