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Abstract Negative externalities cause inefficiencies in the allocation of capacities and

resources in a transport system. Marginal social cost pricing allows to correct for these

inefficiencies in a simulation environment and to derive real-world policy recommenda-

tions. In this context, it has been shown for analytical models considering more than one

externality, that the correlation between the externalities needs to be taken into account.

Typically, in order to avoid overpricing, this is performed by introducing correction factors

which capture the correlation effect. However, the correlation structure between, say,

emission and congestion externalities changes for every congested facility over time of

day. This makes it close to impossible to calculate the factors analytically for large-scale

systems. Hence, this paper presents a simulation-based approach to calculate and inter-

nalize the correct dynamic price levels for both externalities simultaneously. For a real-

world case study, it is shown that the iterative calculation of prices based on cost estimates

from the literature allows to identify the amplitude of the correlation between the two

externalities under consideration: for the urban travelers of the case study, emission toll

levels—without pricing congestion—turn out to be 4.0% too high in peak hours and 2.8%

too high in off-peak hours. In contrary, congestion toll levels—without pricing emis-

sions—are overestimated by 3.0% in peak hours and by 7.2% in off-peak hours. With a

joint pricing policy of both externalities, the paper shows that the approach is capable to

determine the amplitude of the necessary correction factors for large-scale systems. It also

provides the corrected average toll levels per vehicle kilometer for peak and off-peak hours

for the case study under consideration: again, for urban travelers, the correct price level for
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emission and congestion externalities amounts approximately to 38 EURct=km in peak

hours and to 30 EURct=km in off-peak hours. These toll levels can be used to derive real-

world pricing schemes. Finally, the economic assessment indicators for the joint pricing

policy provided in the paper allow to compare other policies to this benchmark state of the

transport system.

Keywords Air pollution � Congestion � Vehicle emissions � Road pricing � Combined

pricing � Internalization

Introduction

Improvements in the transport sector yield positive externalities such as increased acces-

sibilities, increased land values and agglomeration benefits. On the contrary, they also

impose negative externalities1 on society. These include accidents, congestion, damages to

the environment and human health (see, e.g., Weinreich et al. 1998; Maibach et al. 2008).

The expected increase in mobility needs in densely populated areas, mainly resulting from

urbanization processes, is likely to increase the negative externalities. The presence of

negative externalities is known to result in inefficiencies unless the underlying external

costs are reflected in the market prices for mobility, i.e. considered in people’s mobility

decisions. Potential efficiency gains amount to a considerable share of a country’s GDP

(Gross Domestic Product): For example, the total external costs by motorized traffic in

Beijing is estimated to range between 7.5 and 15% of the city’s GDP (Creutzig and He

2009). The total external costs in the EU-27 plus Norway and Switzerland is estimated to

amount to approximately 5 to 6% of the union’s GDP (van Essen et al. 2011).

One option in order to reduce the efficiency loss is to aim for behavioral changes of

people. From the economic literature, it is known that internalizing external effects by a tax

can change behavior and, thus, increase welfare for society (Pigou 1920). However, only

some real-world policies have been implemented in the last decades. Congestion pricing

schemes have been introduced in Singapore, London, Stockholm (Eliasson et al. 2009), and

Gothenburg (Börjesson and Kristoffersson 2015). An air pollution pricing scheme has been

implemented in Milan (Rotaris et al. 2010). Even though focus and naming are rather

driven by political discussions, all pricing schemes have effects on both, congestion and

the environment. Percoco (2014) argues that road pricing in Milan has only limited effects

on environmental quality and congestion because of an increase in polluting vehicles

(motorbikes) and non-polluting vehicles (LPG, bi-fuel and hybrid cars) which are

exempted from the toll. Additionally, no significant changes in the flows of prohibited

vehicles entering into the city center are observed (Percoco 2015). Similarly, Whitehead

et al. (2014) investigate the impact of congestion pricing on the demand of new exempted

energy efficient vehicles in Stockholm. They show that demand for the exempted energy

efficient vehicles increases with a stronger effect on commuters. With a simple example,

Nagurney (2000) shows that improvements in travel times may lead to an increase in

emissions. Thus, abating congestion and emission can, under certain conditions, turn out to

be conflicting goals.

Despite the limited real-world implementations, pricing strategies offer—especially in a

simulation context—a great opportunity to estimate the magnitude of potential efficiency

1 ‘Externality’ refers in this paper to ‘negative externality’ unless otherwise stated.
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gains and to identify and avoid possible flaws before implementation. Especially, a thor-

ough investigation of the interrelationship of congestion and air pollution externalities

seems promising. In the literature, this potential is only reflected by a relatively small

number of contributions: Proost and van Dender (2001) and Chen and Yang (2012) use

analytical approaches with static traffic flows; the former considers external effects of

congestion, emission, accident and noise for a large-scale scenario of Brussels in Belgium,

and the latter obtains Pareto system optimum link flow patterns by simultaneous mini-

mization of travel times and emissions. Wang et al. (2014) use a small test network while

considering carbon emission costs with generalized cost of travel. Shepherd (2008)

demonstrates a method to optimize the average toll for car use for congestion, CO2 and

accident externalities. The author compared the simple constant cost models to a more

complex models for CO2 and accident costs. It has been shown that the more complex and

accurate emission model gives a better and lower estimates of CO2 than the fixed cost

model. The CO2 costs decreases by 1.8 and 3.8% for the fixed cost model and the more

accurate model, respectively. Thus a more accurate emission model is desirable. To the

knowledge of the authors, there exists no contribution attempting a joint internalization of

emission and congestion externalities in an agent-based framework with dynamic traffic

flows and activity-based demand for a whole metropolitan area.

