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Abstract
Two dynamic, gap-based activity scheduling models are tested by applying a short-run 
microsimulation approach to replicate workers’ travel/activity patterns over a 1-week 
time period. In the first model, a two-level work episode scheduling model is applied to 
schedule weekly work episodes (Dianat et al. in Transp Res Rec 2664:59–68, 2017. https​
://doi.org/10.3141/2664-07). This includes joint choices of working or not on each day and 
work episode duration and start time in case of choosing to work. Assigning higher prior-
ity to scheduling work episodes, and assuming night sleep to be pre-determined, provides 
a weekly “skeleton schedule”. Non-work/school (NWS) episodes are then generated and 
scheduled in the available gaps as a joint choice of activity type and destination followed 
by a continuous time expenditure choice. The second model applies the same mathemati-
cal framework as the NWS model for scheduling all activity types including work/school, 
considering only night sleep as the pre-determined skeleton schedule. This exercise allows 
us to study the impact of assigning a higher priority to scheduling work/school activities 
on complete out-of-home travel/activity pattern prediction, compared to the alternative 
hypothesis, which is scheduling all the activities simultaneously. Comparing the simula-
tion outcomes of the two models with the observed dataset reveals that organizing NWS 
episodes around the schedule skeleton not only is behaviorally more representative but also 
increases the accuracy of the predicted NWS episodes’ patterns. Moreover, applying the 
work scheduling model results in a more accurate prediction of the weekly work schedule 
compared to the second model.
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Introduction

Activity-based models (ABMs) emerged to overcome deficiencies in traditional trip-
based models. The concept behind ABMs is that travel is a derived demand, motivated 
by individuals’ needs to participate in spatially distributed activities. Most ABMs in 
the literature fix individuals’ routine activities and schedule non-work/school (NWS) 
episodes around them. Work is a primary activity in a worker’s schedule with a regular 
nature, attributes of which are normally defined by an external agent (employer) within 
a longer planning horizon (e.g. at least before the commencement of the week) com-
pared to NWS activities. For work episodes that do not have a regular nature the argu-
ment of commitment to an external agent remains valid, still indicating a level of pre-
planning. Moreover, work locations are normally fixed for most workers in the short-run 
and are generally not contingent on the daily schedule. Work episodes also impose spa-
tio-temporal constraints on other activities and limit individuals’ potential action space, 
as they consume a significant portion of the daily time budget. Therefore, it is reason-
able to assume that all work episodes have priority over other activities in scheduling.

For example, CEMDAP (Bhat et al. 2004) is an ABM which first models individu-
als’ work/school participation. Participation in other activities is then modeled within 
a fixed priority order applying econometric models. ALBATROSS (Arentze and Tim-
mermans 2004; Rasouli et  al. 2018) is a rule-based ABM which fixes all work and 
school activities in the schedule, as they include formal commitments, and applies a 
set of complex rules to schedule flexible activities and plan their attributes in a sequen-
tial manner. TASHA (Miller and Roorda 2003) generates the number of daily episodes 
of each activity type and the start time and duration of each episode based on empiri-
cal joint frequency distributions. Activity episodes are scheduled using priority rules 
with work episodes having the highest priority. PCATS (Kitamura and Fuji 1998) fixes 
routine activities and generates other activity types continuously until the schedule’s 
feasible time–space prisms (gaps) are filled. Activity type, mode, and destination are 
planned sequentially in PCATS applying nested logit models. Finally, duration of the 
episode is chosen based on the observed distributions. ADAPTS (Auld and Mohamma-
dian 2012; Auld 2011; Langerudi et al. 2017) determines work and school episodes first 
and then generates discretionary activities using a competing hazard model. Planning 
horizons and degree of episodes’ attributes’ flexibility determine their scheduling order. 
Episode start time and duration are chosen from observed distributions. CT-RAMP first 
schedules mandatory activities (Paul et  al. 2015) and then assigns NWS activities in 
the open segments of the day in a predefined order (Vyas et  al. 2015). Next, choices 
of within-segment activity sequencing, destination and tour formation are made jointly 
(Paleti et al. 2017). MATSIM’s (Medina 2016) extended version fixes mandatory activi-
ties as the weekly schedule skeleton. Then, a utility-maximization approach finds the 
number of the non-mandatory activities, with their relative sequence and attributes, 
while the trip algorithm finds the travel time and mode.

Arguments exist in the literature, however, against giving scheduling priority to 
work. In a few ABMs work is not considered as a qualitatively different activity rela-
tive to NWS activities and is modeled simultaneously with the rest of the activities. 
CUSTOM (Habib 2015) and C-TAP (Märki et al. 2014) both schedule all activity types 
simultaneously without assigning scheduling priority to work. CUSTOM applies a dis-
crete–continuous Random Utility Maximization (RUM) choice model to jointly gener-
ate episode types with their chosen destination and duration. C-TAP applies heuristics 
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to schedule episodes, considering future opportunities and history of activities at each 
decision point, within an open planning horizon.

Fixing routine activities as the schedule skeleton is a fundamental assumption in devel-
oping the structure of an ABM. The impact of this assumption relative to the “all-activi-
ties” approach, however, on predicted travel/activity patterns is not tested in the literature. 
It is essential to conduct a hypothesis test to determine which alternative hypothesis best 
fits observed behavior (Miller 2005). For this purpose, this study applies two microsimula-
tion models of travel and activity scheduling in a fully econometric framework to replicate 
workers’ path through time and space over a 1-week time period. The two models differ in 
the way they schedule work activities. The activity/travel patterns in the first ABM result 
from a combined work episode scheduling model (Dianat et  al. 2017) and a NWS epi-
sode scheduling model. In this model, weekly work episodes are first scheduled, gener-
ating a skeleton schedule. This skeleton schedule contains gaps of available time within 
which NWS activities can potentially be scheduled. In the second model, work is scheduled 
simultaneously with all other activities, applying the same mathematical framework as the 
NWS episode scheduling model. The predictions of the two simulation models are then 
compared with the observed dataset. In the rest of the paper, the first model is referred to as 
the “combined model” and the second model as the ‘all-activities” model.

