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Abstract
State of the art travel demand models for urban areas typically distinguish four or five main 
modes: walking, cycling, public transport and car. The mode car can be further split into 
car-driver and car-passenger. As the importance of ridesharing may increase in the coming 
years, ridesharing should be addressed as an additional sub or main mode in travel demand 
modeling. This requires an algorithm for matching the trips of suppliers (typically car driv-
ers) and demanders (travelers of non-car modes). The paper presents a matching algorithm, 
which can be integrated in existing travel demand models. The algorithm works likewise 
with integer demand, which is typical for agent-based microscopic models, and with non-
integer demand occurring in travel demand matrices of a macroscopic model. The algo-
rithm compares two path sets of suppliers and demanders. The representation of a path in 
the road network is reduced from a sequence of links to a sequence of zones. The zones act 
as a buffer along the path, where demanders can be picked up. The travel demand model of 
the Stuttgart Region serves as an application example. The study estimates that the entire 
travel demand of all motorized modes in the Stuttgart Region could be transported by 7% 
of the current car fleet with 65% of the current vehicle distance traveled, if all travelers 
were willing to either use ridesharing vehicles with 6 seats or traditional rail.
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Introduction

In ridesharing, a car driver (supplier) offers other travelers (demanders) the possibility 
to join the trip for a certain fee. The offered trip results solely from the individual need 
of the supplier to perform a particular movement. The supplier determines the main 
characteristics of the trip: origin, destination, departure time and choice of route. A 
ridesharing potential occurs, if the temporal and spatial trip characteristics of supplier 
and demander match. A ridesharing trip is generated if the demander accepts the offer 
of the supplier. While the supplier receives a certain cost compensation, the demander 
receives a convenient trip to the desired destination. Traditional ridesharing, also called 
carpooling, has the following characteristics:

•	 The suppliers conduct their trips independently of any additional demand for a ride.
•	 In the past, where only a small number of trips were on offer, ridesharing made sense 

only for long-distance trips (arranged by ridesharing agencies) or for regular trips 
(trip sharing with work mates).

New online platforms ensure the matching of suppliers and potential demanders at 
short notice. This dynamic ridesharing has become an option in short-distance transport 
offering an alternative for trips with no or inadequate public transport. In such cases, 
ridesharing can reduce car trips and contribute to a more sustainable transport. As the 
example of transport network companies (TNC) like Uber and Lyft shows, rideshar-
ing can also be provided as a professional service offering taxi-like rideselling services, 
which may increase the number of car trips.

The expectation, that the importance of ridesharing will increase, be it in the form 
of carpooling or rideselling, requires transport planners to estimate the impacts of ride-
sharing. How big is the potential of ridesharing? What is the critical mass of suppliers 
necessary to ensure that demanders are offered a suitable trip with a high probability 
and short waiting times? What would happen, if fleets of self-driving cars offer ride-
sharing services? In order to find answers to these questions travel demand models 
may be helpful, if they are extended by an algorithm for the matching of offered and 
demanded trips.

This paper presents an algorithm for the matching of trips. It can be integrated in exist-
ing macroscopic travel demand models, which differ from microscopic travel demand mod-
els in several aspects (Table 1). The algorithm is based on the following assumptions:

•	 Origin and destination of all trips of suppliers and demanders are located in traf-
fic zones. Every trip originates in an origin zone, traverses a sequence of traffic 
zones along a shortest path until it terminates in the destination zone. Trips are 
only matched if their origin and destination lie within the sequence of the traversed 
zones. Suppliers will only make detours for picking up or dropping off passengers in 
the zones along the shortest path.

•	 A traffic zone does not represent an exact meeting point for suppliers and demand-
ers but it defines an appropriate area for this meeting. It is assumed that suppliers 
and demanders can arrange an appropriate meeting point within a zone. The exact 
meeting point, however, is not modeled. Longer trip times resulting from detours for 
picking up or dropping off demanders can be included by extra times depending on 
the size of the corresponding traffic zone.
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•	 The daily travel demand is available as a set of time-dependent demand matrices. The 
algorithm matches the trips for every matrix independently.