This paper attempts to close this gap, and to derive general insights from the analysis

possibilities of such detailed model. Hence, the present study uses the concept of marginal

social cost pricing (Turvey 1963). This concept is used in many previous studies to

identify an optimal toll analytically (Vickrey 1969; Arnott et al. 1993; Lindsey and

Verhoef 2001). However, these simplified approaches are less appropriate for large-scale

scenarios with dynamic demand which evolves differently over space and time. The

complexity increases in such scenarios and the analytical calculation of such highly

differentiated tolls by user behavior in space and time is not feasible. An agent-based

simulation framework can bridge this gap: it facilitates to identify the agents who are

causing externalities and to charge them with the corresponding price. Thus, an activity-

based, multi-agent simulation framework is chosen for this paper because (1) the network

loading algorithm is a queue model which controls agents at entry/exit of the link and

never in between which makes it computationally faster and therefore suitable for large-

scale scenarios , (2) it provides the dynamic locations of all the agents in the simulation

which is required to identify the highly differentiated, time-dependent toll values corre-

sponding to the emission and congestion costs, (3) the model is embedded into an iter-

ative co-evolutionary algorithm, in which agents interact, learn and adapt to the system in

general and to the price levels in particular. In a first step, the paper investigates the effect

of congestion pricing on emission levels, and the effect of emission pricing on congestion

levels. For that purpose, the marginal congestion pricing approach by Kaddoura and

Kickhöfer (2014) and the marginal emission pricing approach by Kickhöfer and Nagel

(2016b) are applied to a real world scenario of the Munich metropolitan area in Germany.

In a second step, the two pricing approaches from above are combined in a joint pricing

scheme to investigate the aggregated and disaggregated effects of the correlation between

congestion and emission externalities on toll levels and agent behavior. The outcome are

optimal congestion-emission levels together with the dynamic, highly differentiated tolls

for a particular case study. The methodology that is developed can be applied to any

scenario worldwide.

Please note that this paper builds on a recent study by Agarwal and Kickhöfer (2015). In

contrast to that study, the present paper introduces a methodology to identify the amplitude

of the correlation between congestion and air pollution externalities. This allows
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investigating their isolated impact on the overall toll level, e.g. in peak and off-peak hours.

The paper also puts more emphasis on relevant policy recommendations by deriving

corrected average cost factors per vehicle kilometer for different user groups of the

population.

The remainder of the paper is organized as follows: section ‘‘Methodology’’ describes

the transport simulation framework which is used for the study, and presents the

methodology of internalizing external congestion and emission effects within that

framework. Section ‘‘Case study: Munich’’ introduces the real-world scenario of the

metropolitan area of Munich, Germany, and the different pricing schemes that are con-

sidered in the study. Section ‘‘Results’’ analyses the impacts of the different pricing

schemes on agents’ behavior and economic indicators, and also performs spatial analyses.

Section ‘‘Discussion’’ discusses the necessary assumptions of the study and their impact on

the overall results. Finally, section ‘‘Conclusion’’ concludes the study by summarizing the

main findings and by identifying venues for future research.

Methodology

MATSim

The multi-agent transport simulation MATSim2 is used for all simulation runs (see, e.g.,

Balmer et al. 2005, 2009; Raney and Nagel 2004, 2006 for detailed information).

MATSim is a framework to simulate transport systems in large-scale scenarios. Required

inputs are network data, daily plans of individual travelers, and various configuration

parameters. Every individual in the simulation framework is considered as an agent who

learns and adapts within an iterative process that is composed of three steps as shown in

Fig. 1.

1. Plans execution (mobsim) All selected plans of agents are executed simultaneously in

the physical environment. In this study, a state-of-the-art queuing model (Gawron

1998; Cetin et al. 2003) is used.

2. Plans Evaluation (scoring) To compare various plans, executed plans are evaluated

using a utility function. A plan’s utility (Splan) is represented by:

Splan ¼
XN�1

q¼0

Sact;q þ
XN�1

q¼0

Strav;modeðqÞ ð1Þ

where N is the number of activities, Sact;q is the utility from performing activity q and

Strav;modeðqÞ is the (typically negative) utility for traveling to activity q.

