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Abstract
As an emerging dynamic modeling method that incorporates time-dependent heterogene-
ity, hidden Markov models (HMM) are receiving increased research attention with regards 
to travel behavior modeling and travel demand forecasting. This paper focuses on the model 
transferability of HMM. Based on a series of transferability and goodness-of-fit measures, 
it finds that HMMs have a superior performance in predicting future transportation mode 
choice, compared to conventional choice models. Aimed at further enhancing its transfer-
ability, this paper proposes a Bayesian conditional recalibration approach that maps the 
model prediction directly to the context data. Compared to traditional model transferring 
methods, the proposed approach does not assume fixed parameterization and recalibrates 
the utilities and the prediction directly. A comparison between the proposed approach and 
the traditional transfer-scaling favors our approach, with higher goodness-of-fit. This paper 
fills the gap in understanding the transferability of HMM and proposes a practical method 
that enables potential applications of HMM.

Keywords Transferability · Hidden Markov models · Recalibration · Travel behavior 
dynamics · Bayes’ rule

Introduction

Background, research questions and objectives

Travel demand models are often tested and applied under different contexts (i.e., across 
spaces and time periods). How models, theories, or information developed in one context 
perform under other contexts is also known as the transferability problem (e.g., Gunn 2001; 
Rashidi and Mohammadian 2011; Sanko and Morikawa 2010). Beginning in the 1980s, a 
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large body of literature has emerged with empirical evidence about the transferability of 
travel demand models. Methods that evaluate and enhance the model transferability may 
help modelers justify the applicability of the model and assess the accuracy of its predic-
tion. It could also serve as a practical approach to the problem of applying the model to a 
future-year scenario or to an area where little data is available.

In an era of big data analytics and informatics, emerging transportation data sources are 
becoming readily available and encourage the development of more advanced modeling 
and demand forecasting methods. Greater research attention has been given to dynamic 
discrete choice analysis, activity-based models and agent-based simulation, which can 
reveal insightful individual-level activity and travel behavioral dynamics (Shepherd 2014; 
Allahviranloo et  al. 2016; Djavadian and Chow 2016). More specifically, dynamic hid-
den Markov models (HMM) have recently attracted research attention for their capabil-
ity in modeling short-term and long-term travel behavioral dynamics and capturing time-
dependent heterogeneity (e.g. Ben-Akiva 2010; Vij 2013). Nevertheless, compared to 
traditional travel demand models, new methods such as HMM tend to have more com-
plex model structure and higher dimensions of parameterization. How does HMM perform 
when applied to demand forecasting? Does it offer better prediction compared to traditional 
models? Are the conventional model-transferring techniques suitable to transfer an HMM 
model? These key research questions must be answered before we see more applications of 
HMM-based modeling methods.

Motivated by these research needs, the research objectives of this paper are three-fold:

1. to quantify the transferability of the HMM models using the widely-accepted measure-
of-effectiveness for model transferability;

2. to apply conventional model-transferring techniques to HMM models and assess the 
performance of those techniques;

3. to propose and demonstrate a more flexible recalibration method to enhance the transfer-
ability of HMM models.

Literature review

Simply applying the original model to the application context often does not guarantee a 
satisfactory outcome because some model parameters may be less transferable or require 
updating. There are a number of studies in the field of transportation engineering that 
focused on evaluating the transferability and parameter-updating methods of transportation 
demand models. Two useful review papers summarized the current state of the practice. 
The National Cooperative Highway Research Program (NCHRP) Report 716 provided a 
comprehensive literature review in the context of four-step travel demand models (Cam-
bridge Systematics et al. 2012). Karasmaa (2007) summarized and compared the param-
eter updating methods that are especially suitable for disaggregated travel demand models. 
Unfortunately, we are far from reaching consensus on how to recalibrate the models and 
make them more transferable. Existing parameter-updating methods include transfer scal-
ing, Bayesian updating, combined transferring method, and joint context estimation. These 
methods are mostly applied to cross-sectional choice models. They must rely on strong 
assumptions and often focus on scenarios that have an inadequate number of data samples 
(Karasmaa 2007; Sanko 2014).
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Existing methods can be summarized as a group of parameter-updating methods. 
They all focus on updating a number of model parameters by assuming different trans-
ferability of those parameters. For instance, the Bayesian updating method updates the 
original model parameters based on a classical Bayesian process using the application-
context datasets. This method assumes that the estimation and application contexts have 
the same underlying set of parameters (Atherton and Ben-Akiva 1976; Abdelwahab 
1991; Badoe and Miller 1995; Rashidi et al. 2013; Rossi et al. 2013). The transfer-scal-
ing method only updates the utility function scales and alternative-specific constants 
in the application context. The remainder of the model parameters, including level-of-
service and socio-economic parameters, are assumed to be completely transferable (e.g., 
Algers et al. 1994; Badoe and Miller 1995; Rossi et al. 2013). This method can mitigate 
the transfer bias (i.e., the difference in the true parameters between the estimated model 
and the application context) to some extent, especially for cases where the model is 
transferred from one location to another location and within the same temporal scope. 
It is likely that for the same time point, variables such as travel time and costs have 
the same effect on travel behavior. However, the assumptions about parameters may 
not hold; there is evidence that certain variables will generate time-varying impact and 
therefore should be incorporated when transferring the model to another time point. For 
example, level-of-service parameters have been found to evolve over time due to infla-
tion, salary increase, and changes in congestion level (Börjesson 2014). The combined 
transferring and joint context estimation incorporates the aforementioned two methods 
and different data cross-sections (Badoe and Miller 1995; Ben-Akiva and Bolduc 1987; 
Ben-Akiva and Morikawa 1990; Bradley and Daly 1991). These assumptions about 
parameters (e.g., the scaling and constant parameters assumed in the transfer-scaling 
method) still remain a methodological issue for these parameter-updating methods.

