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Abstract This work builds upon the thought that individuals allocate higher levels of

importance to some particular features of the route, so called anchor points. Previous route

choice models have either ignored the effects of anchor points (route-based models), or

have given an exclusive attention to their effects and ignored the behavioral accuracy and

practicality of these models (anchor-based models). In this work we argue that the con-

sideration of both route-level attributes and anchor points would enhance the behavioral

aspect of route choice models as well as their estimation and prediction abilities. Global

Positioning System traces have been used to investigate the effect of bridges as anchor

points for trips between Montreal and its Northern suburb, Laval. A classic Nested Logit

and a nested Logit Kernel model have been estimated, in which interdependencies among

routes crossing the same bridge are captured through the nested structure and the adopted

factor analytic approach, respectively. A Metropolis–Hastings path-sampling algorithm is

applied, for the first time, on a large road network with more than 40,000 nodes and 19,000

links to provide the consideration choice set. Estimates are then compared to three alternate

models, representing route-based and anchor-based formulations; namely Path-Size Logit,

Extended Path-Size Logit, and Independent Availability Logit models. Empirical results

showed that the proposed nested structures with MH sampling provide better estimates and

also perform better in the validation step with respect to comparative models. Findings
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underscore the importance of considering anchor points in conjunction with route level

attributes in route choice decisions.

Keywords Route choice � Bridge choice � Anchor points � Discrete choice models � Nested

Logit � GPS � Metropolis–Hastings

Introduction

Route choice modeling is probably one of the most complex and challenging problems in

traffic assignment. It investigates the process of route selection by an individual, making a

trip between predefined origin and destination (OD) pairs. The heterogeneity in travelers’

behavioral characteristics, in conjunction with the complex effect of route attributes,

further increases the inherent complexity of route choice modeling. Although several

approaches have been proposed to tackle this problem, one of the remaining challenges in

route choice modeling is the consistency of the modeling approach with the underlying

behavioral process of drivers’ decision making.

In general, most of the proposed route choice models focus on route related attributes of

choice alternatives. This implies that in these ‘‘route-based’’ formulations, the route is

perceived as an entity, and only attributes concerning the whole trajectory are used to

characterize each choice alternative. From a behavioral perspective, this formulation

suggests that the consideration set is formed based on route-level characteristics of tra-

jectories and the final choice is made by selecting an entire route out of a considered set of

alternatives. C-Logit (Cascetta et al. 1996) and Path-Size Logit (PSL) (Ben-Akiva and

Bierlaire 1999) are among the most widely used route-based models. In these models, the

similarity issue between alternatives has been addressed by adding a correction term to the

deterministic part of the utility function, which alters the utility of paths1 based on their

similarities. However, the applied correction factors in these models account only for

similarities between the considered set of paths. To overcome this limitation, Frejinger

et al. (2009) have proposed the Extended-Path-Size Logit (EPSL) model, which accounts

for correlations between sampled and non-sampled alternatives.

An alternate approach offers a ‘‘link-based’’ formulation to deal with the correlation

issue among alternatives. This approach, firstly proposed by Vovsha and Bekhor (1998)

and later applied by Lai and Bierlaire (2015), adopts a cross-nested logit structure in which

each link of the network constitutes a nest and each route belongs to several nests. Another

application of the sequential link choice method has been applied by Fosgerau et al. (2013)

in the context of a recursive logit model, which can be consistently estimated without the

need of path sampling. The link-based formulation suggests that drivers have a link-by-link

perception of the network and their choices are based on link-level attributes. Since a real

network consists of a large number of links, the estimation of these models could be very

computationally expensive.

A third approach is the ‘‘anchor-based’’ formulation which gives an exclusive impor-

tance to the effect of some prominent features of the road network, so-called landmarks or

anchor points. This approach basically argues that anchor points are decisive points based

on which drivers choose their paths. It has been pointed out by several researchers that

1 The terms route and path are used interchangeably in this article.
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individual’s perception of the road network follows a hierarchical representation (Hirtle

and Jonides 1985; Holding 1994), and anchor points play a crucial role in the behavioral

nature of route choice decisions (Manley et al. 2015b; Habib et al. 2013; Kazagli and

Bierlaire 2015). The space hierarchy and the role of anchor points have also been found to

be significant in similar decision making contexts such as location choice modeling (Elgar

et al. 2009, 2015).

The importance of anchor points is emphasized in riverside cities. In these cities, the

two sides, separated by the river, are usually connected through several bridges and tun-

nels. These infrastructures are usually prone to become traffic bottlenecks and to face

recurrent traffic congestion (Woo et al. 2015; Habib et al. 2013; Sun et al. 2014). The high

travel time variability of these small segments of the route, which is usually due to the

large fluctuation of travel demand, turns them into influential points in the process of route

selection. Accordingly, the choice of anchor points has a major effect on route selection,

and routes crossing same anchor points share unobserved components such as safety,

scenery, driving comfort, etc., emerging from the similarities of the road network and

geographical characteristics.

In this work we argue that the three abovementioned formulations, in isolation, are not

behaviorally accurate enough to represent the underlying nature of route choice behavior;

rather a hybrid approach is needed. Route-based formulations suggest that route selection

is mostly based on route-level attributes (Manley et al. 2015a), and ignore the influence of

anchor points. Link-based formulations neglect the higher importance of anchor points by

allocating the same level of importance to every link. Moreover, the anchor-based model

proposed by Habib et al. (2013) incorporates a full probabilistic choice set generation,

which is behaviorally inaccurate, and theoretically impractical and unmanageable in large

route choice datasets and real world networks (Prato 2009).

We propose a generic ‘‘anchor-based nested’’ structure to promote the behavioral aspect

of route choice models by incorporating the effect of route level attributes as well as

anchor points on drivers’ choices. First, we adopt a classic Nested Logit (NL) structure

within a discrete choice framework, in which upper nests correspond to anchor points and

lower nests include route alternatives. Second, a nested Logit Kernel (LK) model is esti-

mated to capture the reciprocal effect of route level attributes and anchor points on route

selection. In the former model, the nested structure captures the shared unobserved com-

ponents of the utility function among routes crossing the same bridge, while in the latter,

the adopted factor analytic approach accounts for the interdependencies and latent

similarities.

Similarly to anchor-based models, these approaches allocate a distinctive importance to

the selection of anchor points as crucial segments of the route. Moreover, they can handle

very large datasets and real world networks; considering multiple route alternatives within

each bridge is easily manageable; and route-level attributes are also considered to be

decisive and influential in the final route selection.

To explore the performance of the proposed formulations, GPS traces of taxi trips

between the islands of Montreal and Laval have been used. The unique aspect of these trips

is that drivers have to choose among a maximum of nine bridges separating the two

regions. The access to these bridges face recurrent congestion, and despite their small share

in the whole route, they have a significant impact on the total travel time and hence on

drivers’ route choice decisions. In our application, bridges are considered as anchor points

for trips between Montreal and Laval, and their effects on route choice decisions have been

evaluated in conjunction with route level attributes. A very large real-world road network,

with more than 40,000 nodes and 19,000 links, is used for choice set generation as well as
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model estimation. Estimates are then compared to three alternate models, representing

route-based and anchor-based formulations; namely PSL, EPSL, and Independent Avail-

ability Logit (IAL) models.