In short, the utility earned for performing an activity is given by3

Sact;q ¼ bdur � ttyp;q � lnðtdur;q=t0;qÞ ð2Þ

where tdur;q and ttyp;q are actual and typical durations of activity q, respectively. bdur is the
marginal utility of activity duration. t0;q is the minimal duration, which essentially has no

2 ‘Multi-Agent Transport Simulation’, see www.matsim.org.
3 See Charypar and Nagel (2005) and Nagel et al. (2016), section ‘‘Base case’’, for a more detailed
description.
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effect as long as dropping activities is not allowed. The simplified mode-specific utility

from traveling by car or public transport (PT) following Nagel et al. (2016) is described by:

ScarðqÞ ¼ btrav;carðqÞ � ttrav;q þ bm � cd;carðqÞ � dtrav;q ð3Þ

SPTðqÞ ¼ CPTðqÞ þ btrav;PTðqÞ � ttrav;q þ bm � cd;PTðqÞ � dtrav;q ð4Þ

where ttrav;q and dtrav;q is the travel time and distance between activity q and qþ 1. CptðqÞ is

the alternative specific constant (ASC) of public transport (PT). As will be illustrated in

section ‘‘Base case’’, the present study defines two different PT modes, and in consequence

two PT constants: one for urban travelers and another one for commuters and reverse

commuters. All behavioral parameters and the resulting values of travel time savings

(VTTS) are listed in Table 1.

3. Re-planning For each iteration, a new plan is generated for a predefined share of

agents by modifying an existing plan. These modifications are performed by software

modules that can be defined arbitrarily. In the present study, route choice and mode

choice modules are used.

By repeatedly performing the steps from above, an iterative learning cycle is initiated

which finally results in stabilized simulation outputs.

initial 
demand analyses mobsim scoring 

replanning 

Fig. 1 MATSim cycle (Horni et al. 2016)

Table 1 Behavioral parameters

Parameter Value Unit

Source: Kickhöfer (2014)

Marginal utility of activity duration (bdur) ?0.96 utils=h

Marginal utility of traveling by car (btrav;car) -0.00 utils=h

Marginal utility of traveling by PT (btrav;PT ) -0.18 utils=h

Monetary distance rate by car (cd;carðqÞ) -0.30 EUR=km

Monetary distance rate by PT (cd;PTðqÞ) -0.18 EUR=km

Marginal utility of money (bm) -0.079 utils/EUR

Approximate average VTTScar ?12.15 EUR=h

Approximate average VTTSPT ?14.43 EUR=h

Calibrated for the present study

ASC for urban PT -0.75 utils

ASC for (rev.) commuters PT -0.3 utils
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Pricing of externalities

Congestion cost calculation

The tool to compute individual delays4 and then to internalize those by a marginal social

cost pricing scheme in the MATSim framework is provided by Kaddoura and Kickhöfer

(2014).

This approach tracks routes and travel times of all agents to calculate the time-de-

pendent, agent-specific delay on each link. It is computed whenever an agent is leaving a

link. It results from agents who have left that link before the delayed (or affected) agent

and who are using capacity and blocking the link. Thus, these downstream agents are

named ‘causing agents’. In the agent-based framework, causing and affected agents can

then be identified. The former can therefore be charged with a monetary equivalent of the

sum of marginal delays they have caused to others. The marginal delay is hereby defined as

the maximum time for which an agent can block a link. In other words, it is inverse of flow

capacity of a link. Since congestion is—in contrast to emissions—inherent to road traffic,

the behavioral parameters from Table 1 can be used to convert delays into monetary units.

This is done using the approximate average Value of Travel Time Savings (VTTS) of the

car mode.5

Emission cost calculation

The emission modeling tool was developed by Hülsmann et al. (2011) and further

improved and extended by Kickhöfer et al. (2013). The tool is coupled with the MATSim

framework. Currently, emissions are calculated for free flow and stop and go traffic states.

Emissions consist of cold emissions (during the warm up phase of vehicle) and warm

emissions (while driving); cold emissions essentially depend on parking duration, distance

traveled, and vehicle characteristics; warm emissions depend on engine type, road cate-

gory, and speed of the vehicle. Vehicle characteristics (vehicle type, age, cubic capacity,

fuel type), engine type, road category are taken from the initial inputs whereas travel

dynamic attributes (parking duration, distance traveled and speed of the vehicle) are

determined from the simulation at the end of each iteration. Thereupon, cold and warm

emissions (in g) for each agent on each link are calculated using the HBEFA6 database as

follows:

1. Cold emissions The cooling of the vehicles is determined by parking duration (in 1 h

time bins up to 12 h and assumed as fully cooled down for parking durations longer

than 12 h). Cold emissions are generated up to a distance of 2 km, depending on the

cool-down time. This information together with vehicle characteristics is used to look

4 Delay is in this study defined by the difference between the actual travel time on a link and the link’s free
speed travel time. That is, delays are calculated on a per-link basis and not for entire routes.
5 The VTTS is defined as the individual willingness-to-pay for reducing the travel time by one hour. For
linear utility functions, it is the ratio of the marginal utility of travel time and the marginal utility of money.
The former is the sum of the disutility for traveling (btrav;modeðqÞ) and the negative utility of time as a resource

(�bdur). Please note that the person-specific VTTS in MATSim can vary significantly with the time pressure
which an individual experiences. This is because of the non-linear utility function for performing activities,
influencing the actual value of (bdur).
6 ‘Handbook Emission Factors for Road Transport’, Version 3.1, see www.hbefa.net.
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up the HBEFA emission factors (in g). Categories of 0–1 and 1–2 km are used to

distribute the cold emissions on the links after the vehicle has been started.

2. Warm emissions The vehicle-specific travel time on a link derived from the simulation

is used to identify different traffic states (free flow, stop and go, or both). Similar to the

cold emissions look up, the information about traffic states, road type and vehicle

characteristics are used to look up the HBEFA emission factors for that link (in g).

