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Abstract Some existing studies have suggested that a higher level of multimodality—the

use of more than one transport mode within a given period of time—may be desirable to

achieve societies less dependent on cars. The aim of this study was to investigate the trends

in individual multimodality in England. In addition, we explored whether these trends were

homogenous, i.e. similar between socio-economic characteristics, and whether changes in

multimodality corresponded with changes in car use and the use of other transport modes.

Our analyses showed that in contrast to reported trends in existing research, the level of

multimodality in England decreased between 1995 and 2015. These trends stratified by

income were diverging, which may imply that inequality in transport opportunities may be

increasing. In contrast, the trends for age and gender were converging. In addition, we

found that the car mode share remained fairly stable and absolute car use decreased since

2004, whilst multimodality decreased. This suggests that there is no necessary relationship

between aggregate levels of car use and the average individual level of multimodality.

Moreover, our analyses showed that these trends were very similarly independent of which

indicator was applied. This indicates that for analysing trends in multimodality, the choice

of indicator may not be that important, and indicators that are elementary to calculate and

easy to interpret, e.g. number of modes used, highlight trends that are highly consistent

with more sophisticated metrics. This paper finishes with a discussion of the implications

of these findings.
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Introduction

In order to promote a sustainable and healthy environment, the dominance of the car needs

to be reduced and a larger proportion of travel needs to be made by public transport, on

foot, and by bicycle. In the developed world, policies have aimed to generate a modal shift

away from the car with initiatives that include subsidies, improving the facilities for active

travel and public transport, and restricting car access. Recently, increased policy attention

has been placed on encouraging a partial shift rather than a full modal shift (EC 2014). The

idea is to induce travellers to use the car for only some of their trips, whilst taking

advantage of other modes in circumstances where they are sufficiently competitive.

In the scientific debate, the use of more than one transport mode within a given period

of time, referred to as multimodality, has gained increasing attention (e.g. Buehler and

Hamre 2015; Heinen and Chatterjee 2015; Susilo and Axhausen 2014; Kroesen 2015;

Scheiner et al. 2016; Olafsson et al. 2016; Block-Schachter 2009). Some of these studies

have even suggested that multimodality may be a predictor of behavioural change

(Kroesen 2015; Heinen and Ogilvie 2016). These findings suggest that a higher level of

multimodality may therefore be desirable to achieve societies less dependent on cars.

The majority of the studies have focussed on the correlates of multimodality, (e.g.

Susilo and Axhausen 2014; Heinen and Chatterjee 2015). These studies provide insights

into which individual, household, and urban characteristics correspond with a higher level

of multimodality. Such findings may shed some light on the potential determinants of

multimodality and may support policy efforts to reduce car dependency by increasing the

use of a wider variety of transport modes. However, studies on the correlates of multi-

modality are often based on cross-sectional data, and as such, no causal relations can be

drawn from them (see Scheiner et al. 2016 for an exception).

Only a limited number of studies have focussed on trends in multimodality (Kuhnimhof

et al. 2011; Buehler and Hamre 2016; Kuhnimhof et al. 2012a, 2012b; Streit et al. 2015).

The surveillance of trends over time is important to understand the incidence of multi-

modality, to understand whether multimodality is increasing or decreasing, and to reveal

whether the distribution is changing. The monitoring of trends may as such reveal potential

future problems.

Most studies to date suggest that car use is decreasing and—perhaps consequently—

multimodality is increasing. However, these studies are limited in several ways. The

majority of the trend analyses are based on a limited number of years; some only report

changes between two, or at most, 3 years, whereas others pool years together and report

averages for periods. However, the data analysed are derived from sample surveys. As a

result of changes in the survey design or survey collection or of changes in the sample

variability, fluctuations in the measured behaviour may occur, and large travel surveys,

such as the National Travel Survey (NTS) consequently put their users on guard not to

draw conclusions from short-term changes (DfT 2015a). Comparing 2 years may therefore

offer insufficient reliability on reported trends, as one may not be able to separate secular

trends from irregular variations.

Second, the indicators of multimodality used in existing research on trends in multi-

modality do not correspond with recent advances in this field, e.g. Diana and Pirra (2016).

In some studies, changes in other travel behaviour characteristics, such as aggregate
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measures including modal split or changes in the habitual frequency of certain mode, are

sometimes interpreted as changes in multimodality. However, the measurement of mul-

timodality is more complex and needs to take account of both the modal mix of transport

modes used as well as the frequency that each mode is used. This relates to the third

shortcoming in existing studies on trends in multimodality. Until now, limited attention has

been paid to the relationship between various indicators of multimodality and trends in the

use of different modes of transport, in particular car use, whereas it is often implied that an

increase in multimodality corresponds with a reduction in car use. Given that multi-

modality may be seen as a potential first step away from ‘habitual’ car dependency, it is

important to disentangle the relationship between car use and the level of multimodality.

Fourth, there is still limited evidence on how multimodality is distributed across society.

For policy, it is important to know whether a decrease in car travel may be attributable to a

large share of individuals with a reduced number of alternatives, i.e. less car access, or to

individuals who have multiple alternatives but make deliberate choices to use public

transport or active travel (Kuhnimhof et al. 2012a). Similarly, it is important to unravel

whether differences between socio-economic groups in the level multimodality—the actual

use of a variety of mode of transport—are stable or whether differences are growing or

attenuating. For the aim to determine the predictors of multimodality, understanding the

trends in multimodality by well-known correlates provides some insight into the rela-

tionship between them. From the standpoint of social equality, it is important to understand

whether aggregated national trends are distributed similarly over the population or whether

travel with a variety of modes is exclusively available for certain groups.

This study aims to advance the research on trends in multimodality, and the purpose of

this study is to investigate long-term trends in multimodality in England with contempo-

rary indicators of multimodality. In addition, it explores whether these trends are

homogenous, i.e. whether they are similar between socio-economic characteristics and how

trends in multimodality correspond with changes in car use and the use of other modes. For

this, we analysed a national representative repeated cross-sectional survey, the NTS of

England. The NTS allows us to describe patterns of how different transport modes are used

and to monitor trends in travel to inform policy formulation. Additionally, it allows us to

assess whether different socio-economic groups may be impacted by policies equally. A

better understanding of existing trends and the prevalence of those in groups will not only

allow us to understand the predictors of multimodality better, it also allows us to test often

assumed consequences of the use of certain modes on multimodality, and as such, offers

insights to reflect on current policy aims and efforts to make societies more multimodal to

improve sustainability and quality of life.

Background

Measuring multimodality

There are two broad understandings of multimodality in the scientific and policy literature,

although this distinction is not often explicitly made. In the first, ‘aggregate’ under-

standing, multimodality is seen as an attribute of a group or the population of a country or

city. In this sense, a population is more multimodal if its (aggregate) modal split is not

dominated by a single mode, but rather is characterised by a balance of different modes.