Taxi drivers are considered to have a more precise knowledge of the road network and

its traffic conditions, due to their higher driving experience. In order to capture the effect of

anchor-points, we have focused on the behavior of taxi drivers as well-informed individ-

uals who are more familiar with travel time variations and congestion periods over bridges

connecting Montreal to Laval.

This work contributes to the existing state-of-the-art through the following aspects: (1)

the presented formulations capture the effect of anchor points in conjunction with route

level attributes in route choice modeling, (2) they improve the behavioral aspect of anchor-

based formulations by capturing shared unobserved components among route alternatives

crossing the same anchor point, and (3) the MH algorithm has been employed, for the first

time, on a large real world route network to generate alternative choice sets.

This paper is organized as follows. First we review earlier approaches to route choice

modeling and in that context further clarify the contributions of this study. The case study

and data are presented next. We then discuss in detail the proposed econometric formu-

lations and the estimated comparative models, as well as their respective utility function

specifications and choice set generation algorithms. We then discuss the results, validation

process, and comparison between models. In the end, we highlight the most significant

findings of this study, underscore its limitations, and suggest further research directions.

State-of-the-art

There is a large body of literature in microeconomics, behavioral science, psychology, and

behavioral geography that focuses on improving the understanding of the underlying

process of decision making. Accordingly, several modeling frameworks have been pro-

posed to simulate drivers’ route choice behavior. Prospect theory (Kahneman and Tversky

1979; Gao et al. 2010) and cumulative prospect theory (Tversky and Kahneman 1992; Xu

et al. 2011; Connors and Sumalee 2009) have been applied by researchers to take into

account the limited rationality of drivers in making decisions, by incorporating psycho-

logical and behavioral aspects. In some other studies, the uncertainty and imprecision of

drivers in making route choice decisions have been taken into account using Fuzzy Logic

(Henn 2003; Murat and Uludag 2008; Quattrone and Vitetta 2011; Luisa De Maio and

Vitetta 2015). Artificial neural networks have also been used to take into account the non-

linearity of the decision making process by imitating the human conscious structure

(Dougherty 1995; Kim et al. 2005). Recently, a Random Regret Minimization (RRM)

approach has been adopted by Prato (2014) in route choice modeling context. This

approach argues that choice makers tend to choose the alternative which minimizes the

regret of not having chosen other alternatives.

Among the proposed approaches, Random Utility Maximization (RUM) models have

received considerable attention. In this approach, individuals’ preferences are represented

by a value called ‘‘utility’’, which captures the effect of different factors on the actual

choice, and decision makers tend to maximize their perceived utilities. Since the decision

maker may not have a perfect knowledge about these factors, an error component has been

introduced to take into account the stochasticity and imprecision caused by uncertainty and
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behavioral randomness (Ben-Akiva and Bierlaire 2003). This paper is built upon the

random utility maximization framework.

In the context of route choice, the perceived utility can be attributed to factors such as

travel time, distance, congestion, safety, scenery, route complexity, number of traffic

signals, trip purpose, fuel consumption, toll, road type, anchor points, etc. Behavioral and

mental factors such as the inertia of taking the same route, memory, spatial abilities,

driving experience, and the learning process may also play a role and add to the complexity

of the modeling process (Prato 2009).

It has been suggested that individuals have a hierarchical planning strategy following

the hierarchical representation of space and its connectivity (Manley et al. 2015b; Wiener

and Mallot 2003), which yields an anchor-based navigation in which individuals orient

themselves based on distinguished features of the route (Foo et al. 2005). Anchor points are

defined as being important focal points and cognitively salient cues with prominent fea-

tures, with applications in cognitive tasks, comprising way-finding, distance assessment,

and direction estimation. Major route infrastructures, such as bridges, highways, eminent

road interchanges, intersections and roundabouts, can be considered as anchor points in

route choice modeling.

Several studies have argued that anchor points influence route choice decisions (Lynch

1960; Prato et al. 2012; Kaplan and Prato 2012; Golledge et al. 1985; Couclelis et al. 1987;

Habib et al. 2013; Prato and Bekhor 2007). Manley et al. (2015a) studied minicab drivers

in London, using GIS and statistical analysis, and concluded that their route choice

behavior is poorly described by shortest-path algorithms and is improved when the role of

anchor points is considered. To emphasize the significant role of anchor points, they have

also proposed a conceptual subjective anchor-based route choice modeling schema. Sim-

ilarly, Kazagli and Bierlaire (2015) argue that drivers describe their routes using a short

sequence of Mental Representation Items (MRIs) such as anchor points or pieces of

infrastructures instead of using a link-sequence representation. Moreover, a recent study by

Manley et al. (2015b) confirms that the mental representation of the spatial hierarchy

influences route choices. They propose a coarse to granular hierarchical representation of

space, represented from top to bottom by Regions, Nodes, and Roads, where Regions

represent clusters of nodes sharing a common characteristic; Nodes represent certain road

junctions, landmarks, and anchor points; and Roads form the basis of the hierarchy,

defining the route between consecutive Nodes. In this hierarchical schema, route choice is

made through the selection of a sequence of regions, nodes across subsequent regions, and

eventually, roads between successive nodes.

Despite the undeniable importance of anchor points on drivers’ route choice decisions,

relatively little attention has been given to anchor-based route choice models. An inter-

esting approach has been investigated by Habib et al. (2013) in which the authors applied

an Independent Availability Logit (IAL) model, originally proposed by Swait and Ben-

Akiva (1987), in a route choice context to emphasize the role of bridge choice in route

choice decisions; the case study was the Greater Montreal Area. The IAL model follows

the probabilistic two-stage choice model proposed by Manski (1977) in which the selection

probability of an alternative depends on the selection probability of all subsets of the

universal choice set containing that particular alternative. The IAL model jointly estimates

the final choice and choice sets among all the possible combinations.

The study by Habib et al. (2013) was based on data collected from the OD survey of

Montreal, in which the authors had only access to declared chosen bridges. They have

considered a shortest path algorithm, based on segments’ speed limits, to generate one path

per bridge for each OD pair, comprising the choice set of route alternatives. A noticeable
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limitation, pointed out by Prato (2009), of the fully probabilistic choice set generation

approach adopted by the IAL approach, is its immense calculation burden when the size of

the choice set increases. Considering m as the total number of possible alternatives, the

total number of possible non-empty choice sets ð2m � 1Þ increases exponentially with m,

which makes it impractical to apply this model in route choice problems, where the

considered choice set is large. In Habib et al. (2013), the inability of the IAL model in

handling large choice sets might be an additional reason to their data limitation issue for

considering only one alternative per bridge. In behavioral terms, the consideration of a

single shortest path per bridge scales down the route choice problem to a bridge choice

problem. Moreover, it is behaviorally unrealistic to assume that decision makers would

consider every possible subset of the consideration choice set, before making a choice.