Furthermore, Kickhöfer and Nagel (2016b) developed a method to calculate time-depen-

dent, vehicle-specific emission tolls. In this method, vehicle- and link-specific time-de-

pendent emissions obtained from the emission modeling tool, are converted into monetary

units using emission cost factors given in Table 2.

Internalization

Internalization is the process by which external effects are included into the behavioral

decision making of individuals by setting prices according to their marginal external costs.

By default, the MATSim utility functions only incorporate marginal private costs (MPC)

which correspond to spending time and money for traveling to planned activities (see Eq. 1

and Eq. 3). Marginal social costs (MSC) are the sum of MPC and marginal external costs

(MEC) (see, e.g., Walters 1961; Turvey 1963). In the present paper, the MEC computed

according to section ‘‘Congestion cost calculation’’ for congestion and according to sec-

tion ‘‘Emission cost calculation’’ for emissions are considered in the utility-based learning

cycle of MATSim. This is reached by modifying the utility functions—for the internal-

ization scenarios in Table 4—by vehicle-specific, time-dependent tolls (Dmq) as follows:

ScarðqÞ ¼ btrav;carðqÞ � ttrav;q þ bm � ðcd;carðqÞ � dtrav;q þ DmqÞ: ð5Þ

At this point, it is important to note that the individual toll levels change over the iterations,

converging to a stable point once the traffic flows stabilize. This is due to the fact that the

presented approach is embedded into the iterative co-evolutionary algorithm: In the first

iteration, the process starts with charging agents for the delay and the emissions they

caused. This is simply the sum of both effects, and on a crowded street segment toll levels

are high. As a reaction, some agents opt for other alternatives (mode/route) in the next

iteration to improve their overall utilities. This selection between alternatives follows a

probability distribution which converges to multinomial logit model (Nagel et al. 2012). In

consequence, toll levels will drop and attract more agents in the subsequent iteration,

yielding again higher tolls. That is, over the iterations, the simulation finds a toll level

which considers the correlation between the two externalities under consideration without

explicitly calculating correction factors.

Table 2 Emission cost factors.
Source Maibach et al. (2008)

Emission type Cost factor (EUR=ton)

CO2 70

NMHC 1700

NOx 9600

PM 384,500

SO2 11,000
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Example

This section provides a small example in order to illustrate the computation of the time-

dependent vehicle-specific congestion and emission tolls. Each link in Fig. 2 is 100m long

and only one agent every 4 s is allowed to move to the next link (marginal delay = 4 s).

Two agents depart at t ¼ 0 by car and reach the end of the link (l1) simultaneously at

t ¼ 4.7

Congestion costs Since the free speed travel time on the link (l1) is 5 s, both agents

would like to leave the link (l1) at t ¼ 5. However, the flow capacity only allows agent 1 to

leave at t ¼ 5 and then agent 2 to leave at t ¼ 9. That is, agent 2 has to wait for 4 s on the

first link with agent 1 being responsible for that delay. Hence, agent 1 will be charged with

the monetary equivalent of 4 s, yielding to an individual toll of 4 s � VTTScar ¼ 1:4EURct.
Though, there are only two agents in the example, the procedure is same if there are

more agents on the link l1. For instance, if there are N agents in the queue on the link l1, the

delay of the Nth agent is charged to all causing agents until all causing agents are identified

or all delay has been charged, i.e. charging in the order N � 1th; N � 2th; . . .2nd; 1st with a
maximum delay of 4 s (=inverse of flow capacity) per agent.

Emission costs Emissions are calculated for both agents on both links as described in the

section ‘‘Emission cost calculation’’. It is assumed in this case that both vehicles have fully

cooled down, i.e. experienced a parking duration of minimum 12 h. Thus on the first link

(l1) for the first vehicle, parking duration, distance traveled and average speed are 12 h,

100 m and 20m=s ð¼ 100m= 5 sÞ, respectively. The same calculation for the second

vehicle yields 12 h, 100 m and 11.11 m=s ð¼ 100m=9 sÞ. For illustration purpose, the two

vehicles are assumed as identical passenger petrol cars with 4-stroke engines. The links are

assumed as urban city roads with speed limit of 60 km=h. Using vehicle characteristics

together with this data returns cold and warm emissions from the HBEFA database. These

emissions are then converted into monetary units using the emission cost factors in

Table 2. This yields to an individual toll of 0:9EURct for cold emissions and 0:12EURct
for warm emissions for the first vehicle on the start link. The same numbers for the second

vehicle are 0:9EURct and 0:14EURct, respectively.

l1 l2
12

2 1

2

1
4

t=4

t=5

t=9

Node Link Agent

Fig. 2 Example and delay
calculation

7 Please note that, in order to improve the computational efficiency, the queue model controls agents only at
link entry/exit and never in between (Agarwal et al. 2015). Therefore, both agents can reach at the end of the
link simultaneously, however, agents will leave the link while respecting the flow capacity (outflow) of the
link.
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Case study: Munich

This section illustrates the set up of the scenario and the pricing schemes for the real-world

case study of the Munich metropolitan area in Germany.

Input

The initial scenario is taken from Kickhöfer and Nagel (2016b) and modified for the

present study, as will be described in this section.