This is quite distinct from the second understanding, which sees multimodality as an
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attribute of individuals and their travel patterns. This is the understanding of multimodality

that is adopted in this paper.

Individual-level multimodality is characterised in two ways in the scientific literature.

The first characterisation method is ‘categorical’, i.e. individuals are classed into different

groups based on the variety of modes they use in a certain period. Most commonly, these

groups are predefined. Examples of such groups are ‘monomodal car users’, ‘multimodal

car users’, etc. (e.g. Nobis 2007; Buehler and Hamre 2015). Another method of grouping

individuals, which is currently less commonly applied, comprises data-driven groups

(Kroesen 2015; Molin et al. 2016). Categorical indicators allow to make statements on

which modes are being used, but do not provide information on the level of variation in

use. The second method of characterising multimodality is by continuous indicators, which

measure the level of multimodality (e.g. Heinen and Chatterjee 2015; Susilo and Axhausen

2014). This method does not permit to make statements on which modes are used nec-

essarily, which may be seen as a shortcoming of this method. Perhaps surprisingly, the

variety in indicators may be larger for continuous indicators than for grouping. The most

commonly applied indicators include variations of the Herfindahl–Hirschman index (e.g.

Susilo and Axhausen 2014; Heinen and Chatterjee 2015; Scheiner et al. 2016). Diana and

Pirra (2016) recently investigated several continuous indicators including Gini, Dalton,

Atkinson, Entropy, and Herfindahl indices for their ability to correctly measure the level of

multimodality. They concluded that none of the indicators outperformed any other indi-

cator in the qualities they considered. However, they recommend the use of a variation of

the Herfindahl–Hirschman index (HHm), as well as variations of the Shannon entropy and

Dalton indices based on their properties to represent multimodality, the former three

specifically ‘if the researcher could be interested in measuring the ‘‘real’’ multimodality

behaviour by simply considering the number of travel means that the individual is using

from a pre-defined set, irrespective of the fact that some of these are not accessible to some

individuals’ (p. 780). However, if the average use of different modes varies between

respondents and some modes are hardly used, DALm appears the best index. However, as

yet, there is no agreement on which indicator to use. One important aspect that has not

been considered sufficiently in the scientific debate on which indicator is best, is the ease of

interpretation. The trade-off between ease of interpretation and correctly measuring mul-

timodality will require further exploration.

It is important to note that the measured level of multimodality as well as the division of

individuals into groups depends on the characteristics of the data. Three elements are

particularly important in this light: the duration of the period covered of the data collection,

the number of modes considered, and the level on which the number of modes are con-

sidered. The number of days has been shown to have a large effect on whether an indi-

vidual can be considered multimodal or not (e.g. Buehler and Hamre 2016). In general, the

longer the measurement of travel behaviour, the more likely there is some variation in

mode choice. Second, the number of modes considered is very important when evaluating

whether an individual has used single or multiple modes. More aggregate groups of modes,

such as active travel and public transport, may result in an underestimation of the variety of

the modes used (see e.g. Heinen and Chatterjee 2015). Finally, multimodality can be

investigated at a stage, trip or journey level. The effect of all these three aspects may differ

dependent on the characterisation of multimodality. There is ongoing debate on which

indicator is best used as a measure of multimodality, as well as over how many days should

be considered and on which level it should be measured (Diana and Pirra 2016; Scheiner

et al. 2016; Heinen and Chatterjee 2015).
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Predictors of multimodality

Over the past few years, various studies have investigated the predictors of multimodality

(e.g. Nobis 2007; Buehler and Hamre 2015; Heinen and Chatterjee 2015). Broadly, it

appears that multimodality is more prevalent among women and in areas with greater

densities. Unimodal car users are, on average, more likely male, white, full-time

employees, individuals with young children, and car owners. They are less often students.

Age results appear to vary between countries. Older people show more multimodality in

Germany, but greater age is associated with lower levels of multimodality in the USA and

Great Britain (Heinen and Chatterjee 2015).

In addition, life events have been found to be associated with changes in multimodality

(Scheiner et al. 2016). In the event that a child leaves their parental house, the level of

parent multimodality increases. A similar relationship was found for leaving the labour

market, whereas entering the labour market reduced the level of multimodality.

Trends in multimodality

The research on trends in multimodality is still relatively limited. This is likely due to the

desired availability of repeated multi-day surveys, using identical methods. Kuhnimhof

et al. (2011) investigated car availability, mode use, and multimodality in Germany and

Great Britain, with a focus on individuals between 20 and 29 years of age. They used two

datasets for Germany: 4 years from the Mobility in Germany [Mobilität in Deutschland

(MiD)] (1982, 1989, 2002, 2007) and three time points from the German Mobility Panel

(MOP) (1995–1999, 2000–2004, 2005–2009). For Great Britain, the National Travel

Survey was used from 1996, 1999, 2002, and 2005. The authors implicitly adopted an

aggregate understanding of multimodality and focussed on frequency of car and public

transport use. They found an increase in the habitual frequency of public transport use (in

the aggregate) for the group of young car owners, and concluded on this basis that mul-

timodality has increased. At the same time, their analyses revealed that there was an

aggregate reduction in miles driven by car. This may partly be explained by a reduction in

car availability. These findings were more pronounced in Germany than in Great Britain.

Kuhnimhof et al. (2012a) investigated the trends in travel behaviour of young adults in

six countries: Germany, France, Great Britain, Japan, Norway, and the USA. They com-

pared a maximum of 3 years, one in the 1970s/1980s, one in the 1990s, and one after 2005,

all depending on data availability within a specific country. Since 2000, car accessibility

has decreased in most countries and this was more pronounced in men than women.

Similarly, the average daily distance travelled by car has decreased in these countries.

Interestingly, this reduction in car travel resulted in an overall decrease in travel in France,

Japan, and the USA. However, in Great Britain and Germany, this decline in car travel was

(partly) compensated by an increase in travel by other modes of transport.

Kuhnimhof et al. (2012b) analysed travel trends of young adults aged between 18 and

29 in Germany by use of the MOP. They compared 3 years: 1976, 1997, and 2007 and

found that car access and car use declined for young adults in Germany. By comparing

whether individuals used a car, public transport, or a bicycle either daily, weekly, monthly,

or even less often, they concluded that multimodality among young adults had increased.

Multimodality appeared to have specifically increased among those with car access.

Streit et al. (2015) used the MOP to investigate trends of variety of mode use, com-

parisons of daily trip chains, and variations of trip length. They compared two periods

Transportation (2019) 46:1093–1126 1097

123



1998–2000 and 2010–2012, based on a bespoke continuous indicator of individual-level

multimodality, and concluded that this had significantly increased among young adults.

This trend could be observed in both genders.