Another fact about existing studies is that they evaluate transferability using static choice 
models and cross-sectional data. Due to data limitation, most existing travel demand mod-
els are based on cross-sectional observations. When applying these models for prediction 
at another time point, the transferability is almost always an issue. An increasing amount of 
research on travel behavior dynamics has become available recently (Walker 2001; Pendyala 
et al. 2005; Cirillo and Axhausen 2010; Ben-Akiva 2010; Vij 2013; Xiong et al. 2015; Xiong 
and Zhang 2017). Dynamic discrete choice methods have been developed. For instance, Cirillo 
and Axhausen (2010) studied car-ownership and mode dynamics by specifying dynamic vari-
ables in the systematic utility functions. The dynamics on entering the car-purchasing mar-
ket have been formulated using dynamic programming and optimal stopping. As another line 
of dynamic formulation, hidden Markov models (HMM) have also drawn increased research 
attention. Vij (2013) demonstrated the use of the Markov process based on panel data from 
Santiago, Chile. Xiong et al. (2015) developed a HMM mode choice model using ten-wave 
travel panel survey data from the Puget Sound region. In HMM, hidden states are used to 
model travelers’ intrinsic behavioral status representing their action plans, modality styles, 
modal preferences, attitudes, etc. Dynamic discrete choice models and HMM models have 
improved goodness-of-fit in analyzing longitudinal data (Xiong et  al. 2015, 2018). These 
dynamic models should be considered as useful modeling tools for future-year planning and 
prediction. Contrary to the increasing visibility of dynamic models, the transferability of these 
models largely remains untested. There are papers that discussed the use of multiple cross-
sectional data to conduct joint estimation or parameter-based time series analysis in order to 
improve transferability of cross-sectional models (Sanko and Morikawa 2010; Sanko 2014). 
Again, how longitudinal models perform when transferred to future-year scenarios and how to 
calibrate them remain research gaps and need attention.
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In summary, the HMM-based travel behavioral models take into account time-varying 
heterogeneity and are believed to have better model transferability than conventional choice 
models that are typically employed in the transportation planning process. In this paper, we 
will further quantify HMM models’ transferability by adopting various performance measures 
and compare with multinomial logit models in current state-of-the-practice. Then, an effort 
of enhancing the transferability of HMM models will be made. Existing parameter-updating 
methods will be applied as a benchmark. A Bayesian conditional recalibration approach will 
be developed to transfer the HMM model to different future-year time points. Compared to 
existing model-transferring methods, this approach is more flexible without the parameteriza-
tion assumptions and focuses on recalibrating the prediction probabilities.

The remainder of the paper is organized as follows. The next section revisits the HMM 
model developed previously by the authors. Different transferability performance measures 
employed in the study are also presented. The benchmark model-transferring method and the 
proposed Bayesian conditional recalibration approach are described in detail. “Data” section 
presents the data source used in this study. “Analysis experiments and results” section reports 
estimation results and examines the performances of different methods. Concluding remarks 
and future research directions are discussed at the end of the paper.

Methodologies

Hidden Markov model

The following figure illustrates the structure of the hidden Markov model (HMM), using long-
term travel mode choice as an example of analysis (Fig. 1).