Network Network data was provided by municipality of Munich (RSB 2005) in the form

of VISUM8 data. This is converted into a MATSim network, which contains 17,888 nodes

and 41,942 links.

Plans A realistic activity-based demand is created using three different data sources:

First, inner urban travel demand was synthesized using detailed survey data based on

Mobility in Germany (MiD 2002, Follmer et al. 2004) . The synthetic demand contains

1,424,520 individuals with detailed vehicle information. Second, commuters and reverse

commuter trips are modeled using data provided by Böhme and Eigenmüller (2006), which

contains about 0.5 million individuals, out of these about 0.3 million are commuters and the

remaining are reverse commuters. Third, about 0.15 million freight trips are created (0.15

million agents with one commercial trip) from data provided by the German Ministry of

Transport (ITP and BVU 2007). In the simulation, urban travelers use car, public transport

(PT), bike, walk, and ride as transport modes, whereas commuters and reverse commuters

use only car or PT. Freight trips are assumed to use only trucks. PT, bike, walk, and ride trips

are in the study assumed to run emission free and without capacity constraints. Therefore,

there is no emission and congestion externality for such trips, and thus, in the present study,

such travel modes are coupled together as non-car travel modes. Overall, for computational

performance reasons, 1% of total population is used for the present study. Agents are

categorized among three subpopulations (user groups) namely urban (reverse) commuters,

and freight and therefore, results are discussed based on this classification.

Choice dimensions As a reaction to the policy cases (see section ‘‘Policy cases’’), new

choice sets are generated in the iterative loop of MATSim according to the following rule:

In each iteration, 15% of total agents are allowed to change their route and 15% of total

agents are allowed to change their travel mode from car to PT or from PT to car.9 The rest

of the agents chose a plan from their existing choice set according to a multinomial logit

model. After 80% of the iterations, the choice set is fixed and agents can only chose from

existing alternatives. In case of freight, mode choice is not available, i.e. all freight trips

use car mode only.

Base case

A base case is set up by running simulation for 1000 iterations. The base case in the present

study is similar to the base case from Kickhöfer and Nagel (2016b). However, that study

calibrated the ASC for PT assuming a uniform PT speed of 25 km=h for all user groups

while matching the modal split for urban travelers. As a consequence, the modal split for

8 ‘Verkehr In Städten UMlegung’, see www.ptv.de.
9 An urban traveler can switch mode between car and slower PT (speed 25 km=h) and similarly, com-
muters and reverse commuters can switch mode between car and faster PT (speed 50 km=h). See sec-
tion ‘‘Base case’’ for details on slower and faster PT.
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commuters and reverse commuter did not match the reference study (see Table 3,

‘‘Common PT speed (it.1000)’’).

Therefore, in the present study, PT speed (25 km=h) for urban travelers is kept, and for

commuters and reverse commuters, it is assumed to be 50 km=h, emulating faster trains

between the city center and suburbs. In consequence, the base case is re-calibrated,

eventually resulting in an ASC of �0:3 for (rev.) commuters. Table 3, ‘‘Different PT speed

(it.1000)’’, shows the results of this calibration effort. The combined modal split of

commuters and reverse commuters is now very close to the initial plans and the reference

study. Because of the decrease in car share for commuters and reverse commuters, there is

some relief of capacities on the network. In consequence, the share of car trips for urban

travelers increases from 20.11% to 21.20% which is also closer to the reference study.

Policy cases

After the calibration of the base case, the simulation is further continued for 500 iterations

along with the ‘Business As Usual’ (BAU) case and three pricing schemes (see Table 4).

The output of the base case after iteration 1000 is used as inputs for all four policy cases.

As described in section ‘‘Internalization’’, different user-specific external costs are inter-

nalized for the scenarios listed in Table 4. The final iterations (1500) of the pricing

schemes are compared with the final iteration of BAU. Emission costs, congestion costs

and toll payments for all four scenarios are computed as follows:

1. Emission costs Time-dependent and person-specific cold and warm emissions are

calculated as described in section ‘‘Emission cost calculation’’. These emissions are

then transformed into monetary units using emission costs factors (see Table 2). These

monetary emission costs are summed up to get total emission costs in each scenario.

2. Congestion costs As illustrated in section ‘‘Congestion cost calculation’’, disaggre-

gated delays are calculated on a per-link basis for each causing agent and then

converted into monetary units using the approximate average VTTS. Afterwards, these

values are summed up to get the total congestion costs for each scenario.

3. System welfare In order to perform economic evaluation for all three pricing scenarios,

travel related user benefits are calculated by converting the utility of each agent into

monetary terms.10 Congestion costs and the negative perception of toll payments are

Table 3 Modal split from reference studies, initial demand and calibrated base cases

Urban (Rev.) commuters

car non-car car non-car

Reference studya 26.00 74.00 67.00 33.00

Initial demand (it.0) 22.48 77.52 67.97 32.03

Common PT speed (it.1000) 20.11 79.89 96.59 3.41

Different PT speed (it.1000) 21.20 78.80 66.62 33.38

a Follmer et al. (2004) for urban travelers and MVV (2007) for commuters and reverse commuters

10 The user benefits calculated from the utility of the last executed plan are not same as the user benefits
calculated from the logsum over all plans of an agent. The latter (also sometimes called expected maximum
utility) considers utility from heterogeneity in the choice set and is in theory the preferable figure for
calculating user benefits in MATSim (see Kickhöfer and Nagel 2016a). However, as the authors point out,
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both implicitly part of user benefits. Toll payments are, however, simply transfer

payments from users to public authorities. Consequently, the change in system welfare

is defined as the sum of changes in emission costs, toll payments, and user benefits.