The paper does not address methods for determining the modal share of rideshar-
ing trips within a travel demand model. The share can be set as an assumption (“assume 
10% of all car drivers offer rides and 20% of all public transport users would take suit-
able offers”) or determined as an independent mode in the mode choice step of the travel 
demand model. In addition to traditional ridesharing with suppliers and demanders, the 
paper also addresses a case where individual suppliers are replaced by fleets of taxis or 
taxi-robots. This case permits to calculate the vehicle occupancy rates of such taxi fleets.

State of the art

Characteristics and perspective of ridesharing

De Marco et al.  (2015) define dynamic ridesharing as “a system that facilitates the abil-
ity of drivers and passengers to make one-time ride matches close to their departure time, 
with sufficient convenience and flexibility to be used on a daily basis”. Another definition 
for a dynamic ridesharing is formulated by Agatz et al. (2011) as “a system where an auto-
mated process employed by a ride-share provider matches up drivers and riders on very 
short notice, which can range from a few minutes to a few hours before departure time”. 
Levofsky and Greenberg (2001) note that “dynamic ridesharing systems consider each trip 
individually and are designed to accommodate trips to random points at random times by 
matching user trips regardless of the trip purpose”. Agatz et al. (2012) describe the charac-
teristics of a dynamic ridesharing concept. Some of the key features are:

•	 Dynamic: mobile phones with internet access allow for matches on short-notice.
•	 Cost-sharing: the variable costs of a trip are split between the rideshare participants.
•	 Non-recurring trips: single-trip ridesharing does not require a rigid time schedule.
•	 Automated matching: the ride matching should be automated to reduce the effort of the 

participants. The system finds suitable matches and facilitates the communication.

Uber Pool and Lyft Line prove that dynamic ridesharing works. The success indi-
cates the potential of ridesharing. The current situation will change again with driverless 
cars. Statements of car manufacturers (Inventivio  2017) and scientific forecasts (Trom-
mer et  al. 2016; Litman et  al. 2017; Bansal and Kockelman 2017) on the availability of 

Table 1   Important characteristics of macroscopic and microscopic demand models for ridesharing

Characteristics Macroscopic demand models Microscopic demand models

Origin and destination of a trip Traffic zones Buildings or arbitrary points 
in the network

Representation of demand Travel demand matrix with volume 
between origin and destination zones. 
Demand is non-integer

Set of trips of particular 
agents as part of a trip chain. 
Demand is always integer

Temporal resolution of demand Discrete in time intervals Continuous
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self-driving cars still vary a lot, ranging from the near future to 2050 and beyond. When-
ever the driverless car comes, it will open new business areas for mobility providers to 
offer mobility as a service including rideselling services.

The matching problem

The core of a ridesharing system is the trip matching process. The complexity of the 
matching problem depends on the number of trips. With an increasing number of trips, the 
number of possible matches increases. The challenge is to find reasonable solutions within 
a short computational time to run the system as an online real-time application.

The literature on the matching problem in ridesharing comprises various publications 
(for instance Baldacci et  al. 2004; Calvo et  al. 2004; Winter and Nittel 2006; Amey 
2011; Di Febbraro et al. 2013) dealing with optimization aspects of rideshare problems 
including patents for the “Automated carpool matching”  (Levine et  al. 2010). While 
many approaches focus on fixed assigned demand, Kleiner et al. (2011) reformulate the 
optimization aspect as an adaptive dynamic ridesharing system that is capable to con-
sider individual preferences of participants while matching the trips.

Ghoseiri et al.  (2011) describe ridesharing systems operating in the US and formu-
late a “Dynamic Rideshare Matching Optimization Model”, introducing a wide range of 
additional marginal conditions (for instance gender). In addition, Shangyao and Chun-
Ying  (2011) consider different vehicle and person types to represent more closely the 
effects of real behavior aspects.