Also, it is worth mentioning that the problem of shared segments between alternatives is

not addressed in this recent application of the IAL model.

Context and dataset

Nowadays, the prevalent use of GPS technology provides researchers with an abundance of

high-resolution geospatial data, which allows obtaining continuous and detailed (link-by-

link) information on drivers’ travel paths, accompanied by possible additional information

such as travel direction and speed. A relatively new source of GPS data is recorded by taxi

companies around the world, mainly for operational purposes.

This study is based on GPS traces of taxi drivers, collected by a taxi company, in the

context of the metropolitan region of Greater Montreal, depicted in Fig. 1a. The data was

collected by a taxi company that constitutes around 25% of the Montreal Island taxi fleet,

and its operation is restricted to trips starting or ending in the central part the island. Data

has been stored in a PostgreSQL database, and the PostGIS spatial extension has been

added to support geographical datatypes and queries. A direction-based nearest link point-

to-curve map matching algorithm has been adopted to associate each GPS record to the

road network. In point-to-curve map matching algorithms, every GPS point is matched

Fig. 1 Context of the studied region. a The metropolitan region of Greater Montreal; b locations of bridges
connecting Montreal to Laval
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onto the closest link in the network. The major shortcoming of these algorithms is that they

do not produce reliable results in high road density networks and specially at intersections

due to directional problems (White et al. 2000; Zhou and Golledge 2006). To overcome

this issue, we associated each GPS record to its nearest link on the network with respect to

its azimuth, so that it ensures that GPS points are not incorrectly matched to closer links

with incorrect directions. A distance-based shortest-path algorithm has then been applied

between consecutive GPS records to deduce the entire path for each trip.

Montreal is an island city, separated from its suburbs by two rivers. This means that

drivers entering or exiting Montreal need to cross one of the sixteen bridges connecting

Montreal to its suburbs. These bridges face recurrent congestion and act as bottlenecks. For

trips heading to or exiting Montreal, bridge choice can have a significant importance on

route choice decisions (Habib et al. 2013). Considering bridges as anchor points, the

geographical context of Montreal allows us to study the effect of anchor points in con-

junction with route level attributes in route choice decisions.

In this study we focus on trips taking place between the Islands of Montreal and Laval,

the largest suburb of Montreal located on the north of the city. These two islands are

directly connected through seven bridges; B1–B7. Since bridges B8 and B9 might also

provide convenient alternatives for trips between the East of Montreal and Laval, they have

been included in this study. Figure 1b depicts the location of these nine bridges and

Table 1 summarizes some of the pertaining properties of these bridges.

Montreal and Laval cover a total surface of 632.3 km2 containing a population of

roughly 2.3 million inhabitants (Communauté métropolitaine de montréal 2012). Their

road networks comprise more than 40,000 nodes and 19,000 links. The network data has

been extracted from OpenStreetMap project in the format of geographical layers

(shapefiles).

GPS records for the month of October 2014 have been extracted for this study. The

dataset includes two tables: (a) GPS table containing information for every recorded point

such as ID, time, geographical position, speed, and etc.; (b) the Events table, including

information regarding the state of the taxi such as when the passenger has boarded and got

off the taxi, etc. These two tables are related through a unique trip identifier (Ride ID).

Table 2 shows the schema of the dataset.

Table 1 Description of bridges connecting Montreal to Laval

ID Name No. of lanes Length* (km) Road type Speed limit Toll

B1 Pont Louis-Bisson 4 0.535 Highway (13) 100 No

B2 Pont Lachapelle 3 0.264 Arterial 50 No

B3 Pont Mederic-Martin 4 0.361 Highway (15) 100 No

B4 Pont Viau 2 0.658 Arterial 50 No

B5 Pont Papineau-Leblanc 3 0.425 Highway (19) 100 No

B6 Pont Pie-IX 3 0.658 Arterial 80 No

B7 Pont Olivier-Charbonneau 3 1.200 Highway (25) 100 Yes

B8 Pont Charles-De-Gaulle 3 1.450 Highway (40) 100 No

B9 Pont Le Gardeur 2 0.500 Arterial 100 No

* Bridge lengths have been measured in QGIS software
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Our dataset consists of 4409 GPS records comprising 543 journeys with an average

length of around 11 km and a standard deviation of 9 km. The average recorded travel time

is around 15 min with a standard deviation of 12 min. The dataset comprises weekdays, as

well as weekends and trips made in peak hours as well as off-peak trips. Eighty percent of

the dataset (434 records) was randomly selected for calibration purposes, while the

remainder 20% (109 records) was used for result validation.

Methodology

The principal aim of this research is to provide a behavioral framework, which explicitly

takes into account the effect of anchor points as well as route-level attributes in route

selection. To highlight the importance of anchor points in conjunction with route-level

attributes, we adopt the following nested structures. First, we adopt a classic Nested Logit

model in which the effect of anchor points is addressed in upper nests while route level

decisions are represented in lower nests. Then, we adopt a nested Logit Kernel model,

which accounts for the interdependencies of route alternatives crossing the same anchor

point through the specification of its error structure.

In behavioral terms, our application of these nested structures suggests that individual

taxi drivers, travelling between Montreal and Laval, consider bridges as crucial elements,

along with other route level attributes, which affect their route choices. This section

delineates the formulations of the abovementioned econometric models, presents the

comparative route-based and anchor-based models, and describes their respective utility

functions and choice set generation algorithms.

Econometric model formulation

Nested Logit

The Nested Logit (NL) formulation was proposed by Ben-Akiva (1973) and proved to be

consistent with the stochastic utility maximization theory by McFadden (1978). It is an

extension of the Multinomial Logit (MNL) model, and captures some of the unobserved

similarities among alternatives by dividing the choice set into several nests. These nests are

considered to be collectively exhaustive and mutually exclusive in covering the considered

Table 2 Internal structure of the
database

GPS table Events table

ID Ride ID

Time Events

Object ID Flag

Longitude Accept

Latitude Reject

Status Cancel

Speed Meter

Direction ON/OFF

Employer ID Payment

Ride ID –
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alternatives. Every nest contains a subset of alternatives sharing a particular characteristic,

independent from other subsets of alternatives in other nests. In other words, the proba-

bility of choosing an alternative from a nest is considered to be independent from alter-

natives in other nests, which is known as the Independence of Irrelevant Alternatives (IIA)

property. Therefore, the probability of choosing an alternative can be expressed as the

product of the conditional probability of choosing that alternative given a particular nest

and the choice probability of that respective nest (Guevara and Ben-Akiva 2013; Ben-

Akiva 1973). It is worth mentioning that in our case, the nine considered bridges between

Montreal and Laval are located relatively far apart from each other, and it is not far-fetched

to assume that the IIA property holds within each nest of the model.

NL is a member of the Generalized Extreme Value (GEV) models (McFadden 1978),

also known as Multivariate Extreme Value (MEV) models (Guevara and Ben-Akiva 2013).