The travel mode choice dynamics are represented by a hierarchical framework. At the 
upper level, observed mode choices are governed by the hidden states, which represent differ-
ent modality styles. At the lower level, the travel mode choice is state-dependent, and can be 
modeled as a typical multinomial logit or mixed logit model. This state-dependent choice can 
be easily extended to model other travel choices as well. By combining the hidden state transi-
tion probabilities with the state-dependent choice probabilities, a joint likelihood function can 
be derived and employed to estimate the HMM parameters. Xiong et al. (2015) has depicted 
two significant hidden states: habitual drivers (who innately prefer drive-alone mode) and 
time-sensitive multimodals (with higher value-of-time and use all different modes). Between 
time points, this behavioral predisposition may evolve. Individual and household-level attrib-
utes may influence this evolution. Over time, lifecycle changes such as marriage (divorce), an 
increase in family size, relocation, etc. certainly will influence the transition in hidden states. 
Graduating school and starting a commute to a central business district (CBD) is likely to 
switch a previous habitual driver to a time-sensitive transit taker. Relocating to a remote rural 
residential area, on the other hand, could possibly change an urban transit lover into an auto-
mobile veteran. This evolution is modeled as a Markov process, using a matrix to describe the 
transition between different states:

(1)�it =
|||||
p
(h1,h1)

it
p
(h1,h2)

it

p
(h2,h1)

it
p
(h2,h2)

it
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In this matrix, the transition probability p(h1,h2) denotes the likelihood that traveler i 
switches from hidden state h1–h2. It is associated with a number of personal and house-
hold-level factors that are changing over time, meaning that these factors can be strong 
enough to transition traveler i from one hidden preference state to another state. Xiong 
et al. has included two states and lifecycle stages as variables. This transition model is for-
mulated as follows:

Given the individual’s true state Hit in period t, the observed process of mode choices 
is conditionally independent of the hidden state of other time points. The state-dependent 
choice follows random utility maximization modeling form. The systematic utility function 
for alternative mode m is:

where Zit is the vector of covariates measured at period t for individual i. Xit is the vector 
of covariates measured at period t for travel mode m. �(im|Hit) denotes the i.i.d. normally dis-
tributed error component across individual i, mode m, and hidden state Hit. �(m|Hit) , �(m|Hit) 
and �(m|Hit) are the corresponding regression coefficients for choosing mode m given hid-
den state Hit. One unique feature of this model is that it incorporates time-varying het-
erogeneity into the model formulation. When applied to a future-year prediction of modal 
split, the HMM model can better take into account the changing level-of-service and socio-
demographic variables that are typically estimated by a regional transportation planning 
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=
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Fig. 1  The modeling structure of the hidden Markov mode choice model
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model. Different performance measures for transferability are introduced in the following 
section while results are summarized in “Analysis experiments and results” section.

Transferability performance measures

The first research objective is to quantify the transferability of the HMM models. To 
achieve the objective, various measures of effectiveness (MOEs) are established in this 
study to evaluate the transferability as well as the recalibration results. Three typical 
measures for goodness-of-fit are employed to assess the transferability effectiveness: hit 
ratio, log-loss (Good 1952) and mean squared error (Brier 1950). The hit ratio measures 
the prediction accuracy, applying the transferred model to the testing samples. Log-loss 
is employed when the model output is a numeric probability, which mainly performs as a 
gauge of prediction confidence. Log-loss measures the accuracy of a prediction and it can 
be considered as the cross entropy between the distribution of the true class and the predic-
tion. Log-loss is calculated by Eq. (4):

where δ denotes the Kronecker delta function, which is equal to 1 if the two arguments are 
identical and 0 otherwise and C(E) denotes the actual class of an empirical observation E. 
When the class of an observation is correctly predicted with a probability of 1, log-loss is 
0. By minimizing the log-loss, one maximizes the accuracy of the model.

Mean squared error (MSE) describes the difference between the prediction and the 
observation. When the class of an observation is correctly predicted with a probability of 1, 
the associated MSE is 0. MSE is computed using Eq. (5):

These MOEs will then be employed to evaluate the transferability performance of 
benchmark multinomial logit models, mixed logit models, and HMMs. Different recalibra-
tion methods described below, including the proposed Bayesian conditional recalibration, 
will also be evaluated using these metrics. Resulting statistics are summarized and pre-
sented in “Analysis experiments and results” section.

Benchmark recalibration model: transfer scaling

A benchmark methodology to transfer and recalibrate travel demand models is the param-
eter-updating method, which explicitly includes a pair of local parameters in the original 
utility functions. Assume that the systematic utility functions of the initial choice model 
are V = � + �T� . � denotes the alternative specific constant. � denotes the originally esti-
mated parameters. If a subset of variables (denote by Z) of the original covariate vector X 
is transferred to another dataset, we can recalibrate the following representative utility:

where �E and �E are the parameters to be updated in this transferability problem. �E 
denotes the new constant. �E denotes the scale of the transferred parameters �′ . To estimate 
the updated parameters, maximum log-likelihood estimation (MLE) can be adopted. When 

(4)log loss =
∑

C={m}

�(C(E),C) logP(C|E)

(5)MSE =
∑

C={m}

�(C(E),C)(1 − P(C|E))2

(6)VE = �E + �E ⋅ �T�E
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applying this benchmark method to HMM models, one needs to modify the parameteriza-
tion for the Markovian transition matrix shown by Eq. (7):

where �(h1,h2) is the vector of corresponding regression coefficients for the transition prob-
ability p(h1,h2)

it
 . Z denotes personal/household covariates. � and � are the transferability 

parameters, i.e., the constant and the scale for the transition probability, respectively. Simi-
larly, we adjust the parameterization for the state-dependent choice of alternative mode m 
as follows:

where � and � are the vectors of state-dependent fixed parameters for personal/household 
covariates Z and travel mode covariates X, respectively. Again, � and � denote the transfer-
ability parameters.