Finally, Buehler and Hamre (2016) explored the changes in individual-level multi-

modality in the USA based on the National Household Survey from 2001 and 2009. They

investigated multimodality on the levels of trip chains, days, and weeks. The first two were

based on travel diaries, whereas the last was based on a one-day diary and self-reported

frequency of use for commuting over the last week. They showed that monomodal car use

on all levels had decreased between 2001 and 2009. The main increase was not in the

multimodal car group—which increased in all level except in chained trips—but in the

‘walking, bicycle, and/or public transportation-only’ group, which was, however, the

smallest group overall.

In conclusion, most studies that have investigated trends in multimodality reported that

multimodality had increased. This increase may have been particularly strong among

younger people with access to a car. However, all trends analyses were based on a limited

number of years, sometimes only two. Comparing only a few years does not enable to

separate the secular trends from irregular variations, which may possibly due to changes in

the survey or data collection. The results are therefore not very reliable. Some existing

studies were also based on an aggregate understanding of multimodality. Trends in the

actual level of multimodality at the level of individual travel patterns, as well as the

differences between groups have remained largely unexplored. Therefore, it remains

questionable what the exact trends of multimodality are, and whether changes in these are

equally distributed within societies. The latter is important for policy as a change towards

more sustainable modes of transport by choice has different societal consequences than

those reductions made due to economic or social restriction.

Method

Data

To analyse trends in multimodality, there are multiple data requirements. First, to measure

multimodality, it is strongly recommended to have multiple-day travel diaries. Second, to

investigate trends, it is necessary to have repeated collections of such multi-day travel

diaries. These could either be a sample of the same individuals over multiple years, i.e. a

panel, or a repeated cross-sectional survey, representative of a population.

We used the Great Britain National Travel Survey (NTS). The NTS is a cross-sectional

survey that is conducted annually. The NTS is ‘designed to monitor long-term trends in

personal travel and to inform the development of policy’ (DfT 2016a). The NTS is a

representative household survey of Great Britain, although starting from 2013, the sample

is limited to England alone. It was first conducted in 1965/1966 (Rofique et al. 2011) and

has continued for every year since then.

To recruit individuals, households receive an advance letter to provide background of

the survey, its importance and information on how the household was selected. After the

first letter, interviewers make contact by a personal visit, and interviewers are required to

make a minimum of six and a maximum of nine calls at different moments of the day and

week. The survey is currently administered through face-to-face interviews with household

members using Computer-Assisted Personal Interviewing. Each household member is
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requested to fill in a 7-day travel diary. Weighting was developed in 2005, and applied to

data from 1995 onwards. The application of weighting has caused a change within the NTS

data. We therefore analyse the trends from 1995 onwards.

The NTS has been a continuous survey since 1988, with an annual sample size of 5040

addresses, increasing to 5796 addresses by 2001, and set to 15,048 in 2002. In 2015, the

NTS was based on a stratified, clustered random sample of 12,852 private households draw

from a postcode file. In 2015, a national response of 61% was achieved (NatCen Social

Research 2016).

Over the years several changes have been made, including the removal or adding of

questions, or changes in the frequency that questions were asked. More substantial changes

include the following:

• Data prior to 2002 are based on smaller annual sample sizes, which can result in less

accurate estimates for single years (DfT 2015b).

• From 2002 onwards, NTS has introduces a quasi-panel design (NatCen Social Research

2016). This means that half of the primary sampling units (which correspond with

postcode sectors) in a given year will be kept in the sample of next year, whilst half will

be replaced.

• After this successful experiment in 2002 with offering an incentive, from 2003

onwards, households that fully participated are offered a £5 voucher.

• In 2007, the travel record was redesigned, and ‘since 2014 interviewers have been

provided with a list of key points to cover when placing a checking a travel diary’

(NatCen Social Research 2016, p. 22).

• In 2013, several items of the interview and travel record were removed after a smaller

redesign.

• In 2013, the data collection was limited to England.

• In 2013 and 2015, experiments were conducted with the collection of short walking

trips. In NTS, short walking trips are only recorded on the last day of the 7-day survey

(weighting is then applied), and in the two experimental years, a small proportion of the

NTS sample were asked to report short walking trip on the first day. Given that large

differences were observed in the recording of short walking trips, the travel diary data

of the experimental sample were not included in the NTS data.

We followed Heinen and Chatterjee (2015) to prepare the data for analyses on

multimodality. In short, we first used the ‘stages file’ in the NTS to calculate various

multimodality indicators (see ‘‘Measurement of multimodality’’ section). We determined

the number of stages, whilst applying weighting for short walks and drop-offs in

reporting for eight categories of transport mode [NTS weight: SSXSC (short walk

weight) and W5xHH (Trip/stage weight excluding household weight)]: walk, bicycle, car

driver, car passenger, bus, rail, taxi, and other (motorcycle and other private and public

transport). Similarly, we also determined the number of stages considering three modes

of transport: car transport (car driver and car passenger), active travel (walking and

cycling) and public transport (bus, rail, taxi, and other). Second, we added this infor-

mation to the ‘individual file’ in NTS. Third, we calculated various indicators of mul-

timodality for each individual (see ‘‘Measurement of multimodality’’ section). We

applied the weighting available in NTS to adjust for non-responses, probability of

selection, and to reproduce sample population characteristics [NTS weight: W2 (Diary

sample household weight)].
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Measurement of multimodality

To investigate whether the level of multimodality changed, we used continuous indicators

of individual modal variability. Given that there was no one single best indicator, we

explored various indicators based on existing studies on multimodality (e.g. Diana and

Pirra 2016; Heinen and Chatterjee 2015; Susilo and Axhausen 2014; Streit et al. 2015). We

considered indicators that were either widely used, shown to be mathematically superior to

measure multimodality over other indicators, and indicators that were relatively easy to

interpret. We calculated all multimodality indicators considering the eight modes (walk,

bicycle, car driver, car passenger, bus, rail, taxi, and other), as well as for three modes

(private transport, public transport, and active transport), similar to Heinen and Chatterjee

(2015). The detailed formulae for these indices are available in the papers referenced

below.

• The number of modes used.

• The difference in percentage of use between primary and secondary modes (Heinen and

Chatterjee 2015).

• The Herfindahl–Hirschman Index (HHI) as applied by Heinen and Chatterjee (2015),

and a variant, HHm, based on Diana and Pirra (2016).

• An index based on the Shannon Entropy, based on Diana and Pirra (2016) OM_PI.

• The Dalton Index, based on Diana and Pirra (2016) DALm.1

• The Multimodal indicator (MM), based on Streit et al. (2015).

The first two measures can be easily interpreted, whereas the HHI is a commonly applied

measure. The HHm, OM_PI and DALm are among the indicators recommended by Diana

and Pirra. HHm and OM_PI are particular appropriate when considering a set number of

travel means, independent on whether an individuals has access to it (Diana and Pirra

2016). However, if some considered modes are hardly used, which is likely when you

consider a large number of modes, DALm seems best, since other indices are more scale

invariant (Diana and Pirra 2016). The MM has been proposed in one of the few studies

showing changes over time in multimodality based on a continuous indicator (Streit et al.