Within this framework, the probability of choosing alternative i by individual n within the

true choice set Cn is given by

P ijCnð Þ ¼ eVinGi e
V1n ; . . .; eVJnð Þ

G eV1n ; . . .; eVJnð Þ ð1Þ

Gi e
V1n ; . . .; eVJn

� �
¼ oG

oeVin
eV1n ; . . .; eVJn
� �

ð2Þ

where G is a non-negative differentiable MEV generating function, Gi is its partial

derivative with respect to eVin , Vin specifies the systematic part of the utility function, and

Jn is the number of alternatives in Cn. The probability of choosing alternative i from the

true choice set can be written as:

P ijCnð Þ ¼ eVinþlnGi eV1n ;...;eVJnð Þ
PJn

j¼1 e
VjnþlnGj eV1n ;...;eVJnð Þ ð3Þ

where the partial derivative of the MEV generating function for Nested Logit Gi, for the

true choice set C, is:

Gi Cð Þ ¼ Gi e
V1 ; . . .; eVJ

� �
¼ leVi lm�1ð Þ

XJm

i¼1

elmVi

 ! l
lm
�1

ð4Þ

in which l and lm are scale parameters for the model and its nests, respectively, where

l=lm � 1, and m is the nest including alternative i. Since it is not feasible to enumerate the

true choice set, a subset D has to be sampled, which must include the chosen alternative i.

To consistently estimate this model on a subset of alternatives, the correction approach

proposed by McFadden (1978) can be adopted, in which an alternative specific correction

term is added to the utility function.

P ijDð Þ ¼ eVinþlnGi Cð Þþln p Djið Þ
PJ

j¼1 e
VjnþlnGj Cð Þþln p Djjð Þ

ð5Þ

lnpðDjiÞ is the sampling correction factor, and p Djið Þ is the conditional probability of

choosing subset D given the alternative i has been chosen. The approach developed by

McFadden (1978) has been adopted by Bierlaire et al. (2008) to demonstrate that the

maximization of the quasi-log-likelihood function of Eq. (5) yields consistent parameter

estimates. It is worth mentioning that in our case, since a finite set of anchor points (bridges
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B1–B9, connecting the two regions) is considered for the upper nest level, the application

of this correction factor is found to be superfluous and unneeded.

Although this function leads to the conditional probability of choosing alternative

i given the subset D, its application is not valid with sampling of alternatives because

lnGj Cð Þ is still dependent on the true choice set (Guevara and Ben-Akiva 2013). In order

to compensate for the loss of information due to sampling in each nest, an expansion factor

w should be considered to approximate the generating function based on the considered

sample D
0
. Moreover, to take into account the physical overlap between routes crossing the

same anchor point, the Extended Path-Size factor (see Eq. (17)) has been added to the

deterministic part of the utility function, so that:

P ijD;D0;wð Þ ¼ eViþlnEPSiþln Ĝi D
0;wð ÞþlnpðDjiÞ

PJ
j¼1 e

VjþlnEPSjþln Ĝj D0;wð Þþln pðDjjÞ
ð6Þ

The closed form quasi-log-likelihood function has the following structure:

QLMEV;D;D0;w ¼
XN

n¼1

lnP ijD;D0;wð Þ ¼
XN

n¼1

ln
eViþlnEPSiþln Ĝi D

0;wð Þþln pðDjiÞ
PJ

j¼1 e
VjþlnEPSjþln Ĝj D0;wð Þþln pðDjjÞ

ð7Þ

Guevara and Ben-Akiva (2013) demonstrated that in order to achieve unbiasedness and

consistency, the expansion factor should have the following structure:

wj ¼
kj

E kj
� � ð8Þ

in which ki is the number of times alternative i has been sampled, and E kj
� �

denotes its

expected value or its sampling probability. In this study, we adopt the formulation pro-

posed by Lai and Bierlaire (2015) to approximate Eq. (5) over the choice set D0:

wj ¼
kj

ks

b sð Þ
b jð Þ

ð9Þ

where s denotes the path that has been sampled the most, ks is the number of times

alternative s has been sampled (ks � ki8i 2 D0), and b(s) and b(j) are the theoretical fre-

quencies of the most sampled path and path j, respectively.

Logit kernel (LK)

Logit Kernel, which is a combination of Probit and Logit models, was first proposed by

Bolduc and Ben-Akiva (1991). The random component of its utility function is composed

of a Probit-like term, which captures the interdependencies among alternatives, and an

i.i.d. Gumbel distributed random component. The interdependencies between alternatives

can be explicitly specified using a factor analytic approach, proposed by McFadden (1984).

This approach accommodates different error structures and reduces the estimation com-

plexity of the model (Bekhor et al. 2002; Bierlaire and Frejinger 2005). The utility function

for individual n is defined as below:

Un ¼ Xnbþ FnTfn þ mn ð10Þ

where Un - (Jn 9 1) is the utility vector, and Jn is the number of alternative in the choice

set Cn; Xn - (Jn � KÞ is the matrix of explanatory variables; b - (K � 1Þ is the vector of
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unknown parameters; Fn - (Jn �MÞ is the factor loading matrix; T - (M �MÞ is a

diagonal matrix of the standard deviation of each factor; fn - (M � 1Þ is the vector of i.i.d.

random variables with zero mean and unit variance; and mn - (Jn � 1Þ is the vector of i.i.d.

Gumbel distributed random term with zero location, a scale equal to l, and a variance

equal to ðp2=6l2Þ.
The LK model can replicate any error structure and approximate any random utility

model (Walker et al. 2004; McFadden and Train 2000; Ben-Akiva et al. 2001). In a Nested

Logit analog of the LK model, also known as the nested LK model, Fn is defined to be the

alternative-nest incident matrix and is obtained by defining a dummy variable for each nest

that equals 1 if an alternative belongs to that particular nest, and 0 otherwise. Moreover, fn
is usually assumed to be normally distributed N 0; 1ð Þ, and T captures the amount of

correlation between alternatives belonging to the same nest (Train 2009; Walker et al.

2004). In this study, the correlation related to the physical overlap between routes crossing

the same bridge is expressed through the Extended Path-Size factor (see Eq. (17)), which is

added to the utility function lnEPSð Þ. If the factors fn are known, the probability of choice

i given fn is estimated using the MNL formulation:

K ijfnð Þ ¼ elðXinbþlnEPSinþFinTfnÞ
PJn

j¼1 e
lðXjnbþlnEPSjnþFjnTfnÞ

ð11Þ

Since fn is unknown, the unconditional probability takes the following form:

P ið Þ ¼ r
f
K ijfnð Þ

YM

m¼1

/ðfmÞdf ð12Þ

where / fmð Þ is the standard univariate normal density function, and
QM

m¼1

/ðfmÞ represents

the joint density function of f. Since the probability function does not have a closed form, it

is approximated through simulation:

P̂ ið Þ ¼ 1

D

XD

d¼1

K ijfdn
� �

ð13Þ

where D is the number of simulation draws and fd denotes draw d from the distribution of

f. In this study, the factor analytic specification takes into account the effect of anchor

points on route choice decisions and corresponds to bridges connecting Montreal to Laval.