In travel demand modeling so far the ride matching problem is addressed exclusively 
in the context of microscopic demand modeling (for instance Shangyao  and  Chun-
Ying  2011; Galland et  al. 2013; Dubernet  et  al.  2013), in which the negotiation pro-
cess of the transport users (agents) is modeled. Algorithms for matching non-integer 
demand, as it occurs in demand matrices of a macroscopic travel model, are not yet 
described to the knowledge of the authors.

Algorithm and implementation

An algorithm for solving the matching problem in an optimal way can for example aim 
at maximizing the number of matched trips or at maximizing the occupancy rate in the 
vehicles. The structure of the trip-matching problem is similar to the traveling salesman 
problem, which is a NP-hard optimization problem, if the optimal solution is required. 
To handle real world problem sizes with zone numbers over 1000 and trip numbers over 
100,000 the algorithm presented in the following makes simplifications. The algorithm 
belongs to the class of greedy algorithms and therefore does not guarantee an optimal 
solution for the matching problem.

Input data

The algorithm requires supply and demand data as input. Supply data cover the nodes 
and links of the road network as it is required by a travel demand model. The supply 
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data may specify selected nodes as locations for pick-up and drop-off. Demand data dis-
tinguish two types of demand matrices:

•	 The demand matrix of the suppliers S. In a travel demand model they are a subset 
from the demand matrix of car-drivers, i.e. car drivers who are willing to provide a 
ride to unacquainted travelers not belonging to the family.

•	 The demand matrix of the demanders D. In a travel demand model, they may come 
from a subset of the matrices for car-self driver, car-passenger and public transport 
users, who consider using a ridesharing service. They may also come from a specific 
ridesharing mode.

The demand should be available in small time intervals t (≤ 15 min) and in traffic zones 
of appropriate size (travel time in traffic zone ≪ average travel time of a trip). Thus St and 
Dt represent the demand matrices in time interval t.

Basic algorithm

The basic algorithm assumes that routes of the trips follow a shortest path and that every 
pick-up location belongs to exactly one traffic zone. With these limitations, the algorithm 
for matching the trips of one time interval consists of the following steps:

1.	 Determining a set of reference objects for pick-up and drop-off locations A reference 
object describes the location in the network where potential ridesharers can be picked 
up. Reference objects can be road links, public transport stops or ridesharing meeting 
points. The basic algorithm described in the following assumes that the reference object 
is a link which refers to exactly one traffic zone z. Road links restricted to motor vehicles, 
where boarding is prohibited, should be excluded from the set of reference objects.

2.	 Assigning a zone z to each link l Every link l of the road network is assigned to one or no 
zone number. The assignment requires an intersect operation as provided by Geographic 
Information Systems (see Fig. 1).

3.	 Determining two path sets P for suppliers and demanders For every time interval t the 
two demand matrices St and Dt are assigned to the transport network using a shortest-
path assignment. The result is one path set for the suppliers Pt

S and one path set for the 
demanders Pt

D for every time interval t. Each set contains maximum one path p for each 
od-pair with the corresponding demand of the suppliers dS

p,t
 and demanders dD

p,t.
4.	 Reducing paths from a sequence of links to a sequence of zones Each path of a path 

set p ∈ Pt traverses a sequence of links l1, l2,… , ln and in doing so, a sequence of zone 
objects zl1 , zl2 ,… , zln . The sequence of zone objects is stored as a string attribute of a 
path. It describes the sequence of traversed traffic zones where demanders can be col-
lected. The sequence of zone objects often contains the same zone object several times 
( zl1 ≡ zl2 ) . In this case, duplicate zone objects are deleted. As a result, each path is 
reduced to a sequence of zones containing considerably less elements than the sequence 
of links. Figure 1 illustrates the procedure to obtain a reduced sequence of zone objects.