A Bayesian conditional recalibration approach

Aimed at developing a more flexible recalibration approach to transfer HMMs for appli-
cation purposes, we propose a Bayesian conditional recalibration method that relaxes the 
rigidity of using scale/constant parameters. Instead, the proposed method directly recali-
brates the systematic utilities and maps the prediction to enhanced accuracy. The modeling 
flowchart (using dynamic travel mode choice as an example) is illustrated in Fig. 2.

The estimated choice model predicts systematic utility functions based on a local or 
future-year dataset where the model is transferred to. Different utility values are converted 
into confidence scores for different travel modes (indicating the strength of the decision 
that the empirical observation chooses mode m). Note that the score may not necessarily 
match the local data well. Typically, this score is represented by log-odds defined using the 
following equation. This measurement transfers the original scale of choice probability (i.e. 
[0, 1]) to a space [− ∞, + ∞], where different continuous distributions are applicable.

The log-odd statistics and predicted probabilities may not match the observed proba-
bilities. To transfer the choice model, it is necessary to perform a mapping of the model 
predictions to actual observations. This mapping is represented by a series of posterior 
calibration functions based on Bayes’ rule. Conditioned on each mode alternative, a prob-
ability density estimator f is produced.

Here, various distributions can be employed to approximate the distribution f. For enhanc-
ing the performance, asymmetric posterior functions can be adopted here to improve accu-
racy. For instance, an asymmetric Laplace distribution can be produced by mixing two 
exponentials:
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it
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(
𝜂(h1,h2) + 𝜑(h1,h2)
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it
�(h1,h2)

)

1 + exp
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(10)p(s|m) ∼ f (s)
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These functions map score s to the actual choice probabilities. In other words, the fam-
ily of posterior calibration functions adjusts the utilities estimated by the HMM to approxi-
mate the unobserved distribution of utility values for the local/future year dataset. Then, 
Bayes’ rule and the choice priors are used to obtain the estimate:

(11)p(s�𝜃, 𝛼, 𝛽) =
⎧
⎪⎨⎪⎩

𝛼𝛽

𝛼 + 𝛽
exp [−𝛼(𝜃 − s)] s ≤ 𝜃

𝛼𝛽

𝛼 + 𝛽
exp [𝛽(𝜃 − s)] s > 𝜃

(12)p(m�s) = p(m)p(s�m)∑
C∈M p(C) ⋅ p(s�C)
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Choice: C(E) M
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Confidence log-odds s, 
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MOE Metrics

Estimation 
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Data Archive

Fig. 2  A Bayesian conditional recalibration approach for travel demand model transfers
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Data

The longitudinal data used in this study came from the Puget Sound Transportation Panel 
(PSTP), which was conducted from 1989 to 2002 in the Puget Sound Region. Around 1700 
households in the four-county metropolitan area participated in the 10-wave travel panel 
survey. The first wave of PSTP took place in the fall of 1989. Each wave includes socioeco-
nomic information of the households and 2-day travel diaries. Approximately 20% of the 
samples left the panel between waves and were replaced by new households. The original 
model is estimated using the dataset that consists of the first six waves of travel behavior 
data. A total number of 336 individuals whose mode choices have been observed in each 
of the first six waves formed our panel dataset. Then, the next four waves are reserved to 
perform the transferability analysis. Descriptive statistics of the entire dataset are presented 
in Table 1.

As the first general-purpose travel panel survey in the US, PSTP data is rich in long-run 
travel behavior evolution. Figure 3 demonstrates the commute travel mode share change 
over time. Five alternative travel modes are identified in this study: drive-alone, carpool, 
transit, bike, and walk. We can observe a small expansion in the drive alone mode while 
transit and walk shares drop. The travel time and cost skims between each origin–destina-
tion pair for each transportation mode were provided by the Puget sound travel demand 
model.

Analysis experiments and results

Transferability of hidden Markov model

This section focuses on evaluating the transferability of the HMM models. An HMM 
model estimated using the first six waves of data is applied to forecast individual mode 
choice for wave 7–10 data. Estimating HMM models would need at least two waves of data 
(i.e. base-year data and future-year data). For comparison purposes, a multinomial logit 
(MNL) model and a mixed logit (ML) model are estimated using exactly the same dataset 
and are applied to wave 7–10 data as well. The parameterization of the utility functions 
used in these three models follows a similar construct. The systematic utility functions for 
MNL/ML and for each HMM hidden state are given below:

where t and c denote different mode-specific travel times and costs, respectively; income is 
a dummy variable indicating individuals with higher household income level (higher than 
$50,000 per year); numveh denotes the number of vehicles owned by a household; hhsize 
is the household size; buspass is a dummy variable indicating the possession of a bus pass; 
male is a dummy indicating male travelers. � denotes the coefficients to be estimated. 