These factors capture the unobserved similarities among routes crossing the same anchor

points. Accordingly, the Fn matrix is defined to be the route-bridge incident matrix with a

dummy variable for each bridge, equal to 1 if a route crosses that particular bridge, and 0

otherwise.

Comparative models specification

The two presented anchor-based nested formulations are compared with three other models

representing route-based and anchor-based formulations, namely the PSL, EPSL and IAL

models. A concise introduction to these models follows.
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Path-size Logit

First, a PSL model is estimated as an instance of route-based models (Prato 2009; Ben-

Akiva and Bierlaire 1999). This model uses a correction factor in the deterministic part of

the utility function to account for the correlation among sampled paths; however, it ignores

the correlation with non-sampled paths:

PPSL ijCnð Þ ¼ el VinþlnPSinð Þ

P
j2Cn

el VjnþlnPSjnð Þ ð14Þ

where PPSL ijCnð Þ is the conditional probability of user n choosing alternative i from the

universal choice set Cn, l is a scale factor, and V is the deterministic part of the utility

function. The Path-Size factor lnPS is added in a logarithmic scale to the deterministic part

and is calculated as below:

PSin ¼
X

a2Ci

La

Li

1
P

j2un
daj

ð15Þ

where La and Li represent the length of link a and path i, Ci is the set of road segments in

path i, un denotes the considered choice set, and daj is the link-path incident binary

variable which is 1 if link a is on path i, and 0 otherwise. In other words,
P

j2un
daj

indicates the total number of alternatives in the choice set sharing link a, for observation in

un.

Extended-path-size Logit

Second, an EPSL model (Frejinger et al. 2009) has been estimated which is also an

instance of route-based models, in which the PS factor has been extended to take into

account the correlation of each alternative with all the possible paths in the true choice set.

However, the structure of the conditional probability stays the same:

PEPSL ijCnð Þ ¼ e
l VinþlnEPSinð Þþln

kin
q ið Þ

� �

P
j2Cn

e
l VjnþlnEPSjnð Þþln

kjn

q jð Þ

� � ð16Þ

and the EPS factor is defined by

EPSin ¼
X

a2Ci

La

Li

1
P

j2un
dajxjn

ð17Þ

where xjn is an extension factor with a value equal to 1 if daj ¼ 1or q jð ÞRn � 1, and

1= q jð ÞRnð Þ otherwise; where Rn denotes the total number of paths drawn with replacement

from the universal choice set, q jð Þ is the sampling probability of path j, and kjn is the

empirical frequency or the actual number of times path j is drawn.

Independent availability Logit

Third, an IAL model (Swait and Ben-Akiva 1987) has been estimated to illustrate the

performance of anchor-based models. In this formulation the choice set is latent and the
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probability of considering any combinations of alternative as the final choice set is cal-

culated. The conditional probability of alternative i being chosen is calculated as

PIAL
i ¼

X

D�C

PDPijD ¼
X

D�C

Q
i2D Ai

Q
i2C�D 1 � Aið Þ

1 �
Q

i2C 1 � Aið Þ
exp lVið Þ

P
j2D exp lVj

� �

 !

ð18Þ

where PD is the probability of drawing the choice set D from a set of all possible non-

empty choice sets C of the universal choice set C; Pi|D denotes the probability of choosing

alternative i from the choice set D; and Ai ¼ 1 þ exp �axð Þð Þ�1
, where x denotes attributes

and a refers to parameters to be estimated. In order to achieve the proposed formulation for

PD, it is assumed that the IIA property holds for alternatives in the considered choice set.

Utility function specification

Four attributes are used to specify the systematic part of the utility function:

• Mtl_Len specifies the portion of trip length made on the island of Montreal,

• Lvl_Len denotes the portion of trip length made on the island of Laval,

• Hgw_Len stands for the portion of trip length made on highways, and

• Seg_Len indicates the average length of road segments.2

The minimum, maximum, average and median values of these attributes over the whole

dataset are reported in Table 3.

In estimating NL, LK, PSL, and EPSL models, the utility function for observation i is

defined to be:

Vi ¼ bMtl Len � Mtl Leni þ bLvl Len � Lvl Leni þ bHgw Len � Hgw Leni þ bSeg Len

� Seg Leni

ð19Þ

For the IAL model, the length of the trip made on the island of Montreal, which

practically specifies the distance from the origin to the bridge, is used in the first part of the

model to determine the selection probability of each choice sets:

Ai ¼ 1 þ exp �bMtl Len � Mtl Leni
� �� ��1 ð20Þ

The other three variables are used to define the systematic part of the utility function:

VIAL
i ¼ bLvl Len � Lvl Leni þ bHgw Len � Hgw Leni þ bSeg Len � Seg Leni ð21Þ

Choice set generation

The consideration set should include attractive alternatives. Since random sampling of

alternatives in large universal choice sets is not efficient in terms of providing information,

an importance sampling method would be more convenient and favorable (Hess and Daly

2010). Several deterministic and probabilistic path generation methods which are mostly

based on repeated shortest path algorithms have been proposed in the literature to form the

consideration set. Among them are link labelling (Ben-Akiva et al. 1984), link elimination

2 Road segments are defined to be the portion of a road between two consecutive junctions.
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(Azevedo et al. 1993), and link penalty (de la Barra et al. 1993) methods. A thorough

review of these methods is presented in (Prato 2009) and (Frejinger and Bierlaire 2010).

The major downside of using these methods is that they do not provide researchers with

sampling probabilities of the generated alternatives. Model estimates based on these path

generation methods are biased, unless the sampling probability of every alternative in the

universal set is equal, which is not the case in route choice modeling.

Several alternative approaches have been proposed. Cascetta et al. (2002) adopted a two

stage process, where in the first step, a complete set of alternatives is generated for all the

observations by maximizing a coverage factor between the generated set and the set of

routes perceived as available. Then, in the second step, a binomial Logit model is adopted

to estimate the probability of including a given route in the users’ consideration set.

Frejinger et al. (2009) applied a biased random walk to sample a subset of paths and

derived a sampling correction to obtain unbiased parameter estimates. More recently,

Flötteröd and Bierlaire (2013) used a Metropolis–Hastings (MH) algorithm to generate

sample sets based on an arbitrary distribution providing the sampling probability of each

alternative. This algorithm requires a road network and a definition of path weight as an

input. It uses an underlying Markov Chain process to sample alternatives and calculates its

sampling probability without the need of normalizing it over the full choice set.