In the following sections, an overview of the method and data are presented followed 
by the discussion of the simulation outcomes. Finally, a brief conclusion and discussion of 
future work are presented.

Method

Combined model

The combined model consists of three levels. The first two levels apply a work episode 
scheduling model (Dianat et al. 2017) to generate the skeleton schedule. In the first level, 
an individual’s weekly preplanned work schedule is generated, consisting of work episodes 
planned prior to the start of the week. The available time budget on each day is an indi-
vidual’s specific time awake, which is a model input. Starting from Monday, the choice of 
working or not that day is first simulated using a nested logit model. If working is chosen, 
the work episode’s duration and start time are determined. Duration is simulated in 5 min 
time intervals applying a RUM-based continuous duration choice model discussed later 
in the paper and the continuous start time is simulated, applying the inverse of a cumula-
tive survival function, assuming a Weibull distribution for the baseline hazard, as further 
discussed in (Dianat et al. 2017). The scheduled preplanned work episode on each day is 
the input for the subsequent days’ schedule generation. The same simulation procedure is 
repeated for each day in the week.

The generated weekly preplanned work schedule is the input to the second stage in the 
model, which generates any unplanned work episodes. These are added to the skeleton 
schedule along with the planned work episodes. The available time each day is calculated 
by subtracting the simulated preplanned work episode duration from the individual’s awake 
time. Starting from Monday, unplanned work episodes are scheduled for the entire week 
with the same procedure discussed for preplanned work episodes.

The outcomes of these first two levels of the combined model determine gaps in the 
schedule where an individual can potentially participate in NWS episodes. An individual’s 
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wake up time is also an input to the model. NWS episode scheduling starts from the first 
gap on Monday with the binary decision of whether to stay home for the duration of the 
entire gap or to undertake an out-of-home NWS activity episode during this gap, prior to 
the next skeleton activity, which defines the end time point for this gap. Two cases exist, 
depending on whether: (a) the next skeleton activity is a work/school episode, or (b) night 
sleep (i.e. no more out-of-home skeleton activities exist in the schedule for the day cur-
rently being scheduled). These two cases are modelled separately since quite different util-
ity functions are found to exist for the two cases. A binary logit model used to choose 
between staying home or engaging in an out-of-home NWS activity episode during gap g:

where Vsg
 is the difference in the utility of staying home relative to engaging in an out-of-

home NWS activity in gap g for case “s”, where s = a is when the next skeleton activity is 
work/school and s = b is when the next skeleton activity is night sleep. Vsg

 is sum of the 
explanatory variables such as situational variables (e.g. time of the day, day of the week) 
and socio-demographic variables the sequence of which is shown by index p ⋅ μsg is activ-
ity type choice scale parameter which is set to 1. For those individuals with a gap duration 
equal to the travel time to the subsequent fixed activity, going to the next skeleton compo-
nent is deterministic.

If participation in an NWS episode is chosen, the time expenditure at home before 
departing is first simulated to determine the first trip’s start time. Next, is the choice of the 
episode’s type and destination, using a nested logit model with activity type choice in the 
upper level. In each sequence k of scheduling, activity type choice probability is calculated 
using Eq. 3, where Vak

 is the utility function for activity type “a” in the feasible activity 
type choice set Ak . As defined in Eq. 4, activity type utility (Vak

) is defined as summation of 
the explanatory variables such as situational variables and socio-demographic variables the 
sequence of which is shown by index m and normalized expectations of destination choice 
(Ilk ) , except for the activity types with a known location (home/work/school). The latter 
component of the utility function captures the influence of the utility gained from the feasi-
ble destinations individual can travel within the time budget on the choice of activity type. 
�ak

 and �lk
 are activity type and destination choice scale parameters, respectively.

Given Eq. 4, the first step in simulating episode type and destination is determining the 
feasible destination choice set to calculate the normalized destination choice expectations 
added to the activity type utility function. The feasible destination choice set is formed by 
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utilizing Hagerstränd’s time–space prism concept (Hagerstraand 2005) to capture the effect 
of time–space constraints on destination choice. The prism’s origin vertex is the current 
location of the person; however, as at the point of decision-making the individual’s next 
activity is not yet scheduled, the prism’s terminal vertex is assumed to be the posterior 
fixed activity. The feasibility of each alternative destination in the universal choice set to be 
chosen for an episode is checked based on the ratio of the time budget to the round travel 
time from the origin of the trip to a given location ( ttol ) and from this location to the next 
fixed activity in the schedule ( ttlS ), see Eq. 5. M is the lower bound of the ratio for a loca-
tion to be feasible, which is more than one to assure there would be enough time for execu-
tion of the activity. M is chosen in a trial and error process during the model’s estimation 
and testing.

As the size of the feasible choice set might still be large, for computational purposes, the 
destination choice component of the framework is estimated based on a maximum of 10 
randomly chosen alternatives including the chosen location from the feasible set, while in 
application of the model, the entire feasible set is used. The location utility is:

where l refers to the destination alternative, x and β are vectors of destination attributes 
and their corresponding parameters, and Lk is the choice set. In calculating the destination 
choice logsum term, theoretically, all feasible destinations should be considered, not just 
the restricted choice set used in estimation. To adjust for this, the maximum expectation is 
calculated as follows (Habib 2015):

After an episode type is chosen, its destination is simulated using Eq. 8.

Scale factors of activity type and destination choice are included to capture the correla-
tion between alternatives of the two choices in each scheduling sequence, defined as in 
Eqs. 9 and 10 to satisfy the assumed hierarchical nest structure in each sequence (Habib 
2015), where x’s are sets of explanatory variables and � are their corresponding parameters.