(13)

Udrive = �0,drive + �1 ⋅ tdrive + �4 ⋅ cdrive + �5 ⋅ income ⋅ cdrive + �6 ⋅ numveh∕hhsize

Ucarpool = �0,carpool + �1 ⋅ tcarpool + �4 ⋅ ccarpool + �5 ⋅ income ⋅ ccarpool + �7 ⋅ numveh∕hhsize

Utransit = �0,transit + �1 ⋅ ttransit + �2 ⋅ taccess + �4 ⋅ ctransit + �10 ⋅ buspass

Uwalk = �0,walk + �2 ⋅ twalk + �8 ⋅ male

Ubike = �0,bike + �3 ⋅ tbike + �9 ⋅ male
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Among them, the coefficients for in-vehicle travel time and travel costs are assumed to be 
lognormally distributed in the mixed logit (ML) model: − ln � ∼ N(�, �) . The lognormal 
assumption is typically used for coefficients that are known to have the same signs, such as 
cost and travel time (Train 2009). The estimation results of the three models are summa-
rized in Table 2.

The estimated coefficients have reasonable signs and statistical significance. In terms of 
the goodness-of-fit, the HMM model does outperform the MNL and ML models. A main 
advantage is the identification of two hidden states and the dynamic transition in between. 
State 1 can be labeled as a habitual driving state where the constant for drive alone mode 
is positive and has a dominating effect on utility. State 2 can be labeled as a time/cost-sen-
sitive state where the coefficients for time and cost variables indicate a higher sensitivity. 
Moreover, the HMM transition model further depicts the dynamic movements between the 
two hidden states. Taking the p(1,2) model as an example, the negative coefficients for all 
variables indicate a behavioral inertia for travelers to move from state 1 to 2. This inertia 
for staying in state 1 (habitual driving) is stronger for individuals in life stage 2 (i.e. in a 
family with school-age kids) or life stage 3 (in a single-adult household). Readers inter-
ested in the details of the HMM travel behavior model can find the empirical explanations, 
value of travel time estimates, and model sensitivities in Xiong et al. (2015).

We have also measured the transferability of the MNL, ML, and HMM when applying 
them directly to the testing samples (wave 7, 8, 9, and 10). Different performance measures 
introduced in “Methodologies” section are used to quantitatively measure and compare the 
direct transferability, as shown in Table 3. Results for four waves are obtained. It is found 
that the HMM model has a consistently higher transferability when compared to its coun-
terparts, MNL and ML models. When applied directly to the four waves of data, the HMM 
model has a higher predicting accuracy (hit-ratio) of 60–65%, while the hit-ratio of MNL 
remains around 57–63%. Comparing other performance measures, the HMM model has 
significantly more desirable performance for the four experiments with respect to mean 
squared errors and total squared error. HMM has less favorable log-loss measures, mainly 
due to the more complex modeling structure and parameterizations. We will show that 
the log-loss, among other performance measures, are greatly improved from the proposed 
Bayesian conditional recalibration approach.

Fig. 3  Travel mode share over 
the ten-wave time period (Xiong 
et al. 2015)
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One reasonable explanation for the superiority of the HMM model is that it successfully 
incorporates the time-varying heterogeneity that influences travelers’ mode choice over 
time, while conventional travel demand models can only statistically cover cross-sectional 
factors. The results presented in this section provide quantitative evidence of temporal 
transferability for the family of HMM models and illustrate its capability in travel demand 
forecasting applications.

Transfer‑scaling recalibration results

To further recalibrate the estimated model for enhanced transferability, the transfer-scal-
ing method is applied to the dataset as a benchmark recalibration. The estimated constant 