2015).

For the interpretation, it is important to note that three of the measures (number of

modes, OM_PI, MM) are indices of variability. Thus, a higher value means a higher level

of variability in mode use, i.e. greater multimodality. The other four measures (difference

between primary and secondary mode, HHI, HHm, DALm) are indices of concentration.

Thus, a higher value means a greater concentration of stages among a few modes, i.e. less

multimodality. We calculated measures for multimodality indicators for every year from

1995 until 2015.

Analyses

In this paper, we investigated the trends in multimodality from 1995 onwards. The years

before 1995 were not analysed as NTS data have only been weighted from 1995 onwards,

which has caused a one-off uplift in trips and distance travelled between 1992/1994 and

1995/1997 (DfT 2016b). Our analyses were restricted to adults (aged 16 years and over),

1 In order to compute DALm, an inequality aversion parameter e needs to be set at a specified value.
Following Diana and Pirra (2016), we set e at 0.5 in order to maximise the sensitivity of the index (p. 785).
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similar to Heinen and Chatterjee (2015). In order to ensure a consistent time series

throughout the period, our analysis refers to residents of England alone.

The first analyses focus on the exploration of the trends in the level of multimodality

between 1995 and 2015 for the indicators listed in ‘‘Measurement of multimodality’’

section. We visualised the trends in multimodality. The values presented by year are

(weighted) mean values of the population. We smoothed the trend lines by showing the

centred moving average of three consecutive years (or 2 years for first and last year in the

trend analyses). Similarly, we explored the trends in multimodality by different charac-

teristics that have been revealed as correlates of multimodality. For all trend analyses, we

looked both at the trends for three and eight modes.

Given that some multimodality indicators may be affected by the number of stages or

trips, we tested whether the level of multimodality was correlated with the number of

stages. Our exploration showed that the correlation between unweighted number of stages

and the indicators was low (between 0.10 and 0.20 for indicators considering three modes,

and between 0.15 and 0.31 for indicators considering eight modes). The correlations for the

weighted number of stages and the indicators were slightly higher, but still only moderate

(between 0.26 and 0.40). The exclusion of individuals with less than eight stages showed

less strong correlations. We therefore conducted the analyses on all individuals with a

travel diary, but we conducted sensitivity analyses excluding individuals that recorded

fewer than eight stages in the diary week, as these individuals could never be considered

fully multimodal given the consideration of eight different modes of transport.

Second, we estimated a multivariate model to test the correlates of multimodality and

whether these have changed over time. We followed Heinen and Chatterjee (2015) and

estimated the correlates of multimodality on HHI for three and eight modes, using a

fractional logit model which entails a logit transformation of the response variable, given

the distribution of the dependent variable. These models have been developed for esti-

mating models with a proportion as a dependent variable, with values ranging from zero to

one, including zero and one (Papke and Wooldridge 1996). We combined the years

2002–2015 into one dataset to allow to investigate changes in multimodality over time. We

only applied the weighting available for short walking trips and trip/stage weight excluding

household weight. We limited our analyses to the years 2002–2015, given that some

independent variables did not have consistent indicators between 1995 and 2015. We

considered the following independent variables (Table 1): year of survey, age, gender,

ethnicity, urban/rural status, car ownership, income, whether an individual was working

from home, whether an individual was working at multiple locations, the presence of

children in household, bicycle accessibility, difficulty with walking, housing typology,

housing tenure, having a public transport ticket, and economic status. Moreover, we

explored the interaction effects between the year of survey and socio-economic charac-

teristics that were shown to be either diverging or converging in the explorations of trends,

to investigate whether these observations were corroborated when controlling for other

predictors of multimodality. We only included variables in the multivariate model that had

a P\ 0.25 in the unadjusted models, and interaction effects only if they were significant in

the unadjusted models. In addition we conducted four sensitivity analyses: (s1) the max-

imally adjusted model limited to individuals with 7 stages or more; (s2) the maximally

adjusted model with the number of stages included; (s3) a maximally adjusted model with

the number of modes used as a dependent variable; and (s4) a maximally adjusted model

with OM_PI as a dependent variable.
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Table 1 Overview of variables in multivariate analyses*

Variable Category n % Number of modes
(considering 8 modes)

Age 16–30 100,544 57.46 2.42

31–64 35,676 20.39 2.21

over 65 38,765 22.15 2.00

Gender Male 83,097 47.49 2.11

Female 91,888 52.51 2.29

Income quintile Lowest 30,544 18.72 2.07

2nd quintile 30,994 19.01 2.09

3rd quintile 32,315 19.83 2.17

4th quintile 34,886 21.40 2.25

Highest 34,262 21.02 2.44

Ethnicity White 158,814 90.81 2.21

Asian 8571 4.90 2.02

Other 7495 4.29 2.25

Settlement size Inner London 8978 5.13 2.64

Outer London 19,606 11.20 2.42

Other Metropolitan areas 26,205 14.98 2.19

Large urban 44,582 25.48 2.19

Small urban 53,331 30.48 2.14

Rural 22,283 12.73 2.04

Number of cars in the
household

None 70,720 40.42 2.19

1 car 31,145 17.80 2.30

2 or more cars 73,119 41.79 2.18

Working from home No 97,466 95.68 2.27

Yes 4398 4.32 2.23

Working at multiple
locations

No 80,486 95.68 2.28

Yes 21,378 4.32 2.23

Having child(ren) in the
household

No 121,252 69.29 2.19

Yes 53,733 30.71 2.25

Bicycle accessibility No 108,878 62.25 2.09

Yes 66,036 37.75 2.37

Having difficulty
walking

No 155,151 88.70 2.25

Yes 19,767 11.30 2.06

Housing typology Detached 46,715 26.70 2.19

Semi-detached or terraced 106,361 60.78 2.18

Flat or other 21,908 12.52 2.31

Housing tenure Own 128,074 73.28 2.14

Rent or other 46,705 26.72 2.22

Having a public
transport ticket

None 119,314 68.52 2.20

Old age pensioner (OAP)
with bus pass

35,428 20.34 3.04

Season ticket 9554 5.49 2.58

Other 9842 5.65 2.11
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Results

Trends in multimodality

The first step was the exploration of the trends in the level of multimodality between 1995

and 2015 for the indicators listed in ‘‘Measurement of multimodality’’ section (Figs. 1, 2).

Figures 1 and 2 show that as opposed to previous scientific papers, multimodality in

England did not increase. In contrast, the level of multimodality in 2015 was lower than

that in 1995. Although the smoothed lines still show some year-on-year fluctuations, a

steady trend towards lower levels of multimodality is clearly apparent, with decreases for

the indices of variability and increases for indices of concentration. Figures 1 and 2 also

show that the patterns for most indicators were relatively similar. Moreover, the trends

were nearly identical in all sensitivity tests—excluding individuals with fewer than eight

stages (not reported). Upon closer inspection, it appears that between 2009 and 2010, and

between 2000 and 2001, a decrease in multimodality took place. These do not correspond

to any of the survey design changes reviewed in ‘‘Data’’ section. We are not aware of any

other changes in data collection or weighting that could explain these drops.