For the NL model estimated in this study, the MH algorithm has been adopted to

generate nine alternatives per nest. In order to apply this algorithm on the large road

network of Montreal and Laval, 100 separate input files have been prepared to provide the

possibility of parallel calculation. Files have been imported into a cluster of 26 computers

(2 processors Intel(R) Xeon(R) X5675 @ 3.07 GHz) which took about 104 h (4 days and

8 h) to generate the output files. For the LK, PSL, and EPSL models, the MH algorithm has

been adopted to draw 19 choice alternatives from the universal choice set. Similarly to the

NL model, 100 separate input files have been prepared to provide the possibility of parallel

calculation, which resulted in a calculation time of 46 h (1 day and 22 h).

For the IAL model, a shortest path algorithm, using segments’ speed limits as travel

cost, has been adopted. The same algorithm was used in the original application by Habib

et al. (2013) and provides the possibility of comparison between the outputs. In the IAL

formulation, the feasible choice set built in the choice generation step is considered to be

the equivalent of the universal choice set C. Since the algorithm calculates the choice

probability of every non-empty subset of the universal choice, the number of considered

alternatives should be restricted for computational purposes. The chosen alternative and

eight shortest-distance paths, crossing the eight alternative bridges, comprise the nine

feasible alternatives for each observation. Although Habib et al. (2013) showed that the

IAL performs well in anchor choice prediction, it is very computationally expensive for

applications involving large choice sets, such as route choice modeling applications.

In this study, different sizes of choice sets have been generated for practicality reasons.

Considering larger choice sets would have increased the computational time dramatically;

Table 3 Statistics on attributes
included in the systematic part of
the utility function

Attributes Min. Max. Avg. Med.

Mtl_Len (m) 266.6 22,846.3 7459.9 6347.6

Lvl_Len (m) 117.5 23,474.8 3729.0 2414.6

Hgw_Len (m) 0.0 33,694.9 7381.6 3956.1

Seg_Len (m) 89.0 621.3 231.2 195.5
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however, similarly to Elgar et al. (2009) the estimation gain would have probably been

minor. In all the above mentioned applications, the chosen alternative has been added to

the choice set, where it was not generated by the adopted choice set generation algorithm

(McFadden 1978; Elgar et al. 2009; Arifin 2012; Prato et al. 2012; Frejinger et al. 2009;

Habib et al. 2013; Dhakar and Srinivasan 2014; Hess et al. 2015).

Results and discussion

This section presents, compares and discusses the estimation and prediction abilities of the

aforementioned models. The BIOGEME software package (Bierlaire and Fetiarison 2009;

Bierlaire 2003) has been used for all model estimations.

Estimation

Eighty percent of the observations, that is 434 trips, were randomly selected for estimation

purposes. A heat-map of origin and destination points, presented in Fig. 2, illustrates

higher density regions, located mostly around metro stations, airport, downtown Montreal,

and commercial centers, which have an expectedly higher taxi demand. A heat-map of

chosen routes between OD pairs is illustrated in Fig. 3. Around 40% of the whole network

size, considered for choice set generation, has been covered by drivers’ route choices.

A detailed description of models’ estimates is provided in Table 4. Presented models

are fully identified according to the smallest singular value approach implemented in

BIOGEME (Bierlaire 2015). The scale parameter in PSL, EPS and LK models were

estimated while they have been fixed to 1 in IAL and NL models for identification pur-

poses. Scale factors for nests in the NL model have been estimated and l B lm holds for

every nest. Since the composition of the choice set differs from a model to another, not

much can be inferred from the comparison of their scale factors. However, an out-of-

sample validation method has been used to properly compare the models’ performances,

which will be presented and discussed in the subsequent section.

Intuitively, taxi drivers are apt to minimize their travel distance by choosing a shorter

route, and their travel time by riding on segments with higher speed limits. This behavior is

confirmed by the obtained results from all the estimated models. Coefficients bMtl_Len and

bLvl_Len are negative while bHgw_Len has a positive sign, meaning that taxi drivers are more

willing to take shorter alternatives and are more inclined to ride on highways. These

findings are in agreement with results reported by Duan and Wei (2014) who claimed that

most taxi drivers tend to minimize their travel time. The effect of the average length of the

segment is expectedly positive for PSL, EPSL, LK, and NL models, implying that taxi

drivers tend to avoid intersections and prefer to take routes with a longer average segment

length. However, this estimate has a negative sign for the IAL model, which might be

attributed to the fact that alternatives are assumed to be completely independent from each

other and their correlations have been neglected. The positive signs of bPS and bEPS are a

negative correction of the utility for overlapping routes, giving a higher chance to less

similar alternatives to be chosen. Similar findings are reported by (Dhakar and Srinivasan

2014; Prato and Bekhor 2006, 2007; Bierlaire and Frejinger 2008).

Note that the anchor-based nested models, namely LK and NL models, result in sig-

nificantly higher Rho-square values compared to the route-based and anchor-based models.

This emphasizes the importance of bringing the concept of anchor points in route choice
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Fig. 2 Heat-map of origin and destination points for trips between Montreal and Laval

Fig. 3 Heat-map of chosen routes between OD pairs for trips between Montreal and Laval

1196 Transportation (2018) 45:1181–1206

123



T
a
b
le

4
M

o
d
el

es
ti

m
at

es
fo

r
ta

x
i

tr
ip

s
b
et

w
ee

n
M

o
n
tr

ea
l

an
d

L
av

al

P
ar

am
et

er
s

P
S

L
E

P
S

L
IA

L
L

K
N

L

E
st

.a
tt

.b
E

st
.

tt
.

E
st

.
tt

.
E

st
.

tt
.

E
st

.
tt

.