Table 2  The estimation results of MNL, ML, and HMM models

The table shows estimated coefficients with standard deviations in parentheses

MNL ML HMM

State 1 State 2

Constant (drive-alone) 9.540 (0.128) 12.70 (0.230) 6.240 (0.905) − 1.589 (1.080)
Constant (carpool) 7.720 (0.138) 10.80 (0.191) − 0.050 (0.210) 1.232 (1.024)
Constant (transit) 7.590 (0.125) 11.30 (0.202) − 1.229 (0.897) − 1.981 (0.869)
Constant (walk) 10.00 (1.800) 12.50 (0.225) 0.542 (0.965) 1.477 (0.522)
Constant (bike) 0 (fixed) 0 (fixed) 0 (fixed) 0 (fixed)
In-veh time (min) − 0.013 (0.001) − 4.370 (0.234) − 0.081 (0.022) − 0.965 (0.124)
In-veh time (SD) N/A 1.120 (0.232) N/A N/A
Walk time (min) − 0.040 (0.002) − 0.0343 (0.005) − 0.052 (0.008) − 0.567 (0.207)
Bike time (min) − 0.043 (0.004) − 0.065 (0.0141) − 0.057 (0.011) − 0.552 (0.084)
Travel cost ($) − 0.207 (0.042) − 7.540 (0.969) − 0.301 (0.090) − 1.874 (0.285)
Cost (SD) N/A 0.289 (0.744) N/A N/A
High income × cost ($) 0.091 (0.041) 0.040 (0.038) 0.154 (0.071) 0.080 (0.029)
# veh/hhsize (drive-alone) 0.485 (0.084) 0.981 (0.161) 0.623 (0.208) 5.152 (1.400)
# veh/hhsize (carpool) 0.319 (0.097) 0.550 (0.211) 1.117 (0.393) − 1.150 (1.047)
Male (walk) 0.096 (0.109) − 0.330 (0.283) 1.699 (0.875) 0.193 (0.388)
Male (walk) 9.130 (0.148) 11.40 (0.200) 2.172 (0.626) 0.009 (1.004)
Bus pass (transit) 2.510 (0.130) 3.130 (0.180) 5.777 (1.490) 0.728 (0.821)

HMM transition model

p
(1,2)

p
(2,1)

Constant − 2.301 (0.600) − 1.480 (0.159)
Life stage 1 (preschool kids) − 0.935 (0.421) − 1.698 (0.725)
Life stage 2 (school-age kids) − 1.492 (0.388) − 0.512 (0.243)
Life stage 3 (1 adult no kids) − 1.169 (0.497) 1.131 (0.536)
Life stage 4 (2 + adults no kids) 0 (fixed) 0 (fixed)
Number of observations 2016 2016 2016
Rho-square statistics 0.577 0.579 0.693
Log-likelihood − 1373.5 − 1365.2 − 996.1
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and scaling parameters for transferring the model to wave 10 data are reported in Table 4. 
These variables represent the changes made based on wave 10 data, compared to the origi-
nal estimates in Table  2. Results for the other waves are omitted but are available from 
the authors. The transfer-scaling method successfully adjusts the alternative specific con-
stants and scales for the utility functions and the transition probability functions. It is found 
that habitual drivers (State 1) would be more likely to use drive-alone, carpool, and active 
modes in wave 10, because of their positive constants and reduced scales of disutility (i.e. 

Table 3  Transferability performance measures for MNL, ML, and HMM models

Avg. log-loss Mean-squared 
error

Total squared error Total log-loss Hit-ratio

Wave 7
 MNL − 0.441 0.322 6906.0 − 9454.9 0.611
 ML − 0.449 0.325 6966.2 − 9615.1 0.612
 HMM − 0.605 0.307 6581.2 − 12,963.3 0.620

Wave 8
 MNL − 0.475 0.351 6924.2 − 9365.4 0.573
 ML − 0.483 0.355 6999.7 − 9533.8 0.574
 HMM − 0.664 0.333 6576.9 − 13,086.9 0.600

Wave 9
 MNL − 0.409 0.302 4889.1 − 6632.6 0.633
 ML − 0.411 0.303 4913.5 − 6673.1 0.635
 HMM − 0.567 0.285 4620.2 − 9193.8 0.650

Wave 10
 MNL − 0.438 0.327 5212.1 − 6977.8 0.610
 ML − 0.452 0.334 5321.2 − 7210.0 0.604
 HMM − 0.585 0.304 4858.8 − 9300.9 0.640

Table 4  Transfer scaling estimation results using the wave 10 data

Models State 1 State 2

Utility functions Constant coeff. (SE) Scaling coeff. (SE) Constant coeff. (SE) Scaling coeff. (SE)

Drive-alone 5.554 (0.274) 0.109 (0.004) − 18.33 (0.579) 3.601 (0.097)
Carpool 7.946 (0.311) 0.442 (0.018) 4.178 (0.118) 1.348 (0.059)
Transit − 1.174 (0.538) 0.071 (0.007) − 1.856 (0.294) 0.417 (0.054)
Walk 5.444 (0.281) 0.169 (0.007) − 6.367 (1.660) 0.421 (0.421)
Bike Fixed
HMM transition model
 p(1,2) − 0.402 (0.692) 0.451 (0.263)
 p(2,1) − 2.397 (0.473) 0.049 (0.038)
 Number of obser-

vations
15,932

 Log likelihood − 10,380.0
 Pseudo R2 0.60
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the scale coefficients are less than one). Drive-alone has the lowest scale coefficient com-
pared to carpool and walk. Lower scale coefficient leads to smaller disutility, especially 
for trips of longer distance. This indicates that drive-alone is still the most dominant travel 
mode in the future-year scenario (wave 10 data were collected in the year of 2002). For 
shorter-distance travels, on the other hand, the effect from the constant coefficient becomes 
more significant in the model, showing that habitual drivers are more willing to consider 
other alternative modes for shorter trips. Time/cost-sensitive travelers (State 2) have a 
higher propensity towards choosing carpool mode. This is based on the positive constant 
for carpool mode and negative constants for the other modes. In the meantime, they tend 
to have an increased utility scale for drive and carpool modes, indicating a decreased mar-
ginal probability of choosing drive-alone or carpool for trips with higher travel times and 
costs.