Results

In this section, the levels of the external costs are illustrated (section ‘‘BAU: amplitude

of externalities’’) and subsequently, the effects of the pricing schemes on system

performance is presented (section ‘‘Pricing: system performance’’). Furthermore, sec-

tions ‘‘Pricing: driving forces’’ and ‘‘Pricing: spatial distribution’’ provide more detailed

and disaggregated analyses for different agent groups. The emphasis will thereby be put

on the driving forces behind the increase in system performance, and on the isolated

impacts of each externality on the overall toll level. All figures in the presentation of

the results are for a typical working day and scaled to the full population. The idea

behind the comparison of the pricing schemes is (1) to investigate the influence of

internalizing one externality on the other externality, and (2) to test whether the cor-

relation between the two externalities in the combined internalization (ECI) has policy

implications.

BAU: amplitude of externalities

For the Munich metropolitan area, congestion costs amount to approximately 7.3 m EUR

which is about twice as high as the emission costs (3.7 m EUR). This is in line with

estimates from the literature, where congestion cost estimates are typically higher than

emission cost estimates (see, e.g., Maibach et al. 2008; Parry and Small 2005).

Figure 3 shows for the BAU scenario and each user group the share of agents and

external costs. The caused emission costs of a user group are total costs of emissions

produced by all vehicles of that group. Freight car trips consists of only about 8% (0.15 m)

of all car trips, but is responsible for more than 65% (2.5 m EUR) of emission costs. This is

due to the fact that freight vehicles (1) emit more emissions than other vehicles and (2)

have longer travel distances (mean and median trip distances are 111 km and 69 km,

respectively).

Table 4 Policy cases

Policy case Externality Internalization

Business As Usual (BAU) none none

Emission Internalization (EI) emissions see section ‘‘Emission cost calculation’’

Congestion Internalization (CI) congestion see section ‘‘Congestion cost calculation’’

Emission and Congestion Internalization (ECI) both both

Footnote 10 continued
the current MATSim implementation might, under certain conditions, yield biased choice sets. In conse-
quence, the utility of the last executed plan is used in the present paper for economic analysis.
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Congestion costs are classified into two categories, namely ‘experienced congestion

costs’ and ‘caused congestion costs’.11 The former are costs experienced, the latter are

costs caused by the respective group. Thus, experienced congestion costs are also influ-

enced by agents from other user groups. The share of car trips for urban travelers is more

than 60% (1.3 m car trips) of the total car trips. They experience and cause about 4.5 m

and 4.4 m EUR of the congestion costs, respectively. This is expected since they perform

most of the trips and congestion is predominant in urban areas. Together with freight, they

are causing less congestion (i.e. delays) than they experience. On the contrary

(rev.) commuters cause (2.7 m EUR) more than what they experience (2.6 m EUR). In the

congestion pricing regimes of this paper, agents are charged for the delays they cause to

others and therefore caused congestion costs will be referred to as congestion costs in the

remainder of the paper.

Pricing: system performance

Absolute changes in external costs, toll payments, user benefits and system welfare as a

result of the three different pricing schemes are shown in Table 5. The reduction in

emission costs for EI, CI and ECI pricing schemes are 2.72%, 4.49% and 7.22% (0.10 m,

0.17 m and 0.27 m EUR), respectively. These values follow the same trend as in the

previous work (Agarwal and Kickhöfer 2015) who found reductions in emission costs of

0.57%, 1.94% and 2.48% for the same pricing schemes. However, that study did not

account for different PT speeds (see section ‘‘Base case’’), which seems to have an

important effect on the price elasticity of car travel demand. The decrease in emission costs

is for all pricing schemes more significant in the present paper which indicates that cap-

turing the elasticities accurately has a major impact on the results. The reduction in

congestion costs for EI, CI and ECI pricing schemes are 12.70%, 49.66% and 54.44%

(0.91 m, 3.61 m and 3.96 m EUR), respectively.

Car trips
Caused 

 emission 
 costs

Experienced 
 congestion 

 costs

Caused 
 congestion 

 costs

Total trips 
 = 2.0m

Total costs 
= 3.7m EUR

Total costs 
 =7.3m EUR

Total costs 
= 7.3m EUR

0

20

40

60

80

%

Urban

(Rev.) commuter

Freight

Fig. 3 Share of car trips,
emission and congestion costs for
different user groups for BAU
scenario

11 A recent study by Kickhöfer and Kern (2015) shows that the framework in principle allows for a similar
classification in the case of emission costs. However, in the present study, only caused emission costs are
considered and referred to as ‘emission costs’ from here on.
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Hence, internalizing emissions (EI) results in approx. 0.91 m EUR less congestion

costs. Internalizing congestion (CI) results in approx. 0.17 m EUR less emission costs.