Regardless of the number of modes considered, we observe fairly similar trends. An

examination of the trends of multimodality measured considering the three modes revealed

that multimodality decreased over time (Fig. 1). In 1995, the average number of modes

used was 1.78, which slightly decreased to 1.72 modes per week in 2015. In addition, the

reliance on a single mode increased. The difference between the level of use of the primary

and secondary mode increased from approximately 67–69% between 1995 and 2015.

The trends of the multimodality measures for eight modes showed fairly similar patterns

(Fig. 2). For example, the number of modes used decreased on average from 2.26 in 1995

to 2.17 in 2015 and the difference in use between the primary and secondary mode

increased slightly from 59 to 60%.

Trends in multimodality for different groups

The second part of the analyses in this paper focuses on trends in multimodality by

different characteristics that have been revealed as correlates of multimodality. This

stratification by socio-economic characteristics may reveal differences and inequalities

regarding the (trends in the) level of multimodality. Given the similarities in trends among

the indicators, we discuss the trends for the indicator ‘number of modes’ considering three

and eight modes, which were the most intuitive indicators to interpret. All trends have been

Table 1 continued

Variable Category n % Number of modes
(considering 8 modes)

Economic status Full time working 75,998 43.43 2.22

Part time working 26,103 14.92 2.40

Other 24,476 13.99 2.29

Retired 48,408 27.66 2.02

* Combined NTS data from 2002–2015

Transportation (2019) 46:1093–1126 1103

123



1.
72

1.
74

1.
76

1.
78

1.
8

95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Number of modes

.3
1

.3
15

.3
2

.3
25

.3
3

.3
35

95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

OM_PI

2.
4

2.
45

2.
5

95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

MM

.6
65

.6
7

.6
75

.6
8

.6
85

.6
9

95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Difference primary−secondary mode

.6
5

.6
55

.6
6

.6
65

.6
7

.6
75

95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

HHI

1.
72

1.
74

1.
76

1.
78

1.
8

95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

HHm

.4
35

.4
4

.4
45

.4
5

95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

DALm

1104 Transportation (2019) 46:1093–1126

123



checked for consistency against the other indicators reported in Figs. 1 and 2 (graphs not

reported here for the sake of brevity).

Gender

Figure 3 shows the trends in multimodality by gender. Women were, on average, more

multimodal than men, but the trend analysis indicated that the levels were converging. In

1995, men used, on average, 2.16 modes (1.72 for the three-mode indicator), whereas

women used 2.35 modes (1.83 for the three-mode indicator). The level for men in 2015

was fairly similar as in 1995 despite fluctuations over time, approximately 2.08 modes

(1.68 for the three-mode indicator), whereas women had, on average, reduced their number

of modes by virtually 0.1–2.26 modes per week (1.75 for the three-mode indicator).

This decrease may seem small, but it is quite substantial. To illustrate this, let us assume

a sample of 200 individuals, 100 using two modes a week and 100 using three modes a

week. This would result in an average of 2.5 modes per week. To reduce this by 0.1 mode,

20% of this sample would need to reduce the number of modes used by one mode per

week.

Age

Age (Fig. 4) appeared to be strongly associated with the level of multimodality. On

average, younger individuals (16–30 years) were much more multimodal, although over

time, the level of multimodality appeared to be slowly converging. The average number of

modes used by individuals between 16 and 30 years of age was, considering the indicator

for three modes, approximately 1.93 modes in 1995, which decreased to 1.81 in 2015. The

number of modes for individuals between 31 and 64 years of age and over 65 years of age

was fairly similar and stable over time, fluctuating around approximately 1.7 modes per

week.

Looking at the indicator for eight modes (Fig. 4b), a different picture emerged. Age was

still negatively correlated with multimodality, i.e. the younger the more multimodal, but

the difference in age was now also present between the two older age groups. In 1995, the

average number of modes used by individuals between 16 and 30 years of age, between 31

and 64 years of and over 65 years of age were 2.54, 2.24, and 1.91, respectively. In 2015,

the levels of multimodality converged towards the level of the 31-to-64-year-old cohort—

for individuals between 16 and 30 years of age: 2.27; individuals between 31 and 64 years

of age: 2.18; individuals over 65 years of age: 2.04. The decrease in multimodality of

individuals between 16 and 30 years of age was more pronounced than the increase of the

oldest cohort.

bFig. 1 Trends in multimodality (measured considering 3 modes) 1995–2015. Note Sample size was 5086 in

1995, 12,955 in 2005, and 11,937 in 2015. The lines are smoothed, i.e. each point represent the centred

moving average of three consecutive years. For the interpretation it is important to note that three of the

measures (number of modes, OM_PI, MM) are indices of variability (upper half of Fig. 2). Thus, a higher

value means a higher level of variability in mode use, i.e. greater multimodality. The other four measures

(difference between primary and secondary mode, HHI, HHm, DALm) are indices of concentration (lower

half of Fig. 2). Thus, a higher value means a greater concentration of stages among a few modes, i.e. less

multimodality
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Ethnicity

Third, we investigated the differences in the level of multimodality by ethnicity (Fig. 5).

This information was only available after 2001 in a comparable format.

Over time, the differences between ethnic groups increased. In addition, the exploration

showed that the level of multimodality was lower among individuals of Asian ethnicity than

individuals of white ethnicity. The levels of multimodality of other ethnic groups were less

bFig. 2 Trends in multimodality (measured considering 8 modes) 1995–2015. Note Sample size was 5086 in

1995, 12,955 in 2005, and 11,937 in 2015. The lines are smoothed, i.e. each point represent the centred moving

average of three consecutive years. For the interpretation it is important to note that three of the measures

(number of modes, OM_PI, MM) are indices of variability (upper half of Fig. 2). Thus, a higher value means a

higher level of variability in mode use, i.e. greater multimodality. The other four measures (difference between

primary and secondary mode, HHI, HHm, DALm) are indices of concentration (lower half of Fig. 2). Thus, a

higher value means a greater concentration of stages among a few modes, i.e. less multimodality

Fig. 3 Trends in multimodality by gender 1995–2015. Note Sample sizes were 2391 males and 2695

females in 1995, 6134 males and 6821 females in 2005, and 5861 males and 6256 females in 2015. The lines

are smoothed, i.e. each point represent the centred moving average of three consecutive years
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stable, which may be a result of the limited number of individuals in NTS having such back-

grounds, and consequent large changes in the level of multimodality by variations in the sample.

Income

Our analyses revealed the existence of large differences between the highest income

quintile and the other four quintiles (Fig. 6). Individuals within the highest (fifth) quintile

were using 0.15 modes per week more than individuals in the other four groups in 2015.