The recalibration results for transition matrix are also obtained. Negative and significant 
constant coefficient is found for the probability function of transition from State 2 to 1. It 
depicts that in the future-year scenario, time/cost-sensitive travelers become more reluc-
tant to switch their preference state. Other variables for the transition matrix are insignifi-
cant, which suggests that the transition parameters are already relatively more transferable 
between different time points. Judging by the findings obtained from “Transferability of 
hidden Markov model” and “Transfer-scaling recalibration results” sections, it is believed 
that the HMM method has higher transferability, when compared with cross-sectional 
MNL models. This dynamic modeling approach can and should be incorporated for any 
future-year prediction in planning/policy analysis.

Fig. 4  Estimated drive-alone choice conditional log-odd densities versus the actual densities of the test data 
(wave 7, 8, 9, and 10)
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Bayesian recalibration results

Two different continuous statistical distributions are applied in this paper as Bayesian 
recalibration functions: an asymmetric Gaussian mixture distribution and a Gaussian ker-
nel density (GKD) distribution. The calibration is conducted on each alternative specific 
utility function to perform a mapping from model-predicted probabilities to actual obser-
vation. Log-odds are used to transfer the original scale of choice probability (i.e. [0, 1]) to 
a space of [− ∞, + ∞] in order to fit in different continuous distributions. Figure 4 illus-
trates the estimated posterior distributions for the calibration of probabilities for choosing 
the drive-alone mode. The estimated posteriors for other travel modes are available in the 
“Appendix”.

In the subfigures, the curves of the test data represent the actual densities of log-odds for 
choosing the drive-alone mode. In general, log-odds distribute over the positive spectrum 
and skew toward the left side, indicating a higher propensity of choosing the drive-alone 
mode. The fits of the two statistical functions represent a qualitative comparison between 
using different distributions to approximate the conditional densities. Both the asymmetric 
distribution and the kernel density functions seem to fit the test data well.

As mentioned earlier, the recalibration approach maps the estimated log-odd scores 
to the actually observed choice probabilities. A concern is how to evaluate this proposed 
approach and compare it with existing approaches, such as transfer scaling. Measurements 
explained in “Transferability performance measures” section are employed here to assess 
the quality of the probability estimation. A better performance based on these measures 
can be termed improved “transferability”, while it actually indicates overall higher predic-
tion accuracy. Performance measures are reported in Table 5.

Table 5  Performance measures for recalibrating the HMM model using transfer scaling, GEV-based Bayes-
ian approach, and Gaussian-based Bayesian approach

Avg. log-loss Mean-
squared 
error

Total squared error Total log likelihood Hit-ratio

Wave 7
 Transfer scaling − 2.55 0.39 8349.57 − 54,640.01 0.627
 GKD − 0.56 0.32 6953.48 − 12,036.05 0.653
 Gaussian mixture − 0.44 0.33 7072.94 − 9343.74 0.668

Wave 8
 Transfer scaling − 2.71 0.39 7606.61 − 53,485.77 0.609
 GKD − 0.60 0.33 6697.43 − 11,815.04 0.643
 Gaussian mixture − 0.45 0.34 6811.95 − 8832.11 0.642

Wave 9
 Transfer scaling − 2.85 0.40 6426.00 − 46,220.76 0.646
 GKD − 0.60 0.33 5321.36 − 9751.87 0.681
 Gaussian mixture − 0.48 0.32 5245.78 − 7831.75 0.693

Wave 10
 Transfer scaling − 2.23 0.37 5853.77 − 35,481.07 0.639
 GKD − 0.65 0.29 4542.71 − 10,311.88 0.676
 Gaussian mixture − 0.39 0.30 4796.17 − 6198.84 0.695
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Based on the performance measures, both the GKD and the Gaussian mixture calibra-
tion functions outperform the widely used transfer-scaling method. The average log-loss 
and total log-likelihood statistics are reduced greatly in all four experiments. The mean-
squared error statistics are improved from near 0.40 to 0.29–0.34. It is worth noting that 
more favorable statistical distributions (e.g., compound distributions that mix two different 
types of distributions) can be further tested in order to enhance the goodness-of-fit.