5.	 Assigning a capacity to each path of the suppliers Each path of the supplier path set PS
t
 

obtains a capacity resulting from the demand volume of the supplier and the average 
vehicle capacity (for instance a 5-seat-vehicle). As suppliers may travel with private 
car passengers, e.g. family members, the capacity needs to be reduced appropriately. 
Equation (1) shows how to compute the available capacity for ridesharing for one path 
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including car passenger demand on od-level. Equation (2) determines the capacity using 
an average occupancy rate:

	 

where cS
p,t capacity for ridesharing provided by supplier on path p in time interval t. In 

the case of a shortest path match, path capacity is equal to the capacity cS
o,d,t from zone 

o to zone d; cveh average vehicle capacity including driver; ds
o,d,t  travel demand of sup-

pliers from zone o to zone d in time interval t; dCarPass
o,d,t travel demand of private car pas-

sengers from zone o to zone d in time interval t; oveh average occupany rate of a private 
car: oveh = (ds + dCarPass)/ds

	   Assuming a supplier demand of 0.2 car trips along a particular path, a car passenger 
demand of 0.06 and a vehicle capacity of 5 places, the available capacity for ridesharers 
is (5 − 1) ⋅ 0.20 − 0.06 = 0.74 persons. In this calculation (5 − 1) = 4 represents the free 
capacity of one car with one driver. As it is a macroscopic model, the supplier demand 
of the path is non-integer. This leads to 4 ⋅ 0.20 = 0.8 empty places on the path, out of 
which 0.06 places are already taken by car passengers traveling with the driver, e.g. 
family members.

6.	 Matching of paths The matching of the two path sets Pt
S and Pt

D compares the reduced 
paths of zone sequences. A full match occurs, if the origin and destination zones of 
pD ∈ PD

t
 and pS ∈ PS

t
 are identical. A partial match occurs if path pD is covered by pS, 

i.e. pD ⊂ pS. Path pD is covered by path pS if origin o and destination d of path pD occur 
in the right order (o before d) in the zone sequence of path pS. This can be implemented 

(1)cS
p,t

= cS
o,d,t

= (cveh − 1) ⋅ dS
o,d,t

− dCarPass
o,d,t

(2)cS
p,t

= cS
o,d,t

=
(

cveh − oveh
)

⋅ ds
o,d,t

path from to sequence of links
sequence of reference zones

complete without duplicates

1 1 4
202,102,103,104,116,107,108,109,
110,111,112,113,209

1,1,1,2,2,2,3,3,3,3,4,4,4 1,2,3,4

2 2 4
203,106,107,108,109,
110,111,112,113,209

2,2,2,3,3,3,3,4,4,4 2,3,4

3 3 4
206,
110,111,112,113,209

3,3,3,4,4,4 3,4

Fig. 1   Preparation of paths for the matching procedure
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as a string comparison. Figure 1 illustrates the advantage of matching paths not on the 
level of links but on the level of zones: This allows identifying paths, which are not 
completely identical, but still suitable for a match. The matching process starts with fully 
matching paths. The remaining paths are processed sequentially, starting with the first 
path of the path set Pt

D. There are other possibilities to process the remaining paths, for 
instance starting with the longest path.

7.	 Reduction of path capacity and path demand After every match, the sharing capacity 
cS
pS ,t

 of path pS is reduced according to Eq. (3) by the demand of ridesharers moving 

along path pD ⊂ pS until the entire capacity is utilized. At the same time the unsatisfied 
ridesharing demand is reduced as shown in Eq. (4):

8.	 Recording of unsatisfied demand After all paths of a time interval have been checked 
to identify matches, the number of demanders finding a match (satisfied rideshar-
ing demand) and the number of demanders without a match (unsatisfied rideshar-
ing demand) can be summed up over all paths. For every pick-up stop the travel time 
increases by a certain value. The additional travel time can be implemented as fixed 
value (e.g. 4 min for each stop) or as function of the boarding demand.