Moreover, and in particular for the measures for three modes (Fig. 6a), the difference

between the highest quintile and the other four quintiles increased over time, in particular

Fig. 4 Trends in multimodality by age 1995–2015. Note Sample sizes were 1236 individuals aged between

16 and 30 years, 2905 individuals aged between 31 and 64 years, and 945 individuals aged over 65 years in

1995; 2623 individuals aged between 16 and 30 years, 7573 individuals aged between 31 and 64 years, and

2759 individuals aged over 65 years in 2005; and 2363 individuals aged between 16 and 30 years, 6567

individuals aged between 31 and 64 years, and 3007 individuals aged over 65 years in 2015. The lines are

smoothed, i.e. each point represents the centred moving average of three consecutive years
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due to all but the highest income quintiles decreasing their level of multimodality. Notably,

when considering three modes only, the lowest income quintile shows a remarkable

decrease, from levels comparable to the highest quintile in 1995 to some of the lowest

levels of multimodality of all income groups in 2015.

Urbanisation

Corresponding with existing studies on the correlates of multimodality, our analyses on

urban/rural status (Fig. 7) showed that the more urban an area was, the more multimodal its

inhabitants were. The difference in the number of modes used between inner London and

rural areas differed by approximately 0.4 if considering three modes, and in excess of 0.5

when considering eight modes. London also differed clearly from all other areas when

Fig. 5 Trends in multimodality by ethnicity 2001–2015. Note Sample sizes comprised 10,283 white

individuals, 402 Asian individuals, and 349 individuals of other ethnicities in 2002; and 10,610 white

individuals, 732 Asian individuals, and 589 individuals of other ethnicities in 2015. The lines are smoothed,

i.e. each point represent the centred moving average of three consecutive years
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looking at eight modes. The other metropolitan areas in England (such as Manchester and

Leeds) show larger similarities with smaller towns and rural areas than with London.

Although there were some fluctuations over time, the level of multimodality stratified by

urbanisation was fairly stable.

Car ownership and access

The final stratification was by car ownership. For this, we analysed the number of vehicles

in the household. Note that car ownership in the NTS was defined on a household level,

whereas our analyses were conducted on an individual level.

Trends in the levels of multimodality by car ownership (Fig. 8) showed that having fewer

cars in the household was associated with higher levels of multimodality. Households without

Fig. 6 Trends in multimodality by income quintiles 2001–2015. Note Sample sizes were 2054 individuals

in the bottom quintile and 2024 individuals in the top quintile in 2002, and were 2182 individuals in the

bottom quintile and 2504 individuals in the top quintile in 2015. The lines are smoothed, i.e. each point

represent the centred moving average of three consecutive years
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cars had the highest levels of multimodality but these have been converging towards those of

households with one car, notably for the eight-mode indicator. One should note that car

ownership and the level of urbanisation are closely related in Britain (Mattioli 2014).

Trends in unimodality

The previous two sections showed that in contrast with previously reported trends in

multimodality, the level of multimodality has decreased between 1995 and 2015. This

decrease raises the question whether individuals have reduced the number of modes used

and the frequency that they use them, or whether the decrease in the level of multimodality

Fig. 7 Trends in multimodality by urban/rural status 1995–2015. Note Sample sizes were 261 individuals

living in Inner London, 433 in Outer London, 671 in other metropolitan areas, 1431 in large urban areas,

1732 in small urban areas, and 556 in rural areas in 1995; 556 individuals living in Inner London, 1422 in

Outer London, 1929 in other metropolitan areas, 3621 in large urban areas, 3924 in small urban areas, and
1481 in rural areas in 2005; 641 individuals living in Inner London, 1489 in Outer London, 1642 in other

metropolitan areas, 3266 in large urban areas, 3283 in small urban areas, and 1616 in rural areas in 2015.

The lines are smoothed, i.e. each point represent the average value of three years
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also coincides with an increase in unimodality, the use of only one mode over the time

frame—in this case one week.

Figure 9 shows the trends in unimodality, with stacked bars representing the proportion of

unimodal individuals according to different modes. The share of unimodality increased

between 1995 and 2015. Unimodality considering three modes (Fig. 9a) increased from 41 to

45% of the British population, and considering eight modes (Fig. 9b) there was an increase

from 28 to 32% of the British population being unimodal. The decrease in the level of

multimodality therefore appeared to have coincided with an increase in unimodality. Further

explorations showed that the majority of unimodal only used the car (and no other mode). The

absolute increase in unimodality was also mainly a result of individuals who only used the car,

although, in relative terms, the increase was equally attributable to all modes.

Fig. 8 Trends in multimodality by car ownership 1995–2015. Note Sample sizes were 1132 individuals

with no car, 2243 with 1 car, and 1711 with two or more cars in the household in 1995; 2282 individuals

with no car, 5351 with 1 car, and 5322 with two or more cars in the household in 2005; and 2052 individuals

with no car, 4943 with 1 car, and 4942 with two or more cars in the household in 2015. The lines are

smoothed, i.e. each point represent the centred moving average of three consecutive years
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Trends in mode choice

Given that policy has focussed on encouraging a partial shift away from the car, this section

reports trends in car use and the use of other modes. We investigated four trends in mode use.

First, we explored the trip rates based on the trip dataset. Consistent with the NTS definition

of trip rates, we only considered the main mode of transport. Second, we considered travel

distance by mode per capita—defined here based on stages travelled consistently with the

NTS definition of distance per capita. The other two trends referred to the modal share. We

considered mode shares based on the number of stages rather than trips, which deviates from

the NTS methodology but appeared to be more appropriate given that the multimodality

indicators were determined on stages, as well as the mode shares based on stage distance.

Figure 10 presents these trends in England between 1995 and 2015. In absolute terms,

car use decreased, both in terms of trips (Fig. 10a) and distance (Fig. 10b). In contrast to

Fig. 9 Trends in unimodality 1995–2015. Note Sample sizes were 5086 individuals in 1995, 12,955 in

2005, and 11,937 in 2015. The trends are smoothed, i.e. each point represents the centred moving average of

three consecutive years. In panel (b), ‘Unimodal: other’ is a residual category including individuals who use

only one among bicycle, bus, rail, taxi, and other
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the absolute car use, the car modal share remained fairly stable, but increased a little over

time. Whereas in 1995, 57% of all stages were made by car, by 2015, this percentage

increased to 59% ((Fig. 10c). The percentage of stages travelled by car mainly increased

between 1995 and 2002, and slightly decreased thereafter. The trip rates and modal share

of active transport decreased over the same period, but the distance travelled increased.

The number of trips and mode share of public transport increased.