Lastly, the episode’s duration is simulated using a RUM continuous choice model. The 
model finds each episode duration relative to a composite activity, which includes all the 
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unplanned activities in the schedule. The composite activity represents the effect of time 
pressure from unplanned episodes on the current episode’s time expenditure and implies 
time reservation for the unplanned activities. Thus, it implies an explicit future look-ahead 
in the schedule and captures the trade-offs between activities over the course of one gap. In 
this approach the probability of assigning tk unit of time to the chosen episode in sequence 
k is (Habib 2011):

tc is the time remaining for the composite activity under time budget T. vc and vk are util-
ity functions of time expenditure at the composite activity and the chosen episode, respec-
tively. �kwk in Eq. 13 is the baseline utility function which is the marginal utility gained by 
spending zero time at the chosen episode. wk is a set of explanatory variables and �k are 
coefficients. �k,c is the satiation parameter which captures the diminishing marginal utility 
in an episode by increasing the time assigned to it (Bhat 2008). �k should be less than 1 and 
is parameterized as shown in Eq. 14 (Habib 2015). x is the set of explanatory variables and 
ρ are the corresponding coefficients.

�tk
 is the scale parameter for time expenditure in sequence k which is the inverse of the 

choice variance and is set to be positive:

where � x are a set of explanatory variables with their parameters.
After execution of each episode, the remaining time budget within the current gap for 

the next scheduling sequence is calculated by subtracting the sum of the duration of the 
current episode and travel time to get there from the previous sequence’s time budget. 
If there is sufficient time left, choice between participating in another NWS episode or 
returning home is determined. Returning home is only feasible if the available time budget 
is larger than the round travel time to home and from home to the next skeleton activity. 
Home and work/school locations are exogenous to the model.

For gaps that start at an out-of-home activity location, the choice set includes participat-
ing in an NWS episode or returning home. In each case the model framework discussed 
above is applied. The start time of the first trip, in this case, is the end time of the posterior 
fixed activity, assuming that the person starts the next trip as soon as the fixed activity is 
finished.

Finally, the likelihood for the entire week scheduling choices is:
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Here k, g, and n indicate scheduling sequence, gap sequence, and the individual, respec-
tively; �sgn is 1 if individual n chooses alternative s at the beginning of the gap g and 0 oth-
erwise; �akgn is 1 if individual n chooses activity type “a” in sequence k of gap g and 0 oth-
erwise; �lkgn is 1 if individual n chooses location “ l ” in sequence k of gap g and 0 
otherwise.

The likelihood function of the model is closed-form and is estimated using the BFGS 
gradient search algorithm in the GAUSS software (2014).

All‑Activities model

Knowing night sleep’s start time and duration, the all-activities model is applied to gen-
erate the sequences of episode participation. In this model, work/school episodes are not 
treated differently from NWS episodes, and so the first two levels of the simulation proce-
dure applying the combined model are not needed. As the only skeleton component in this 
part of the study is night sleep, there are seven initial gaps (days of the week) for all the 
workers with a duration equal to the time period they are awake, and all initial gaps origi-
nate from home. Work/school locations are exogenous to the model, while work durations 
are endogenously chosen. The all-activities model simulation starts on Monday with the 
choice of staying home for the entire day or participating in an out-of-home episode. If par-
ticipation in an out-of-home episode is chosen, the same framework as the NWS schedul-
ing model is applied. The terminal vertex of the prism for forming the destination feasible 
set is always home. Therefore, in this model workers have larger time budgets compared 
to the NWS model which results in larger feasible choice sets. For consecutive scheduling 
sequences, there are choices of participating in another activity or returning home. After 
scheduling each episode, the remaining time budget is compared with the travel time to 
get home, which is the location of the next skeleton component (night sleep). If there is 
enough time left to participate in another NWS episode, simulation continues; otherwise, 
the individual would return home. The same simulation procedure is repeated for the rest 
of the days of the week and all the workers in the dataset to simulate the entire week’s 
travel/activity pattern.

The simulation framework of alternative travel/activity pattern prediction models are 
represented in Fig. 1.

Empirical model

The dataset used to estimate the models is the CHASE dataset collected in Toronto in 
2002–2003. The dataset includes one full week activity/travel diary of 416 individuals 
from 262 households (Doherty and Miller 2000). Activity types in CHASE are aggregated 
into 11 classes in this study as follows:

	 (1)	 Work/school related activities
	 (2)	 Work/school
	 (3)	 Social/entertainment/recreational activities
	 (4)	 Household(HH) obligations and basic needs
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	 (5)	 Services/medical (e.g. banking)
	 (6)	 Return home
		    Shopping activities:
	 (7)	 Convenience store/drug store shopping/minor grocery
	 (8)	 Major grocery
	 (9)	 Housewares/other shopping types
	(10)	 Clothing/personal items
	(11)	 Work at home

Estimation results of the NWS scheduling model and all-activities model are shown in 
Table 1. Estimation results of the work scheduling model are presented in Table 2. These 
results are discussed in detail in (Dianat 2018; Dianat et al. 2017). Because of the small 
sample size, variables with t-statistics smaller than a 95% confidence interval threshold are 
retained where they are of correct sign and policy relevance. Some of the variables such as 
gender which are not policy sensitive are still kept in the model, as otherwise their effect 
will be captured within the rest of the variables’ coefficients and will introduce error into 
the model application. 