Extensions of the algorithm

The implementation of the described basic ridesharing algorithm can be extended in the 
following ways:

•	 Handling rideselling systems This refers to a case where the suppliers are not private 
car drivers but taxi-like rideselling services with professional drivers or driverless cars. 
In this case, only the demand matrix of the demanders is used as input. In the matching 
step all paths of the path set Pt

D are compared to each other. Two paths pD
1 and pD

2 are 
matched if one of the two conditions hold: pD

1 ⊂ pD
2 or pD

1 ⊃ pD
2. This approach assumes 

that the number of taxis is not limited.
•	 Smart match A partial matching following the path order (i.e. matching the first sup-

plier to the first demander path according to the order of the zone numbers) unnec-
essarily wastes unused ridesharing capacity. Instead, paths can be matched in such a 
way that either the paths with the longest shared distance or the paths with the highest 
demand are matched first.

•	 Arbitrary reference objects referring to one zone The basic algorithm described above 
assumes that every link belongs to maximum one zone, as it is the case in Fig. 2 a. Fig-
ure 2 b presents a case, where the reference object is not a link but a dedicated rideshar-
ing meeting point. This meeting point is assigned to exactly one zone. The unique zone 
number of the meeting point is then assigned to all links within a certain buffer around 
the meeting point. This buffer expresses the willingness of suppliers to accept detours 
for picking up and dropping off demanders. As a result, a link may belong to more than 

(3)cS
pS ,t

=

{

cS
pS ,t

− dD
pD⊂pS ,t

if demand ≤ capacity

0 if demand > capacity

(4)dD
pD⊂pS ,t

=

{

0 if demand ≤ capacity

dD
pD⊂pS ,t

− cS
pS ,t

if demand > capacity
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one zone. This leads to a modified sequence of zones, which can then be processed as 
in the basic algorithm.

•	 Arbitrary reference objects referring to several zones Figure 2c presents a case where a 
meeting point can be linked to more than one zone. This case again may lead to a modi-
fied sequence of zones thus influencing the results.

•	 Multi-path The shortest path assignment can be extended by any other multi-path 
assignment method leading to od-pairs with more than one path. In this case, the ride-

(a) Link reference objects referring to one zone
(assumption for the basic algorithm)
• Reference object for pick-up/drop-off: Link.
• Links: Every link belongs to exactly one zone or 

to no zone. If one link is located in two zones, 
one zone gets the full link.

• Example: A supplier traveling from West to 
East with the reduced zone sequence a-b can 
serve demanders traveling from a to b.

(b) Arbitrary reference objects referring to one 
zone
• Reference object for pick-up/drop-off: Any type 

of meeting point. Every meeting point belongs 
to exactly one zone (no buffer around meeting 
point).

• Links: A buffer around the meeting point 
determines the set of zone numbers belonging to 
a link. Every link can belong to more than one 
zone.

• Example: A supplier traveling from West to 
East with the reduced zone sequence a-b can 
serve demanders traveling from a to b.

(c) Arbitrary reference objects referring to several
zones
• Reference object for pick-up/drop-off: Any type 

of meeting point. Every meeting point may 
belong to more than one zone (buffer around 
meeting point).

• Links: A buffer around the meeting point 
determines the set of zone numbers belonging to 
a link. Every link can belong to more than one 
zone.

• Example: A supplier traveling from West to 
East with the reduced zone sequence a-c-a-c-b 
can serve demanders traveling from a to b, from 
a to c and from c to b.

Fig. 2   Methods for assigning zone numbers to links
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sharing capacity of the od-pair needs to be distributed to every path. One simple solu-
tion is to use the shares from the traffic assignment.

Implementation

The algorithm described above is implemented in the transport planning software of PTV 
VISUM  (2017). VISUM contains all data structures of the transport supply (nodes and 
links) and of the travel demand (traffic zones, demand matrices). Of major importance for 
the matching are route objects that are saved in VISUM as the results of a traffic assign-
ment. A route object p is made up of data describing the route (the demand on the particu-
lar route, length and travel time) and the route elements (sequence of nodes respectively 
links). Using the VISUM-route objects and the methods available in VISUM (e.g.  inter-
secting and shortest-path assignment), a matching of routes can be implemented with less 
than 100 lines of code.