Thus, pricing one externality has a positive impact on the other externality. That is, the

externalities prove to be positively correlated. The positive correlation is also found in a

study by Beevers and Carslaw (2005), who show that the London congestion charging

scheme reduced NOx and PM10 by 12% and 11.9% respectively between 2002 and 2003.

The combined pricing scheme (ECI) exhibits the highest reductions in emission costs

(0.27 m EUR) and congestion costs (3.96 m EUR), and the highest gain in system

welfare (4.71 m EUR). That is, the combined pricing scheme improves system perfor-

mance the most. An interesting observation can be made for the changes in ‘travel

related user benefits’: they are negative for EI and ECI and positive for CI. This stems

from the fact that, for CI, the reduction in travel times overcompensates the loss from

toll payments yielding a positive change in user benefits. For EI and ECI, the reduction

in travel times is smaller than the loss from toll payments yielding a negative change in

user benefits.

To summarize, the following observations are obtained: (1) pricing congestion (CI)

results in a decrease of emissions; (2) pricing emissions (EI) yields a reduction in con-

gestion; (3) the lowest levels of external costs are observed in the combined pricing

scheme (ECI); (4) system welfare is highest for ECI. These findings are confirmed for all

user groups under investigation. However, when looking at the effects differentiated by

user groups, some interesting additional observations can be made. In particular:

1. Pricing emissions (EI) diverts freight trips on shorter (D average distance = �0:2 km)

but more congested links and consequently a slight increase in congestion costs is

observed. That is, pricing emissions might yield higher congestion levels (also see

later in section ‘‘Pricing: spatial distribution’’). This effect is known from a study

by (Yin and Lawphongpanich 2006), where authors experimented on a 6 node test

network and found that emission internalization may sometimes produce less

emissions but higher delays.

2. All three pricing schemes yield a decrease in user benefits for all user groups except

for urban travelers. For them, the gain in utility from the reduction in travel times is

higher than the loss because of toll payments which eventually produces higher user

welfare. When pricing congestion (CI), this gain overcompensates the losses of the

other user groups and finally results in increased user benefits for the whole population

(see Table 5).

For now, the point with the most important policy implication, however, is the following:

The sum of toll revenues from the isolated pricing schemes is roughly 7.29 m EUR

Table 5 Key indicators for all
pricing schemes in million EUR
per typical working day

Benefits from … Pricing scheme

EI CI ECI

… changes in emission costs (1) 0.10 0.17 0.27

… changes in congestion costs (2) 0.91 3.61 3.96

Changes in travel related user benefits (3) -2.75 0.44 -2.34

Toll revenues (4) 3.61 3.68 6.78

Changes in system welfare (=1 ? 3 ? 4) 0.96 4.27 4.71
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whereas the total toll revenues for combined pricing is roughly 6.78 m EUR.12 The lessons

learned here are that simply combining the average toll levels from the isolated pricing

schemes (EI and CI) for policy making will result in over-pricing. This is due to the

correlation between congestion and air pollution externalities. The same is likely to be true

for a policy which combines marginal cost factors from the literature, since there are

typically no cost estimates for emissions given an existing congestion pricing scheme or

cost estimates for congestion given an existing emission pricing scheme.

Pricing: driving forces

The increase in system performance indicators is a combined effect of users’ reactions with

respect to two choice dimensions, mode choice and route choice (see section ‘‘Input’’).

This section aims at presenting the driving forces behind the increases in system perfor-

mance by performing a more in-depth analysis.

Modal split Table 6 shows the impact of the pricing schemes on modal split. For the EI

case, the share of car trips decreases for (rev.) commuters whereas it increases slightly for

urban travelers. Because of the higher average toll per trip for (rev.) commuters (see

Table 7), a significant number of car users in this user group switches to PT. This reliefs

some capacity and leads to an increase in the car share of urban travelers. In contrast, for

the CI and ECI case, car share decreases for both user groups. This is because the average

toll per trip for urban travelers is by a factor of 12 higher than in EI. This effect is less

pronounced for (rev.) commuters, however, also their toll increases by a factor of 1.5 and

2.5 from the EI to the CI and ECI case, respectively. On the aggregated level, one

observes—as expected—that the higher the toll, the more agents switch from car to PT,

depending on the implicit price elasticity of demand. This elasticity is dependent on the

availability of substitutes, i.e. if agents are not able to switch mode because of insufficient

alternatives, pricing can not be used to increase the system efficiency. Daniel and Bekka

(2000) have found in their models that potential welfare gains decrease with a decrease in

the elasticity of demand. The results in the present paper support this finding. On the

disaggregated level, however, the agent-based simulation framework exhibits the complex

structure of human interactions in transport decisions. Because of capacity relief, pricing

car emissions might increase the car share for certain agents. Similarly, increasing the toll

level (i.e. going from CI to ECI) might decrease the reduction in car share for certain

agents.

Travel time Figure 4 shows the change in average trip travel time for mode switchers

and retainers. One observes that the average trip travel time decreases significantly for

agents who retain car as transport mode, as well as for agents who change from PT to car:

the toll in the car mode improves car travel times, so car gets attractive in particular for

short trips. In contrast, travel time is increased for the agents who switch from car to PT.