Choice of the type, destination and duration of the 
NWS episode(s) until there is no time left 

Choice of making no trip in the gap or participate 
in an NWS episode

Application of the NWS scheduling 
model

Activity/travel 
schedule

Unplanned work participation, associated duration 
and start time

Preplanned work participation, associated duration 
and start time

Application of the work scheduling 
models

Schedule gaps

Fig. 1   Combined and all-activities scheduling simulation models
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Table 1   Estimation results of the nws model with M = 1.5 and all-activities models with M = 3

All-activities model NWS model

Parameter T-stat Parameter T-stat

(I) Activity type choice (Eqs. 2,  4)
 (a) Stay home for the entire day/gap (Eq. 2)
  Constant − 4.89 − 8.47 − 2.1 − 13.78
  Non-worker/teleworker 1.03 7.07 0.44 2.90
  Non-student 0.18 1.23 − a –
  Logarithm of age 0.42 2.69 – –
  Weekend 0.92 5.16 0.22 1.19
  Female – – 0.18 1.18

 (b) Staying home until going to the next work/school 
skeleton component (Eq. 2)

  Constant – – 0.43 4.76
  Gap duration (h) – – − 0.65 − 34.41
  # of kids – – − 0.07 − 1.42
  Time of day before 8 am – – 3.13 29.11

 (c) Work/school related (Eq. 4)
  Constant 1.10 6.30 − 3.15 − 17.61
  Time of the day before 12 pm – – 0.83 5.79
  Student – – 0.62 3.98
  Weekdays – – 1.21 5.86
  Weekends − 0.90 − 5.34 – –
  Time of day between 9 am to 12 pm − 0.59 − 2.97 – –
  Time of day between 12 pm to 5 pm − 1.50 − 6.46 – –
  Time of day after 5 pm − 2.28 − 12.11 – –
  Full-time worker 0.40 3.54 – –
  Scheduled work episodes on the same day 0.44 5.82 – –
  Full-time tele-worker 1.75 11.09 – –
  Occupation type: Services 0.39 5.05 – –

 (d) Household obligation (Eq. 4)
  Constant − 0.70 − 1.28 − 0.6 − 5.2
  Time of day between 12 pm to 5 pm − 0.81 − 4.73 − 0.81 − 5.47
  Time of day between after 5 pm − 0.74 − 3.93 − 0.79 − 4.98
  (Thu/Fri) * worker – – 0.33 1.80
  Not Friday * non-worker 0.44 1.32 0.09 0.66
  Ln(age) − 0.12 − 0.91 – –
  Worker 0.44 1.46 – –
  # of individual vehicles 0.07 1.19 – –

 (e) Work/school (Eq. 4)
  Constant 1.78 12.75 – –
  Weekdays 1.16 9.32 – –
  Time of day between 9 am to 12 pm − 1.30 − 13.55 – –
  Time of day between 12 pm to 5 pm − 2.18 − 16.38 – –
  Time of day after 5 pm − 4.28 − 27.33 – –
  Full-time worker 0.69 9.51 – –
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Table 1   (continued)

All-activities model NWS model

Parameter T-stat Parameter T-stat

  Student 0.34 4.41 – –
  First episode of the day 1.24 10.63 – –
  Scheduled work episodes on the same day 0.40 5.22 – –
  Occupation type: professional − 0.08 − 1.22 – –
  Occupation type: sales 0.39 3.92 – –
  Income 20k–35k 0.20 2.80 – –
  Income 50k–75k − 0.34 − 4.39 – –

 (f) Major Grocery shopping (Eq. 4)
  Constant − 1.66 − 7.26 − 1.71 − 7.27
  Time of day before noon − 0.33 − 1.45 − 0.23 − 1.06
  Time of day between 3 pm to 6 pm − 0.50 − 2.21 − 0.59 − 2.69
  Time of day between after 6 pm − 1.26 − 4.39 − 1.29 − 5.24
  (Fri/Sat/Sun) * worker 0.57 3.15 0.54 2.98
  (Fri/Sat) * non-worker 0.56 1.61 0.49 1.44
  # of shopping episodes in the current gap 0.13 0.88 0.47 3.67
  # of shopping episodes performed so far in the week − 0.02 − 0.93 − 0.03 − 0.70
  # of future longer gaps 0.29 3.16 − 0.01 − 0.28
  # of HH cars − 1.66 − 7.26 − 1.71 − 7.27

 (g) Return home (Eq. 4)
  Constant 7.34 97.09 2.98 41.63
  Time of day before noon 7.07 73.44 − 0.30 − 2.56
  Time of day between 12 pm to 3 pm 2.38 30.87 − 0.51 − 5.60
  Time of day after 6 pm − 3.52 − 54.08 − 5.72 − 57.46
  Non-worker − 5.72 − 57.46 − 0.16 − 2.64
  Distance between home and current location (km) 7.21 48.85 − 0.02 − 8.52
  Out of home fixed activity 2.65 18.31 0.47 6.56
  If previous executed episode is shopping − 4.62 − 43.80 0.56 5.17

 (h) Minor Grocery shopping (Eq. 4)
  Constant − 1.15 − 7.14 − 1.10 − 8.10
  Time of day before noon − 0.52 − 2.58 − 0.45 − 2.49
  Time of day between 12 pm to 3 pm − 0.16 − 0.80 − 0.12 − 0.60
  Time of day after 6 pm − 0.86 − 4.04 − 0.80 − 3.90
  # of shopping episodes in the current gap 0.15 0.97 0.23 1.47
  # of future longer gaps – – − 0.02 − 0.59
  Male 0.18 1.51 – –

 (i) Medical and services/religious/volunteer work (Eq. 4)
  Constant − 1.71 − 2.89 − 0.51 − 3.62
  Time of day between 12 pm to 5 pm − 0.41 − 2.89 − 0.49 − 3.76
  Time of day after 5 pm − 1.09 − 6.52 − 1.18 − 7.32
  Saturday * female − 0.52 − 1.80 − 0.54 − 2.07
  # of individual vehicles 0.28 4.04 0.17 2.34
  Couple 0.22 1.43 0.04 0.31
  Ln(age) − 1.71 − 2.89 – –
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Table 1   (continued)