Computation time increases with the square of the number of paths, which are com-
pared in the matching step. In order to reduce computation time, the search engine Elastic-
search (2017) is integrated into the processing sequence of VISUM using a Python script. 
The path sets of suppliers and demanders are handed over to the search engine. The result 
from the search process is a list with possible routes for the matching process. The match-
ing part of the algorithm then decides which demanded route is assigned to one or several 
routes from the subset of supplied routes depending on capacity restrictions. Elasticsearch 
helped to reduce the computation time considerably by a factor of 1000.

For the two scenarios presented below a 64  GB RAM computer with an Intel(R) 
Core(TM) i7-5820 k 3.30 GHz processor required a computation time of approximately 
1 h for scenario S1 (1100 zones, 96 time intervals, 300,000 demanders, 150,000 sup-
pliers) and 3  h for scenario S2 (1100 zones, 96 time intervals, 1,200,000 demanders, 
750,000 suppliers).

The Institute for Road and Transport Science  (2017) provides a link to a toy net-
work to demonstrate the ridesharing algorithm. The procedure is simplified with respect 
to the process how the algorithm detects paths that could be matched. Therefore, the 
procedure works without external libraries and is directly executable if VISUM 16 is 
installed on a local machine.

Results

The algorithm is applied to the Stuttgart Region  (Schlaich and Analyseverkehr 2009), a 
polycentric region with 2.7 million inhabitants living in several towns, but also rural areas. 
On a workday, the inhabitants produce roughly 5 million motorized trips, out of which 
3 million are car-drivers, 1 million are car-passengers and 1 million use public transport. 
This travel demand is replicated in a travel demand model with 1100 traffic zones distin-
guishing 23 person groups and 19 trip purposes. The demand is available for 96 time inter-
vals of 15 min each. Although the algorithm is suitable for handling non-integer demand 
matrices, the experiments described below apply integer demand matrices, i.e. full trips.

Until now, there is little information to what extent travelers would participate in an 
area-wide short-distance ridesharing, be it as supplier or as demander. Thus instead of 
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applying a utility-based mode choice model, the example calculations use assumptions 
for the following modal shares:

•	 Share of car-drivers willing to offer rides (supplier),
•	 Share of car-drivers willing to take a ride and leaving their own vehicle at home 

(demander),
•	 Share of public transport users willing to shift from public transport (demander).

For estimating the ridesharing potential of the Stuttgart Region, two scenarios with 
the following characteristics are analyzed assuming a passenger car with 5 seats:

•	 S1: 5% of the car-drivers are willing to offer a ride. The remaining 95% use their 
vehicle as before. 25% of the public transport users are prepared to shift to rideshar-
ing alternatives, if a match is provided.

•	 S2: 25% of the car-drivers are willing to offer a ride. Further 5% of the car-drivers 
would shift to ridesharing if a match is available. The remaining 70% use their vehicles 
as they did before. All public transport users (100%) are willing to shift to ridesharing.

Figure 3 shows the results for scenario S1 and Fig. 4 for scenario S2. The red graph 
displays the trips of the suppliers, the blue graph the trips of the demanders. The green 
graph indicates the satisfied demand of the demanders. The matching rate depends on 
the number of suppliers and demanders: the higher the number of suppliers, the higher 
the probability that a ridesharing request can be served, thus increasing the attractive-
ness of the system.

During an entire day, 13% of all ridesharing requests can be served in scenario S1, 
and 28% in scenario S2. The probability to find a match between 8:00 and 18:00 is in 
both scenarios higher than in the other hours. This has two reasons: (1) During the early 
and late hours of a day the demand is low, making it harder to find a match. (2) The 

Fig. 3   S1: Ridesharing potential during the course of a working day if 5% of the car-drivers serve as suppli-
ers and 25% of the public transport users act as demanders
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share of users traveling during the morning peak is higher in public transport compared 
to private car transport, mainly because of school trips. This leads to a lower ratio of 
supplied and demanded trips between 6:00 and 8:00 compared to other hours. Rideshar-
ing can obviously not cover school trips shifting from public transport to ridesharing. 
The comparison of scenario S1 and S2 illustrates the importance of a critical mass of 
participants to make a ridesharing system operational. Both sides profit from a high 
number of participants. Demanders obtain a higher reliability and suppliers will be able 
to reduce their trip costs by picking up demanders.