b M
tl

_
L
e
n
c

-
0

.0
0
0

9
-

1
0

.9
-

0
.0

0
4

8
-

4
.5

-
0

.0
1

7
7

-
8

.4
-

0
.0

0
1

2
-

5
.7

-
0

.0
0
1

6
-

9
.2

b L
v
l_
L
e
n
c

-
0

.0
0
0

2
-

3
.1

-
0

.0
0

3
7

-
5

.1
-

0
.0

0
0

6
-

8
.8

-
0

.0
0
0

3
-

2
.2

-
0

.0
0
1

5
-

7
.0

b H
g
w

_
L
e
n
c

0
.0

0
0

3
2

.4
0

.0
0
2

8
4

.8
0

.0
0
7

8
9

.5
0

.0
0
0

5
2

.7
0

.0
0
0

8
4

.3

b S
e
g

_
L
e
n
c

0
.1

0
7

0
6

.2
0

.1
9
1

0
6

.8
-

0
.1

9
7

0
-

8
.3

0
.1

0
2

0
1

1
.6

0
.0

4
5

5
6

.2

b P
S

4
.1

6
.2

b E
P
S

3
.5

7
4

.5
2

.7
6

1
1

.5
0

.8
8
7

3
.4

A
S
C
_
B
rg
2

3
3

.6
1

1
.2

A
S
C
_
B
rg
3

4
-

A
S
C
_
B
rg
4

1
8

.3
1

3
.2

A
S
C
_
B
rg
5

-
1

8
.8

-
4

.5

A
S
C
_
B
rg
6

2
5

-

M
u

0
.6

6
7

.1
0

.3
8

6
.9

1
-

0
.6

5
7

.4
1

–

r B
rg

1
0

.4
8

2
.7

r B
rg

2
-

1
.1

2
-

2
.8

r B
rg

3
-

1
.8

1
-

4
.8

r B
rg

4
0

.9
6

2
.9

r B
rg

5
4

.3
5

2
.3

r B
rg

6
1

.7
6

1
.5

M
u
_
B
rg
2

3
.7

8
1

7
.1

M
u
_
B
rg
3

1
.0

8
4

.9

M
u
_
B
rg
4

3
.7

3
1

0
.6

M
u
_
B
rg
5

1
.5

2
6

.1

M
u
_
B
rg
6

1
.4

2
5

.1

In
it

ia
l

L
L

-
2

0
7

9
.8

-
2

1
8

0
.6

-
1

1
5

1
.2

-
5

2
0

1
.0

-
2

4
0

4
.7

Transportation (2018) 45:1181–1206 1197

123



T
a
b
le

4
co

n
ti

n
u
ed

P
ar

am
et

er
s

P
S

L
E

P
S

L
IA

L
L

K
N

L

E
st

.a
tt

.b
E

st
.

tt
.

E
st

.
tt

.
E

st
.

tt
.

E
st

.
tt

.

F
in

al
L

L
-

6
2

3
.9

-
6

0
6

.7
-

3
4

1
.4

-
7

4
7

.7
-

3
3

6
.8

R
h

o
-s

q
u

ar
e

0
.6

9
7

0
.7

1
9

0
.6

9
7

0
.8

5
4

0
.8

5
5

E
st

.
ti

m
e

(s
)

\
1

\
1

5
1

4
2

4
1

7
1

2
3

a
E

st
im

at
ed

v
al

u
e

b
R

o
b

u
st
t

te
st

c
L

en
g

th
h

as
b

ee
n

m
ea

su
re

d
in

m
et

er
s

1198 Transportation (2018) 45:1181–1206

123



modeling, so that it becomes more consistent with the actual behavior of drivers. The r
estimates are highly significant (except for bridge 6) for the LK model, implying that the

factor analytic structure captures a significant correlation structure between routes crossing

the same bridges. It is also noted that this effect is statistically different from the effect

captured by the EPS factor. This is consistent with findings in Bekhor et al. (2002) and

Bierlaire and Frejinger (2005), where the authors presented a LK route choice model

considering subpath components. The better fit of the LK model with an EPS attribute over

the PSL and EPSL models is in line with findings reported by Ramming (2001) and

Bierlaire and Frejinger (2005). It is worth mentioning that the travel time-based shortest

path algorithm, used in the choice set generation step of the IAL model, does not provide

the researcher with the sampling probability of paths in order to correct the sampling

effect. The better fit of all other models can be partially attributed to the application of MH

algorithm, which provides the possibility of considering the sampling correction factor.

The estimation time has also been reported in Table 4. All model estimations were

conducted on a machine with a core i7-4720HQ CPU running at 2.6 GHz and a Random

Access Memory (RAM) of 16.0 GB. Concerning PSL and EPSL models, the computa-

tional time was found to be less than 1 s which is probably due to their simple multinomial

logit structure. The small number of considered alternatives per observation may be a

further reason for the simplicity of their calculation. However, there is a large difference in

computational costs between these models and the IAL model. Although the number of

feasible alternatives for the IAL model is limited to 9, the high computational cost might be

related to the fact that every possible non-empty subset (29 - 1 = 511 subsets) must be

considered for every observation. Implementing a NL structure reduces the calculation

time substantially, compared to the IAL model, by providing a more realistic structure to

represent drivers’ route choice behavior. It is behaviorally not realistic and computationally

not feasible to assume that drivers consider 511 non-empty subsets in order to make a

choice from a set of 9 nine alternatives. However, the increase in computational time

compared to the PSL and EPSL models might be explained by the more complex structure

of NL compared to MNL, and the greater number of alternatives considered for the NL

model (82 alternatives per observation compared to 20 alternatives for PSL and EPSL

models). Expectedly, the largest estimation time is recorded for the LK model. The nor-

mally distributed portion of the disturbance requiring large number of draws in model

estimation, leads to a computationally demanding model (Ben-Akiva et al. 2001; Walker

et al. 2004).

Validation

In order to further compare these models, their ability to predict should also be evaluated in

the final stage. An out of sample validation has been performed to evaluate the prediction

capability of the estimated models. Twenty percent of the observations (109 trips), which

have not been used for model estimation, have been randomly sampled for this purpose.

The validation has been performed based on models’ abilities to correctly predict:

1. The chosen bridge,

2. The chosen route, and

3. The total overlapping percentage with chosen alternatives (coverage rate).

The aforementioned three indicators have been calculated and results are illustrated in

Fig. 4. Part A of Fig. 4 compares models’ performances in terms of correctly predicting

the taken route. It clearly shows that LK and NL perform better than the three other models
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with a prediction rate of 72.5 and 73.4% compared to 51.4, 53.2 and 55% for the PSL,

EPSL and IAL models, respectively. The ability to correctly predict the chosen bridge is

compared in part B of Fig. 4. Similarly, LK and NL outperform PSL and IAL with

prediction rates of 91.8 and 92.7% compared to 89 and 55%, respectively. The perfor-

mance of EPSL is roughly similar to the anchor-based nested formulations with a small

difference of around 1.0%, which may be attributed to simulation errors. In order to

understand how closely each model has predicted the chosen route, we have calculated the

length percentage that has been correctly predicted by each model. This coverage rate is

compared in part C of Fig. 4, and clearly demonstrates the superiority of anchor-based

nested formulations.

Since IAL model is an anchor-based model, it was expected to perform better in bridge

choice prediction with respect to studied route-based models. The poor performance of this

model, in this study, in terms of both estimation and prediction might be attributed to the

fact that a fixed utility function has been used to compare the four models. Using more

explanatory variables describing bridge characteristics in Eq. (18) might have improved

both the model’s fit over data and its prediction abilities.

Based on the abovementioned results, we conclude that the proposed anchor-based

nested approaches outperform route-based as well as anchor based models. This conclusion

is in line with findings reported by (Manley et al. 2015a; Kazagli and Bierlaire 2015; Habib

et al. 2013; Manley et al. 2015b; Prato and Bekhor 2007) who claimed that anchor points

have an important effect on individuals’ route selection behavior. However, the important

aspect of this study, which is the estimation of the comprehensive effect of both route-level

attributes and anchor points, clearly demonstrates that considering the role of bridges as

anchor points in conjunction with route-level attributes, for trips between Montreal and

Laval, enhances both the estimation and prediction abilities of the model.

Conclusions

In this paper we have explored the application of a nested structure to improve the

behavioral aspect of route choice modeling by incorporating the effect of space hierarchy

in drivers’ decision making process. We have argued that current approaches have either
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neglected the effect of anchor points by considering only route level attributes (route-based

formulations), or have adopted a full probabilistic approach for choice set generation,

which is behaviorally inaccurate, and theoretically impractical to implement in real world

networks (anchor-based formulations).