All-activities model NWS model

Parameter T-stat Parameter T-stat

  # of kids – – − 0.04 − 0.82
 (j) Clothing/personal items shopping (Eq. 4)
  Constant − 2.20 − 7.32 − 2.09 − 6.55
  Time of day before noon − 0.66 − 2.56
  Time of day between 3 pm to 6 pm − 0.61 − 2.40 − 0.59 − 2.43
  Time of day after 6 pm − 1.25 − 4.35 − 0.69 − 2.80
  (Fri/sat/sun) * (worker) 0.55 2.61 − 1.27 − 4.53
  # of shopping activities in the current gap 0.14 0.74 0.41 2.51
  # of shopping episodes performed so far in the week − 0.05 − 1.63 − 0.13 − 2.03
  # of future longer gaps – – − 0.01 − 0.27
  # of individual vehicles 0.30 2.69 0.22 2.03
  Female 0.63 3.59 − 2.09 − 6.55

 (k) Housewares/other shopping types (Eq. 4)
  Constant − 1.07 − 5.46 − 0.99 − 5.95
  Time of day before noon − 0.51 − 2.22 − 0.41 − 1.93
  Time of day between 3 pm to 6 pm − 0.82 − 3.69 − 0.90 − 4.26
  Time of day after 6 pm − 1.35 − 5.67 − 1.37 − 5.94
  (Sat/Sun) * worker 0.35 1.99 0.26 1.52
  Sat * non-worker 0.65 1.88 0.54 1.51
  # of individual vehicles 0.09 1.16
  # of shopping activities in the current gap 0.41 3.65 0.62 5.40
  # of future longer gaps − 1.07 − 5.46 − 0.03 − 0.96

(II) Time expenditure choice
 (a) Scale factor (Eq. 16)
  First episode: ln(age) * household size − 0.01 − 3.11 − 0.002 − 0.30
  Subsequent episodes: continuous time of day/1440 − 1.03 − 29.90 − 1.08 − 51.06

 (b) Duration Baseline Utility Function (Eq. 13)
  Social/recreational/entertainment episode * weekend 2.37 3.14 4.58 5.73
  Social/recreational/entertainment episode * weekdays 3.13 4.40 6.44 8.05
  Work/school related 7.24 6.55 6.91 3.18
  HH obligations * weekend 11.51 6.03 9.32 4.09
  HH obligations * weekdays – – 6.94 7.37
  Medical/services – – 5.79 8.43
  Medical/services * weekends 5.83 9.20 – –
  Medical/services * weekdays 5.43 7.53 – –
  Minor grocery 5.78 6.30 4.54 3.63
  Major grocery 11.75 9.06 11.26 7.15
  Housewares/other shopping types * weekend 4.33 5.46 3.66 3.45
  Housewares/other shopping types * weekdays 3.48 4.72 3.08 3.02
  Home stay after returning home 2.58 7.79 3.19 10.91
  Clothing/personal items * weekend 11.69 8.71 9.73 5.97
  Clothing/personal items * weekdays 10.87 8.56 9.24 5.85
  Work * weekend 9.06 22.32 – –
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Table 1   (continued)

All-activities model NWS model

Parameter T-stat Parameter T-stat

  Work * weekdays 9.47 27.77 – –
  Work at home 9.64 12.53 7.36 4.17
  (Constant) * at home before leaving 3.85 8.72 2.24 3.35
  Full-time worker * at home before leaving − 0.66 − 5.95 − 0.21 − 1.21
  Weekday * at home before leaving − 1.38 − 12.25 − 0.18 − 1.19
  Time of day * work/school related episodes − 8.68 − 7.58 − 4.67 − 0.86
  Time of day * social/recreational/entertainment 8.22 5.04 4.02 2.47
  Time of day * HH-obligations episodes – – 6.47 2.00
  Time of day * medical/services episodes − 2.86 − 3.01 − 3.90 − 4.26
  Time of day * work/school episodes − 3.22 − 7.76 – –
  Time of day * shopping episodes 0.47 0.35 4.19 1.78
  Time of day * work at home − 1.12 − 1.78 3.45 0.95
  Ln(income) * social/recreational/entertainment – – 0.10 6.40
  Work/professional * work episodes 0.71 6.89 – –
  Work/services * work episodes 0.62 5.39 – –
  Full-time workers * work episodes 0.43 3.70 – –
  Job experience * work episodes − 0.02 − 4.76 – –
  Income group1 (< $20k) * (work/school episode) − 0.54 − 3.82 – –
  Income group3 (> $75k) * (work/school episode) − 0.44 − 4.29 – –

 (c) Exponential function of satiation parameter (Eq. 14)
  Social/recreational/entertainment episode * weekend 0.66 − 8.02 0.64 − 8.12
  Social/recreational/entertainment episode * weekdays 0.78 − 9.44 0.80 − 10.42
  Work/school related 0.84 − 11.45 0.75 − 4.20
  HH obligations * weekend 1.59 − 13.50 1.49 − 9.90
  HH obligations * weekdays 1.30 − 23.12 1.33 − 16.85
  Medical/services 0.96 − 19.17 0.98 − 19.98
  Work 1.03 − 47.83 – –
  Minor grocery 1.28 − 19.22 1.14 − 12.69
  Major grocery 1.51 − 21.87 1.40 − 15.17
  Other shopping types 0.95 − 14.86 0.85 − 10.84
  Home stay after returning home 1.45 − 14.92 1.02 − 11.39
  Clothing/personal items 1.35 − 18.26 1.16 − 11.63
  Work at home 1.17 − 25.91 − 0.02 0.67
  (constant) * at home before leaving 0.67 − 15.40 0.55 − 7.39
  worker * at home before leaving − 0.02 3.03 − 0.02 3.03
  (# of kids * female) * at home before leaving − 0.01 2.06 – –
  # of individual cars * at home before leaving – – − 0.01 1.38
  Non-worker * at home before leaving 0.05 − 3.89 – –
  First work episode of the day * work episodes − 0.08 8.88 – –
  Time of day * work/school related episodes – – 0.33 0.71
  Time of day * social/recreational/entertainment 0.32 − 2.49 0.16 1.27
  Time of day * HH-obligations episodes – – 0.27 1.21
  Time of day * home-stay episodes − 2.41 24.27 − 1.85 − 22.88
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Hypothesis testing

The developed models are applied to reproduce workers’ weekly travel/activity patterns 
using Monte Carlo simulation method. 10 replications of each of the two activity-based 
simulation models are run (Roorda et al. 2008). Simulation outcomes, including episodes’ 
frequency, travelled distances, start time and duration, are compared with those observed in 
CHASE. The results are discussed in the following sections.