Another indicator beside the share of matched trips is the vehicle occupancy rate. If a 
supplier does not find a matching request, the occupancy rate is 1.0. Figure 5 shows the 
occupancy rate of scenario S2 during the course of a day. It ranges from vehicles with 
one person (dark color) to vehicles with all seats occupied (light color). Low occupancy 
rates occur primarily during times with low demand early in the morning and late in the 
evening or in low-density areas away from central network axes. The average occupancy 
rate is 2.5, which is approximately twice the current occupancy rate.

Conclusion and outlook

State of the art travel demand models for urban areas typically distinguish four or five main 
modes: walking, cycling, public transport and car. The mode car can be further split into 
car-driver and car-passenger. As the importance of ridesharing may increase in the coming 
years, ridesharing should be addressed as an additional main mode or sub mode in travel 
demand modeling:

•	 Ridesharing as sub mode: This seems appropriate for traditional ridesharing systems, 
i.e. systems where drivers offer rides for journeys they are conducting as part of their 
daily travel pattern. In this case, ridesharing supplements public transport. Using such 

Fig. 4   S2: Ridesharing potential during the course of a working day if 25% of the car-drivers serve as sup-
pliers and 100% of the public transport users along with 5% of the car-drivers act as demanders
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a system demanders cannot rely on the service and they need a backup mode, which 
is usually public transport. In a travel demand model the modal share of ridesharing 
would therefore be determined after the normal mode choice between the main modes 
within the public transport assignment.

•	 Ridesharing as main mode: This seems appropriate for rideselling systems with pro-
fessional drivers or driverless cars providing an on-demand shared taxi system. In this 
case, ridesharing competes with car and public transport. In such a system, it is less 
likely that demanders would need a backup mode. The modal share of ridesharing 
would be determined as an additional main mode in the normal mode choice step of the 
travel demand model. It would compete with car and public transport.

Both cases require an algorithm for matching the trips of suppliers (private car driv-
ers or professional taxis) and demanders (travelers not using private cars). The algorithm 
described above offers a straightforward solution for the matching problem, as it simplifies 
the matching problem in several ways:

1.	 Traffic zones serve as origins and destinations, precise pick-up/drop-off locations are 
not modeled.

2.	 The representation of a path in the road network is reduced from a sequence of links to 
a sequence of zones. The zones act as a buffer along the path, where demanders can be 
picked up.

3.	 The temporal distribution of demand is not continuous but uses time intervals.

These simplifications have advantages and disadvantages, which are summarized in 
Table 2.

Fig. 5   Vehicle occupancy rate during the course of the day
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The authors developed the algorithm for a study, which analyzed the impacts of large 
ridesharing systems with driverless cars on the number of required vehicles and the vehicle 
distance traveled. Similar to a study for Lisbon (OECD 2015), the study (Friedrich 2016; 
Friedrich et al. 2017) estimated that the entire travel demand of all motorized modes in the 
Stuttgart Region could be transported by 7% of the current car fleet with 65% of the cur-
rent vehicle distance traveled, if all travelers were willing to either use ridesharing vehicles 
with 6 seats or traditional rail. Estimating the number of cars for such a system requires a 
vehicle-blocking algorithm, which assigns every ridesharing trip to one specific car. In the 
study, an algorithm working with integer demand was applied to determine the number of 
vehicles and the empty trips between drop-off and pick-up locations. The authors are cur-
rently working on a blocking algorithm working with non-integer demand using algorithms 
from doubly constrained trip distribution models. Only then, rideselling systems with 
professional drivers or self-driving cars can be fully integrated in traditional macroscopic 
travel demand models.
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