The anchor-based nested approaches, proposed in this paper, attempt to improve the

behavioral aspect of route choice modeling by incorporating the effects of anchor points

and route level attributes at the same time. As previous studies have shown (Habib et al.

2013; Sun et al. 2014; Woo et al. 2015), in riverside cities such as Montreal, route choice

decisions are highly influenced by their respective bridge choices. Moreover, routes

crossing a same bridge share unobserved components such as safety, scenery, driving

comfort, etc., which is mainly because they share the same network and geographical

characteristics. In this study, we capture this reciprocal effect through a nested structure.

GPS data provided by a taxi company in Montreal has been used to study trips made

between the island cities of Montreal and Laval. For these trips, drivers have to choose

between a maximum of nine bridges, providing plausible route alternatives between these

cities. These bridges face recurrent congestion and play an important role in drivers’ route

decisions due to their high travel time variability. To address the role of bridges as anchor

points, a discrete choice utility maximization framework has been adopted. First, a NL

formulation has been proposed, in which upper nests represent bridges and lower nests

consist of route alternatives crossing respective bridges. Second, a nested LK with a factor

analytic structure is specified. The EPS factor has been added to the deterministic part of

the utility functions of these models to account for physical overlap among routes crossing

the same bridge. The unobserved similarities among these routes are captured through the

nested structure and the factor analytic structure in NL and LK models, respectively.

To evaluate the performance of the proposed anchor-nested formulations, they are

compared to the recent route- and anchor-based models, namely PSL, EPSL and IAL

models. For the sake of simplicity in estimation and comparison, four most important

variables have been selected to define a common utility function between models. Findings

revealed that the nested structures provided better model fits and underscored the impor-

tance of considering the comprehensive effect of anchor points and route level attributes in

route choice decisions. Results have expectedly illustrated that taxi drivers are more likely

to drive on highways and tend to decrease their travelled distance. It has also been found

that they prefer to avoid intersections and tend to drive on routes with a higher average

segment length. The predictive ability of these models has also been compared by an out-

of-sample validation approach. Three indicators have been used for this purpose, namely

the number of correctly predicted routes, the number of correctly predicted bridges, and the

overlap percentage between the predicted and chosen alternatives. The overall results

suggest that LK and NL outperform the other three models in the validation step.

In short, incorporating the effects of anchor points in a nested structure has the fol-

lowing advantages over the previously studied anchor based model: (1) the nested structure

improves the behavioral aspect of decision making process. In the conventional anchor

based model (IAL), a probability is assigned to every subset of the universal choice set, and

the conditional probability of an alternative being chosen implies that the decision maker

has considered every possible combinations of alternatives as his final choice set, which is

behaviorally unrealistic, (2) LK and NL models are easily manageable and practical, even

by considering a large number of alternatives (McFadden 1978). IAL incorporates a full

probabilistic choice set generation approach which is inapplicable in route choice modeling

(Prato 2009). For instance, considering a small dataset of 10 alternatives, a selection

probability has to be calculated for every 1023 non-empty subsets of alternatives which is
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very time-consuming and impractical, and (3) the nested structure allows the consideration

of multiple anchor points and their effects on route choice decisions. It is worth mentioning

that the inclusion of multiple landmarks and anchor-points, and the consideration of several

forms of heterogeneity, such as decision makers’ taste variations, are much more man-

ageable and can be accommodated more easily in LK than in the NL mode. This is due to

the flexible structure of the error term, which can approximate almost any desirable error

structure (Walker et al. 2004).

This study contributes to the existing literature in two ways. First, it improves the

behavioral, theoretical, and practical aspects of anchor-based route choice models by

capturing the effects of both anchor points and route level attributes within a nested choice

model framework, and clearly underscores the importance of considering the effects of

anchor points in conjunction with route-level attributes. Second, a large real-world road

network, consisting of over 40,000 nodes and 19,000 links, has been studied and a MH

algorithm has been adopted to generate a set of considered alternatives. To the best of the

authors’ knowledge, the largest network previously tested on this algorithm was composed

of about 8000 nodes and 17,000 links (Flötteröd and Bierlaire 2013). The major advantage

of MH sampling algorithm over conventional methods (e.g. link labelling, link elimination,

etc.) is that it provides researchers with path sampling probabilities, so that model esti-

mates based on these sets are not biased. It is noted that in route-based models and most of

the link-based formulations, the consideration set is commonly generated using shortest-

path algorithms with some pre-defined impedance function, which do not provide path

sampling probabilities, and hence do not account for the correlation between sampled and

non-sampled paths, resulting in biased estimates.

It is worth mentioning that since this paper is based on a dataset covering a fraction of

taxi fleets operating in Montreal, results may not be directly transferable to other car

drivers in Montreal or any other similar regions in the world. Additional datasets from

different contexts and population segments are needed to provide more insights on this

subject. However, it reveals the undeniable effect of anchor points on the decision of the

whole path, and provides valuable insights regarding drivers’ route selection behavior.

As the core of traffic assignment methods, a more realistic route choice model improves

the travel demand assessment on the road network. An application instance of the proposed

models would be their utilities in predicting drivers’ behavior under hypothetical situa-

tions, and the way drivers react to different policies and changes. For example, the effect of

a temporary lane closure on one of the bridges can be assessed on other bridges and route

segments.

For future works, it would be interesting to investigate the spatial and temporal trans-

ferability of the proposed structure for different datasets on similar case studies. Also, more

interesting structures such as multilevel nested models can be estimated to explore the

effects of multiple anchor points on route choice decisions. In this work, we have neglected

the effect of shared segments between routes crossing different bridges (alternatives in

different nests), to accommodate the IIA property of the NL model. The inclusion of a

correction factor accounting for this shared similarity might improve estimation results.

Route choice is also influenced by travel time and congestion. A shortcoming of this

study is that travel time related attributes have been neglected in this study due to data

availability issues. In order to improve models’ estimation and prediction abilities, it is

recommended to consider travel time related attributes on bridges and route segments.

Furthermore, including physical characteristics of bridges can also be interesting and can

provide useful insights on their effects on the attractiveness of an alternative. It is expected

that the inclusion of these factors will enhance models’ estimation and prediction abilities.

1202 Transportation (2018) 45:1181–1206

123



Another appealing aspect to investigate would be the incorporation of some socio-demo-

graphic and behavioral factors which were not available in our dataset. Also, incorporating

the role of dynamic information, knowledge, and level of experience would add an

interesting aspect to this modeling process. A recent study by Vitetta (2016) explores a new

realm of route choice models called Quantum Utility Model (QUM), which captures the

effect of intermediate (during the trip) decisions, where decision makers are uncertain

about their final choices. A comparison study between the proposed approach in this study

and the study by Vitetta (2016) might also be interesting as a future expansion of this work.

Another interesting area to explore would be the extension of the Recursive Logit (RL)

model proposed by Fosgerau et al. (2013) by incorporating the effects of anchor points.
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