Table 1   (continued)

All-activities model NWS model

Parameter T-stat Parameter T-stat

  Time of day * shopping episodes – – 0.40 2.62
  Time of day * work at home – – 0.32 1.18
  Professional * work at home – – − 0.07 − 3.18
  Ln(age) * social/recreational/entertainment 0.02 − 1.28 0.06 4.03
  Male * houseware/other shopping types 0.05 1.73 0.05 1.73
  Female * home-stay -0.01 1.09 -0.03 -1.87
  Worker * home-stay 0.05 − 3.36 0.08 5.10
  Ln(age) * home-stay − 0.08 3.74 − 0.03 − 1.40
  # of kids * home-stay − 0.01 2.64

(III) Destination choice
 (a) Scale factor (Eq. 10)
  Continuous time of day/1440 − 0.12 − 0.95 0.81 9.73

 (b) Social/recreational/entertainment (Eq. 6)
  Auto travel time on weekend − 0.03 − 15.56 − 0.025 − 18.51
  Auto travel time on weekdays − 0.04 − 24.77 − 0.031 − 26.54
  Transit travel time − 0.01 − 10.88 − 0.007 − 17.43
  Travelled distance for active modes (km) − 0.08 − 55.34 − 0.08 − 45.28
  Social/recreational centers density per m2 0.36 7.56 0.36 8.98

 (c) Shopping (Eq. 6)
  Auto travel time (min) − 0.05 − 21.35 − 0.045 − 36.78
  Auto travel time on weekend (min) − 0.05 − 21.35 – –
  Auto travel time on weekdays (min) − 0.05 − 21.35 – –
  Transit travel time (min) − 0.01 − 18.76 − 0.007 − 17.43
  Travelled distance for active modes (km) − 0.20 − 13.92 − 0.22 − 20.24
  Clothing/personal stores density per m2 0.004 1.53 0.39 3.05
  Employment level per m2 0.47 3.47 0.003 1.47

 (d) Other types of activities (Eq. 6)
  Auto travel time (min) − 0.09 − 33.77 − 0.045 − 36.78
  Auto travel time on weekend(min) − 0.04 − 28.79 – –
  Auto travel time on weekdays(min) − 0.04 − 28.79 – –
  Transit travel time(min) − 0.01 − 18.76 − 0.007 − 17.43
  Travelled distance (active modes/km) − 0.11 − 18.21 − 0.22 − 20.24
  Goodness of fit 0.31 0.35

a Either insignificant, reference variable or not applicable
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Table 2   Estimation results of the pre-planned and unplanned work scheduling models

Variable Coefficient t-stat Coefficient t-stat
Preplanned Unplanned

Choice of working
Constant − 0.46 − 1.69 − 2.24 − 8.03
Full-time worker 0.19 1.36 0.24 1.79
Mon − 0.45 − 1.80 1.58 8.11
Tue – – 1.45 6.66
Wed − 0.37 − 1.36 1.64 8.28
Thu − 0.18 − 0.72 1.64 8.28
Fri − 0.55 − 2.06 1.74 9.13
Weekend − 2.99 − 11.52 – –
Female − 0.09 − 1.19 1.71 9.45
Professional − 0.12 − 1.24 – –
Services – – − 0.04 − 0.39
Sales – – − 0.06 − 0.41
(Number of days worked so far)/7 3.01 5.84 2.42 5.88
Number of pre-planned working days/7 – – − 1.34 − 3.62
Job experience − 0.004 − 0.79 – –
Distance to work(km) 0.004 0.97 − 0.01 − 1.18
High income level (greater than $75k) − 0.10 − 0.90 0.05 0.48
Low income level (Income less than $35k) – – 0.02 0.15
Age less than 35 − 0.16 − 1.49 – –
Age 35–45 − 0.18 − 1.65 – –
Flexible work location − 0.05 − 0.61 – –
Fixed place of work – – − 0.17 − 1.80
Fixed work duration – – − 0.14 − 1.39
Duration baseline utility function
Mon 8.95 5.33 − 5.92 − 11.16
Tue 5.72 4.37 − 5.98 − 26.80
Wed 2.39 1.51 − 6.04 − 48.38
Fri 2.64 1.31 − 6.13 − 80.66
Sat/sun − 1.39 − 7.98 − 6.27 − 146.74
Expectation from choice of work on the next days 0.48 2.87 − 0.08 − 1.94
Number of pre-planned working days/7 – – − 0.42 − 2.98
Low income level 0.46 − 0.94 – –
Medium income level (35k–75k) 0.81 1.56 – –
Flexible working duration 0.19 2.57 – –
Satiation parameter
Mon 1.08 − 10.02 1.08 − 0.71
Tue 0.86 − 8.26 – –
Wed 0.56 − 3.32 – –
Thu 0.25 − 1.60 – –
Fri 0.49 − 2.27 – –
Distance to work(km) − 0.001 2.55 − 5.96 0.24
Full-time worker − 0.07 5.19 − 4.21 8.16
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Work episode scheduling model

Figure 2 presents the simulation outcomes for the preplanned and unplanned work schedul-
ing models as the first level of the combined model. Both models generate work episodes 
with high accuracy. The simulated frequency of preplanned work episodes is more accurate 
than unplanned episodes, as they are the first level of the model, while errors in generat-
ing preplanned work schedules enter the unplanned work scheduling model (Fig. 1I). Both 
models over-predict durations between 5 and 8 h, while under-predicting durations of 9 h 
or more (Fig. 1II). The wide range of the observed durations, starting in different times of 
day, is the reason for the observed error in the outcomes of the duration model. Simulated 
work episode start times are later than the observed ones because the models are generat-
ing all the work episodes during the day and not just the morning episodes, thus, they are 