Multivariate analyses

The previous analyses showed that the trends in multimodality converged between age

categories, gender and car ownership, whereas they diverged between income segments

and ethnic groups. To test whether the observed trends were independent, we estimated

fractional logit models to control for other variables. Unlike in Figs. 3, 4, 5, 6, 7 and 8, the

dependent variable is the HHI index (for three and eight modes). We do this in order to

maintain comparability with Heinen and Chatterjee (2015), who present findings from a

similar regression model for 2010. The reader should note that, since HHI is an index of

concentration, positive coefficients indicate a negative relationship between the predictor

and levels of multimodality. We have also estimated models to predict the ‘number of

modes’ and ‘OM_PI’ (See ‘‘Appendix 1’’).

Table 2 presents the results of four models. We did not include interaction terms

between year and ethnicity and car ownership in our maximally adjusted models. Ethnicity

showed a significant interaction effect for the ‘other’ category in the unadjusted model.
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Fig. 10 Trends in car use, bicycle use, public transport use and walking 1995–2015. Note Sample sizes

were 5309 individuals in 1995, 13,416 in 2005, and 12,432 in 2015. The lines are smoothed, i.e. each point

represent the centred moving average of three consecutive years
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However, we did not see a clear effect of this in our explorations and therefore decided not

to carry this forward to the maximally adjusted models. We did not find a significant

interaction effect for car ownership, suggesting that the observed trends were explained by

other characteristics.

The results of the multivariate analyses confirmed most of the previously reported

trends. Between 2002 and 2015, the level of multimodality has decreased. This is indicated

in Models 1 and 3 by the significant small positive coefficient for the survey year on the

HH Indicators.

Women were, compared to men, more multimodal (Models 1 and 3), but over time

their level of multimodality decreased compared to men (model 2 and 4). This corre-

sponds with our observations in Fig. 3. The observations of Fig. 6 are also corroborated in

the multivariate analyses. Compared to individuals with the highest income quintile,

individuals with lower income quintiles had lower levels of multimodality (Models 1 and

3). Moreover, compared to the highest income quintile, individuals in other income

quintiles reduced their level of multimodality between 2002 and 2015 more than indi-

viduals in the highest income category (Model 2 and 4). The effects sizes of these

interactions effects of gender and income with the survey year appeared fairly similar in

both models, independent whether the indicator was based on a consideration of three or

eight modes.

Moreover, the analyses revealed several significant interaction effects. The youngest

age category (individuals between 16 and 30 years of age) were becoming less multimodal

over time compared to individuals aged between 30 and 64 years of age for the HHI for

three modes (Model 2). However, lower ages still predict higher levels of multimodality

(Model 1). The direction of the effect was similar for the HHI for eight modes, however

this effect was non-significant (Models 3 and 4). One explanation could be that the

reduction in multimodality for the youngest age category mainly took place before 2003

(Fig. 4) and the multivariate analyses only considered the years after 2002 due to data

limitations.

The sensitivity analyses when the number of stages was also included in the models

yielded fairly similar results for most correlates. All estimates for the coefficient of the

interaction effects remained fairly similar (‘‘Appendix 1’’).

Discussion

Discussion of trends in multimodality

Our analyses showed that the level of multimodality in England decreased between 1995

and 2015. Existing research had suggested an opposite trend. For example, Kuhnimhof

et al. (2011, 2012a) showed that there was a reduction in driving and an increase in the use

of other modes, suggesting an increase in multimodality. However, their analyses

implicitly adopted an aggregate understanding of multimodality. Moreover, all research

investigating trends in multimodality based on few years which allows variations in

sampling and responses to affect trends to a larger extent.

In contrast, our analyses focussed on individual multimodality on a more detailed stage

level using the well-established, nationally representative National Travel Survey (NTS) of

England, and covering 21 data points between 1995 and 2015. The fact that our detailed
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analyses revealed a different picture is important in understanding the relationship between

the level of multimodality, changes in the modal split, and potential inequalities.

The trends in the level of multimodality diverged for different ethnic groups and for

different income classes. This diverging trend was the clearest for income and were cor-

roborated in the multivariate analyses. Individuals in the highest quintile had the highest

level of multimodality and this level remained stable, whereas the level for the other four

quintiles decreased. This may imply that income is increasingly discriminative in the

number of modes available and its consequent use, which may indicate increased

inequalities in transport availability and potentially accessibility to work and facilities

based on income (see e.g. Lucas et al. 2016).

In contrast, the trends stratified by age and gender were converging, which implies that

the differences in multimodality were becoming less pronounced between men and women

and between age groups. More specifically, women and younger individuals, on average,

decreased their level of multimodality towards the level of men and individuals older than

31 years, respectively. These findings are interesting as both groups are known to move in

opposite directions in respect to car accessibility and ownership: younger individuals are

known to be less likely to own a car, whereas women, in contrast, are known to have

increasing ability to drive a car (DfT 2016a).

Most of our observation in the trend analyses were confirmed in the multivariate

analyses. For age, the interaction effect was less strong, and in the model for eight modes,

the interaction effect was no longer significant. One explanation could be that the reduction

in multimodality for the youngest age category mainly took place before 2003 and the

multivariate analyses only considered the years after 2002 due to data limitations.

The differences in the level of multimodality by the different stratifications—including,

age, gender, ethnicity, urban status and car ownership—largely corresponded with previ-

ously reported correlates of multimodality in Great Britain (Heinen and Chatterjee 2015).

For example, women were more multimodal then men, and the more urban the residential

area was, the more multimodal the average inhabitant was. These corresponding findings

implies stronger reliability of the findings. The level of multimodality stratified by the level

of urbanisation remained fairly stable over time. This may suggest that the size of the

settlement is an important predictor of multimodality in England. This finding may also

suggest that changes in the proportion of residents living in areas with certain populations

sizes, may directly influence the average level of multimodality.

Discussion of trends in car use in relation to multimodality

To place the trends in the level of multimodality in a wider context, we investigated the

trends in car use, public transport use, bicycle use and walking. Between 1995 and 2015,

absolute car use decreased, whereas car modal share increased between 1995 and 2002 and

decreased slightly thereafter. Simultaneously, between 1995 and 2015, the level of mul-

timodality decreased and the share of ‘unimodal’ car users increased.

However, car mode share has remained fairly stable since 2004 and multimodality has

decreased in the similar period. This may indicate that the assumption that increasing

multimodality goes hand in hand with a reduction in car use is incorrect as during a

reduction in absolute car use, multimodality decreased as well. In other words, our results

suggest that there is no necessary relationship between aggregate levels of car use and the

average multimodality of individual travel patterns. This may imply that a reduction in

actual use in car travel does not increase multimodality, or even and more importantly, that

a higher level of multimodality may not result in less car-dependent societies. The question
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of whether the two trends are happening in parallel in countries is very much an empirical

one, and a relationship between them should not be simply assumed.