This section demonstrated the transferability of the HMM model and quantitatively 
evaluated the performance of the proposed Bayesian recalibration approach. HMM enjoys 
more desirable performance measures when applied to demand forecasting in mode choice. 
This application context is temporally different and thus can be noted as a “temporal-
transferring”. The results suggest that the HMM model has a higher temporal transfera-
bility. How it performs when transferred to a different location (i.e., spatial transferring) 
is another direction that is worth investigating in future research. Secondly, the proposed 
recalibration approach greatly enhances the model transferability. It improves the predict-
ing accuracy by transforming the predicted probabilities to the actually observed proba-
bilities. Without any presumptions on parameterization, the proposed approach is flexible 
enough and only lets the data dictates itself. It can be easily adapted and employed in any 
real-world policy and planning application.

Conclusions

In this paper, we aim at measuring and enhancing the transferability of an emerging 
dynamic travel behavioral analysis method, hidden Markov models (HMM). To the best of 
the authors’ knowledge, HMM has not yet been widely applied in transportation planning 
and policy analysis. Compared to standard modeling tools such as MNL and ML models, 
HMM successfully incorporates the time-dependent heterogeneity and has higher predic-
tion accuracy in predicting the choices. Nevertheless, HMM has more complex modeling 
structure and require multiple years of data for model estimation (need two waves of behav-
ioral data, at minimum). This may prevent a researcher or policy maker from developing 
its own HMM models for places with limited data, and thus has highlighted the research 
needs in transferring HMM models that are already developed for different application pur-
poses, such as future-year scenarios, transferring to another study area, etc.

To achieve this, we employ ten rounds of panel survey data to test an estimated HMM 
model’s transferability and compare it with MNL and ML models. The first six waves of 
data are employed as the estimation dataset, while the latter four waves are reserved as 
the model transferring dataset. HMM’s transition matrix component takes into account the 
time-varying heterogeneity and thereby plays an important role in enhancing the transfer-
ability of this type of model. Our transferability analysis has verified that HMM models do 
have higher transferability in the analyzed scenarios, when compared with MNL and ML 
models.

Then, in order to further enhance the transferability of HMM, a more flexible recali-
bration approach is proposed and compared to traditional parameter-updating methods. 
Instead of recalibrating constants and scales for utility functions, our method focuses on 
gauging the utilities and prediction probabilities directly. The proposed method adjusts 
probabilities as posteriors by using data from the application context as a priori informa-
tion. It is more flexible without making any assumptions about modeling parameters. A 
comparison between the proposed approach and transfer-scaling approach was conducted. 
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Various goodness-of-fit measures were employed to assess the performance of the two 
approaches, including: hit ratio, log-likelihood, pseudo R-squared statistic, mean squared 
errors, and information loss. The results show that while both methods can significantly 
enhance the goodness-of-fit for the transferred model, the proposed approach outperforms 
the benchmark model for its superior performance.

The contributions of this paper are mainly three-fold. Firstly, the transferability of HMM 
models has been comprehensively analyzed. Literature on the transferability of dynamic 
travel demand models is limited. This paper successfully fills the gap and demonstrates the 
merits of HMM in dynamic travel behavioral analysis and travel demand forecasting. Sec-
ond, this paper demonstrates how to improve the applicability of hard-to-estimate dynamic 
models by empirically testing the transfer scaling approach and our proposed Bayesian 
approach using a longitudinal dataset. Researchers and practitioners can use this paper as 
a useful reference when applying dynamic models in transportation planning practices. 
Finally, this paper has developed an alternative approach to calibrating and transferring 
travel demand models. Compared to the benchmark model that adjusts alternative-specific 
constants and scale parameters, the proposed Bayesian conditional recalibration enables us 
to fit local observations with much greater flexibility and with a similar number of param-
eters. The experiments comprehensively examine the performance of the proposed method 
on transfers to different time periods and have confirmed that the results and findings are 
stable and reliable.

Limitations of the study are fully acknowledged and future research shall address them. 
Compound distributions should be tested to further improve the goodness-of-fit of the 
proposed recalibration. This can be crucial for any data-driven statistical method. HMM 
models’ spatial transferability and the performance of our proposed method in different 
locations are worthwhile for exploration. Once again, we would like to emphasize the great 
potential of HMM models in travel demand forecasting and planning applications. Tempo-
ral and spatial applications can provide useful evidence for researchers and practitioners to 
move from static and cross-sectional analysis to dynamic modeling, which is visible when 
emerging data sources collected from global position system (GPS), smartphone applica-
tions, and social networks are readily available.
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Appendix

See Figs. 5, 6, 7 and 8.   
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Fig. 5  Estimated carpool choice conditional log-odd densities versus the actual densities of the test data 
(wave 7, 8, 9, and 10)

Fig. 6  Estimated transit choice conditional log-odd densities versus the actual densities of the test data 
(wave 7, 8, 9, and 10)
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Fig. 7  Estimated walk choice conditional log-odd densities versus the actual densities of the test data (wave 
7, 8, 9, and 10)

Fig. 8  Estimated bike choice conditional log-odd densities versus the actual densities of the test data (wave 
7, 8, 9, and 10)
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