Table 2   (continued)

Variable Coefficient t-stat Coefficient t-stat
Preplanned Unplanned

Services − 0.01 1.91 − 5.59 0.43
Professional − 0.03 2.45 1.88 − 1.29
Low income level − 0.02 1.13 – –
Medium income level 0.06 − 1.37 – –
Fixed place of work – – − 2.22 2.01
Fixed work duration – – 2.53 − 3.39
Job experience – – − 0.11 3.03
Duration scale factor
Logarithm of the sequence of day in week (1 = Monday) 0.50 9.40 1.03 56.96
Start time hazard covariates
Constant − 12.04 17.52 − 8.60 − 15.03
Monday – – 0.27 1.68
Tue − 0.11 0.33 0.27 1.68
Wed − 0.10 0.22 0.27 1.68
Thu − 0.21 0.40 0.27 1.68
Fri − 0.17 0.21 0.27 1.68
Sat/Sun − 0.26 0.39 – –
Part-time worker − 0.10 0.59 – –
Full-time worker – – − 0.13 − 1.24
Services − 0.14 1.33 − 0.13 − 1.31
Professionals – – 1.88 − 1.29
Shape parameter 1.85 46.36 2.70 59.03
Work episode duration 0.17 − 9.49 0.28 31.36
Job experience 0.02 − 2.90 − 0.01 − 2.13
High income level 0.13 − 0.90 − 0.40 − 4.95
Low income level − 0.06 0.40 − 0.45 − 5.94
Expectation from choice of work on the next days 0.03 − 1.18 0.05 1.03
Number of pre-planned working days – – 0.60 1.26
Ln(age) – – 0.47 3.45
HH adults – – − 0.05 − 2.90
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fit to the average start time during the day (Fig. 1III). The mean absolute error in predict-
ing the work start time during the morning peak (6–9 am) is 8% for the preplanned work 
episodes and 6.7% for unplanned work episodes. Figure 3 shows the start time and duration 
of the schedule gaps, as a result of scheduling work episodes, versus those observed. Based 
on the simulation outcomes, gaps starting at 5 and 6 pm are under-predicted, while later 
gaps are over-predicted. Moreover, shorter gaps are generated with less accuracy compared 
to longer ones. One source of these errors is the later assigned start time to the work epi-
sodes comparing with the observed data.

(I) Distribution of the Work Episodes 
During the Week: (a) preplanned work episode, 

(b) unplanned work episode 

(II) Work Episodes’ Duration:
 (a) preplanned work episode, 
(b) unplanned work episode  

(III) Work Episodes’ Start Time from  
4 am : (a) preplanned work episode,

 (b) unplanned work episode  
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Fig. 2   Work Scheduling Model Simulation Outcomes

Fig. 3   Schedule gaps’ attributes: 
a duration, b start time
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Simulation outcomes of the combined model versus the all‑activities model

Episode frequency

Due to the nested structure of the activity type and destination choice models, the accuracy 
of the episode type generation model depends on the size of the feasible destination choice 
set. The value of the normalized expectations of destination choice, added to the utility 
function of the activity types with an unknown destination, is a function of the size of 
the feasible choice set. As the normalized expectation is a large positive value, it leads to 
under-prediction of the episodes with a known location (i.e. return home and work/school 
episodes).

In the NWS episode scheduling model, a destination is feasible if the feasibility ratio M 
is more than 1.5, which is consistent with the value used for the model estimation. In the 
all-activities model, which has longer gaps than the combined model, feasible destination 
choice sets are formed with both M = 1.5 and M = 3 to test the impact of the size of the fea-
sible set on the activity pattern prediction.

Figure4I shows the ratio of episode type frequency to the total number of episodes for 
each model. The combined model over-predicts the weekly total number of the NWS epi-
sodes by 12.8%, while the M = 3 and M = 1.5 all-activities model over-predict by 34.6% 
and 53%, respectively, indicating that the combined model generates NWS episodes with a 
higher accuracy compared with the all-activities model with both M values.

The work scheduling model and the M = 3 all-activities model under-predict weekly 
work episodes (total of preplanned and unplanned episodes) by 4% and 11.3%, respectively, 
while the M = 1.5 all-activities model has a significant lower accuracy by under-predicting 
work episodes by 23.9%. Besides the total number of work episodes, the distribution of 
work episodes over the week is more accurate in the work model of the combined model 
(Fig.  4II). The accuracy of the episode’s frequency in the all-activities’ model improves 
significantly by reducing the size of the destination choice set. Returning home episodes 
are under-predicted in the combined and all-activities model with M = 3 by 4% and 6% 
respectively, while the M = 1.5 all-activities model over-predicts these episodes by 3%, due 
to the significant over-prediction of the NWS episodes in this case. These results empha-
size the necessity of developing a more systematic destination choice set in a nested struc-
ture model, as size of the choice set plays a significant role in the accuracy of the activity 
generation model.

Distances travelled

Episode destinations are chosen at the traffic zone level from the feasible destination choice 
set. As the models do not include a mode choice component, simulated versus observed 
trip distances, rather than travel times, are compared. It is notable that in the estimation 
process observed modal travel times are used; however, in the application of the models 
auto travel time is applied for all the trips. NWS trip length histograms are shown in Fig.5I 
for each category of NWS episodes. The models display similar trends of under-predicting 
trip frequencies under 5  km and over-predicting longer distances. The time–space con-
straints in the combined model improve its performance relative to the all-activities model 
when shorter distances are actually chosen, while the all-activities model performs better 
when destinations further than 20  km are actually chosen. However, as a relatively low 
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percentage of longer-distance trips are observed, we can conclude that the combined model 
generally is the better-performing model. Reducing the feasible set size in the all-activities 
model does not make a significant improvement in destination predictions, as the more 
negative coefficients of the impedance factors in the M = 1.5 all-activities model compen-
sates for its larger time budgets.