An important contemporary discussion in transport is on the reduction in car ownership

and use among millennials, so-called ‘peak car’ (Delbosc and Currie 2013; Frändberg and

Vilhelmson 2011; Kuhnimhof et al. 2012b; McDonald 2015; Bastian et al. 2016), which

has been documented for the UK (DfT 2015c; Kuhnimhof et al. 2012a; Le Vine and Jones

2012; McDonald et al. 2017; Rohr and Fox 2014). Our analyses showed that individuals

aged 30 years or younger had overall higher levels of multimodality, but that this level was

decreasing. This revealed an unexpected contrast: although car ownership and use is

decreasing, so is their level of multimodality. It therefore appears that the absence of the

car in individuals’ modal mix, may suppress the level of multimodality. Younger indi-

viduals who abstain from using cars may not compensate the absence of this mode in their

modal mix by the uptake of another mode and our findings may suggest that they may

‘just’ use the modes that are already in their modal mix more frequently. As such, although

the commonly applied measures for multimodality may assess the level of mixing modes

well, these indicators may be less effective to measure multimodality if the most dominant

mode in our modal mix—the car—is not used. Nevertheless, the level of multimodality

among younger millennials was still higher than that of other age groups.

Our analyses did not reveal a clear relationship between multimodality and car use. The

reduction in car use occurred mainly in absolute numbers and less so compared relative to

other modes. What does this finding imply for policy? A reduction in absolute car use is

important, as it is likely to result in a reduction in air and noise pollution caused by

transport. However, a change in the model mix and mode choice behaviour, measured by

increased multimodality, may have more positive consequences in the long term. The

uptake of new modes may increase self-efficacy in using several modes, which may

ultimately result in a more sustained reduction in car use.

Discussion on data, methodology and transferability

We used a national representative, long-running, widely used data set: the National Travel

Survey of Great Britain. Benefits of these data include that the survey has remained fairly

similar over 20 years, includes a 1-week travel diary and is representative for England,

allowing trend research on multimodality. Nevertheless, the NTS is a sample survey, and

due to variations in the sample or changes in the survey, fluctuations in the results may be

present. As a result, the NTS is not suitable for monitoring short-term trends or year-to-

year changes, as is the case for all national travel surveys. In this paper, we have used the

NTS for its primary intended use: to measure longer term trends in travel behaviour (DfT

2016b).

Nevertheless, the use of NTS is limited in other ways. The NTS is a survey that is

conducted annually, but is a repeated cross-sectional survey and not a panel survey. As a

consequence, we cannot investigate changes within an individual, or predictors of such

changes. Additionally, we cannot draw any causal relationship on the explorations con-

ducted. Moreover, given that the mean level of variability differs substantially between

individuals—even between individuals in similar socio-economic groups—but the range is

limited, the possibility of revealing significant changes over time is limited.
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In our trends we have seen several ‘jumps’. We are not aware of any change in the NTS

methodology that may explain these jumps.2 The NTS, and similar surveys should be used

to measure longer term trends in travel behaviour. The observed jumps are an example why

comparisons between 2 years, or trend analyses with a limited number of years are less

reliable. In our analysis, we have addressed this problem by considering the longest period

for which comparable data is available, as well as by presenting smoothed trends with

centred moving averages.

As with any data source, groups that contain fewer cases are more vulnerable for

fluctuation. In our case, some ethnic groups had limited representation in the NTS, and as a

consequence the changes in their level of variability may be more prone to changes in the

sample. Moreover, the ease of recruiting certain groups, e.g. low-income households, may

have changed over time. This may results in the potential for more variation between years.

Moreover, the participants of such groups may not be a good representation of such a

group, and this may partly explain observed trends.

Our analyses showed that the trends were very similar independent of which indicator

was applied. This indicates that for analysing trends in multimodality, the choice of

indicator may not be that important, and indicators that are elementary to calculate and

easy to interpret, e.g. number of modes used, highlight trends that are highly consistent

with more sophisticated metrics. This does not imply that efforts into determining the most

accurate measure of multimodality (for example by Diana and Pirra 2016) are not

important, as these may give different (and better) results in more refined and disaggregate

analysis. However, given that the trends in multimodality were hardly affected by the

selection of the indicator, we would like to recommend taking the ease of interpretation

into account, in addition to its ability to correctly measure multimodality in a variety of

cases.

In contrast, the number of modes considered for the construction of indicators does

make a difference for conclusions about temporal trends in multimodality. In some

stratifications, different trends emerged between multimodality indices considering three

and eight modes. This is understandable, if you consider the following example: if an

individual has an equal split between being the main driver, walking and taking the bus,

they would be considered very multimodal for the indicators considering three modes, but

only moderately multimodal considering eight modes of transport. The opposite would be

the case for an individual with an equal split between bus, rail and taxi. Our analysis does

not lead us to recommend the use of indicators based on three or eight modes in future

research. Rather, we recommend that future trend analyses take these differences into

account, and depending on the location and the policy focus one of these measures may be

prioritised.

Various measures of multimodality have been shown to be affected by the number of

trips/stages an individual makes. The number of stages an individual made during the

travel survey week survey may therefore affect the measured level of multimodality. If

there were a decreases in the total number of trips, as it the case in NTS, this may impact

the level of multimodality. However, the correlations between the number of stages and

measurements of multimodality were only moderate. Moreover, the sensitivity analyses

excluding individuals that recorded fewer than eight stages in the diary week and the

inclusion of a variable indicated the number of stages in multivariate models, yielded fairly

2 Based on NTS documentation and personal communication with an NTS officer from the Department for
Transport.
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similar results, which indicates that the decline in number of trips did not have large

influence in our observed reduces level of multimodality.

Our analyses focussed solely on England and therefore our findings are only applicable

to the English context. Kuhnimhof et al. (2012a) showed that a decrease in car use was

taking place in several western countries, i.e. Germany, France, Great Britain, Japan,

Norway, and the USA. However, the effects on overall travel behaviour have been shown

to differ between them. Although this reduction in car travel consequently resulted in an

overall decrease in travel in France, Japan, and the USA, this decrease was compensated by

an increase in other modes of transport in Great Britain and Germany. Thus, it is con-

ceivable that the trends we uncovered may differ from the trends in other countries.

Conclusion

This paper explored the trends in multimodality in England. Our analyses showed, in

contrast to reported trends in existing research, that the level of multimodality in England

decreased between 1995 and 2015. These trends stratified by age and gender ownership

were converging, although they were diverging for ethnicity and income. This may imply

that income is increasingly discriminative in the number of modes available and its con-

sequent use, which may indicate increased in inequalities in transport availability. In

addition, we found that the car mode share has remained fairly stable since 2004, whereas

multimodality decreased. This suggests that there is no necessary relationship between

aggregate levels of car use and the average multimodality of individual travel patterns. A

comparison of trends between multiple countries using the same definitions and indicators

may further improve our understanding of whether this trend (less car use and less mul-

timodality) is location specific. This may help policy-makers specify where most efforts

need to be made—either by reducing car use, or by stimulating the use of other modes.
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