Episode duration and start time

Episode durations are simulated in 5-min time intervals. The subsequent episode’s trip 
start time is calculated by summing up the current episode’s trip start time with its asso-
ciated duration and travel time to reach its chosen destination. Travel time is an input 
to the model from road network skims generated by an EMME network model for the 
Toronto region (Miller et al. 2015). Examples of episodes’ simulated duration and start 
time are shown in Figs. 4 and 5, respectively. Due to a wide range of duration for each 
episode type in the dataset, shorter durations are over-predicted for work/school related, 
social/recreational/entertainment, shopping, WAH and stay-at-home episodes in the 
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Fig. 4   Simulation outcomes of the episode generation model: (I) ratio of the frequency of each episode 
type to the total number of trips, (II) distribution of the work episodes during the week: a work scheduling 
model, b M = 3 all-activities scheduling
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simulation models. As the models run until an individual’s time-budget ends, shorter 
simulated episodes lead to longer available time budgets; leading to the total number of 
the episodes being over-predicted.

Simulated shopping episodes start slightly earlier than those observed. In the com-
bined model, this is caused by the later assigned start time to the work episodes in the 
first step of the simulation, which means longer before-work gaps and shorter after-work 
gaps. Moreover, simulating trips using auto travel time, which is mostly shorter than the 
actual travel times experienced with transit and active modes, results in earlier episode 
start times in both models. Shorter assigned duration to the episodes is another reason 
for having earlier start times. The calculated mean absolute error in the predicted start 
time of different episode types over the day shows that the all-activities model shows a 
slightly better fit in modeling shopping and WAH episodes’ start time. However, for the 
other NWS episode types the combined model has a better fit to the dataset.

As shown in Figs. 6 and 7 simulated work episodes in the all-activities model start 
later than observed and are over-predicted for durations between 5 and 8  h, which is 
consistent with the results of the work scheduling model. The M = 3 all-activities model 
has a more accurate work start time prediction during the morning peak with a mean 
absolute error of 6% compared to the work scheduling model with a mean absolute error 
of 15%. The all-activities model work episode predicted start time mean absolute error 
is 2.29%, compared to 4.4% for the work scheduling model which indicates that both 
models have a good fit over a day. However, as a result of a more accurate work episode 
frequency prediction, the work scheduling model shows a better fit to the observed work 
pattern compared to the all-activities model, as demonstrated in Fig  8. Predicted pat-
terns for the preplanned work episodes with 8% of under-prediction during the week is 
more accurate than unplanned ones with 13.9% of under-prediction.
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Conclusion

In summary, two ABMs were applied to replicate complete workers’ out-of-home travel/
activity patterns in the CHASE dataset. Monte Carlo simulation is applied to generate the 
travel/activity decisions of the individuals in a short-run dynamic microsimulation model. 
In the first model, work/school episodes are scheduled prior to the NWS episodes within a 
separate model, while in the second model all activity types are modeled within the same 
framework without any priority assumption. The purpose was to investigate the influence 
of the common practice of fixing work/school episodes as the schedule skeleton on pre-
dicted travel/activity patterns. The simulation outcomes indicate that assigning a higher 
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priority to work episodes’ scheduling not only is behaviorally plausible but also improves 
the accuracy of the travel/activity pattern prediction. The predicted NWS episodes’ sched-
ule as well as the work episodes’ pattern in the combined model are significantly more 
accurate than the all-activities models. Generally scheduling NWS episodes is more com-
plicated compared with work/school episodes. This complexity arises from the randomness 
inherent in the NWS episodes’ attributes and insufficient explanatory variables to define 
them as well as data limitation. When scheduling NWS and work/school episodes simul-
taneously, errors in scheduling NWS episodes propagates into the work scheduling and 
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decreases the accuracy of work/school predictions. The conducted hypothesis test in this 
study confirms the validity of this argument.

Both models over-predict the frequency of NWS episodes, while under-predicting the 
frequency of work/school episodes and the ratio of the return home to NWS episodes. The 
models assign shorter durations to NWS and stay-at-home episodes compared to those 
observed. In such a complex scheduling model, performance of the models’ components 
is obviously inter-related. As the models run until an individual’s time-budget ends, it is 
important to improve the accuracy of the duration model. Shorter simulated episodes’ 
duration leads to over-prediction of the total number of episodes. Considering the nested 
structure of the activity type and destination choice models, activities with known desti-
nation are under-predicted. A more systematic destination choice set formation instead of 
arbitrarily increasing the feasibility ratio (M) would improve the accuracy of the activity 
type and destination choice models by reducing the size of the feasible set. Because of the 
sequential nature of the model, shorter time expenditures for NWS episodes introduce error 
into the subsequent episodes’ start time. The current models predict later start time for 
work episodes and earlier start times for shopping episodes.

The study is not without limitations. First, adding a mode choice component to the mod-
els would improve the models’ overall performance by improving the accuracy of episodes’ 
predicted destinations and start times. Adding a mode choice component to the model is 
considered as a future work, as identifying a modelling approach which is computationally 
tractable, theoretically defensible and empirically validated (Dianat 2018) is another sig-
nificant research challenge. Another component of the model that needs further investiga-
tion is the destination choice model, especially the choice set formation. As the simulation 
results revealed, in a nested structure of activity type and destination choices, the size of the 
choice set influences the predicted frequency of the episode types. A more systematically 
formed destination choice set would reduce the size of the choice set by excluding destina-
tions that are not considered by individuals. The size of the feasible choice set can also 
be reduced considering the availability of locations for a specific episode purpose in each 
spatial unit. This is possible upon availability of a rich disaggregate and accurate dataset of 
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the points of interest. Moreover, instead of finding the final destination choice set for model 
estimation by a purely random choice of destinations, more behavioural approaches such 
as importance sampling can be applied. Third, as a future research joint activity episodes 
might also be considered as part of the schedule skeleton as they are a “contract” between 
their participants.
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