These agents are better off by shifting to the time-consuming PT travel mode than paying

toll. Interestingly, with the CI pricing scheme, agents who stay in the car mode are shifting

to less congested but longer routes (see Fig. 7b) in order to dampen their toll. In contrast,

agents who switch from PT to car prefer to pay toll which is compensated by significant

reductions in travel time.

12 This result has been confirmed by two simulations with different random seeds, which are used to
initialize the pseudo random number generator in MATSim. A different random seed will eventually result
in different simulation outcomes. For an example of the effect of randomness on optimal supply in
MATSim, see, e.g., Kaddoura et al. (2015a).

862 Transportation (2018) 45:849–873

123



Peak/off-peak tolls Table 8 shows the average toll levels in the car mode for peak13 and

off-peak hours, now in EURct=km. The resulting average toll levels are plausible values:

e.g. Parry and Small (2005) use local pollution costs for automobile of 1:18EURct=km for

US and UK, and external congestion costs as 2.06 and 4.11 EURct=km for US and UK

respectively. Clearly, due to higher generated emissions, toll values for freight trips are

very high. Similarly, higher congestion from urban travelers yields higher toll values.

Peak-hour toll levels are—as expected—higher than off-peak tolls. For CI and ECI,

urban travelers exhibit a six to ten times higher toll level per vehicle kilometer than

(rev.) commuters whereas for EI, this factor is about 1.2 only. This was not yet visible

from the tolls per trip in Table 7. Freight tolls are almost not influenced by congestion

pricing since the emission toll dominates the overall price level.

Table 6 Changes in car share (% points) with respect to BAU for all pricing schemes

Urban (Rev.) commuters Freight

EI ?0.22 -7.04 0.00

CI -0.66 -16.25 0.00

ECI -0.48 -23.46 0.00

Table 7 Average toll payments (EUR) per car trip for all pricing schemes

Urban (Rev.) commuters Freight

EI 0.16 1.62 16.04

CI 1.96 2.46 0.92

ECI 2.00 4.12 16.96
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Fig. 4 Changes in average trip
travel time for mode switchers
and retainers

13 Peak hours are identified as 07:00–10:00 and 15:00–18:00 considering total travel demand of all user
groups in the BAU scenario.
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Table 9 shows the contributions of the two externalities to the overall ECI toll level for

peak and off-peak hours. The first important finding is that the contribution of emissions to the

overall toll level is higher in off-peak than in peak hours. This is valid for all user groups. In

comparison with Table 8, the figures in Table 9 additionally exhibit that, in the EI case,

emissions are more strongly overpriced in peak hours than in off-peak hours. To give an

example: in EI, peak hour emission prices for urban travelers are 4.0% (ð2:61� 2:51Þ=2:51)
higher than in the ECI case. In off-peak hours, this price difference only amounts to 2.8%. In

contrast, in the CI case, peak hour congestion prices for urban travelers are only 3.0%

ð36:38� 35:32Þ=35:32) higher than in the ECI case. In off-peak hours, this price difference
increases to 7.2%. That is, for a combined pricing scheme, cost estimates from the literature

need to be reduced because of the correlation between air pollution and congestion exter-

nalities. For the emission estimates, these reductions should be stronger in peak hours. For the

congestion estimates, these reductions should be stronger in off-peak hours.Alternatively, the

joint internalization model as is proposed in the present paper can help to determine the joint

amplitude of the externalities and help to design pricing schemes of any desired complexity,

ranging from little price differentiations to highly personalized tolls. For illustration pur-

poses, Fig. 5 shows the toll payments for all three pricing schemes and all subpopulations in

one hour time bins. It emphasizes the importance of the interrelation of emission and con-

gestion externalities and their variation over time of day and user groups.

Pricing: spatial distribution

The impact of the three pricing schemes on a spatially disaggregated level is presented in

this section.

The spatial dimension of external costs in the BAU scenario is shown in Fig. 6.14 Time-

dependent and person-specific link-based emissions and delays are presented. Figure 6a

Table 8 Average toll levels
(EURct=km) in the car mode for
peak and off-peak hours

Time Pricing scheme Urban (Rev.) commuters Freight

Peak EI 2.61 2.24 14.45

CI 36.38 3.62 1.28

ECI 37.83 5.40 15.70

Off-peak EI 2.56 2.19 14.45

CI 29.99 2.70 0.63

ECI 30.46 4.59 15.08

Table 9 Contributions of externalities to the ECI toll levels (EURct=km) in the car mode in peak and off-
peak hours

Time Externality Urban (Rev.) commuters Freight

Peak Emissions 2.51 (6.6%) 2.22 (41.1%) 14.44 (92.0%)

Congestion 35.32 (93.4%) 3.18 (58.9%) 1.26 (8.0%)

Off-peak Emissions 2.49 (8.2%) 2.18 (47.5%) 14.43 (95.7%)

Congestion 27.97 (91.8%) 2.41 (52.5%) 0.65 (4.3%)

14 For the visual presentation, a Gaussian distance weighting function is used to smooth emissions and
delays throughout the area of Munich and surroundings. Uniform hexagonal cells of size 500 m are used for
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shows absolute NO2 emissions15 and Fig. 6b shows absolute delays. It can be observed that

emissions are most important on primary roads (inner and middle ring road, main arterials,

and the tangential motorway in the north-west of Munich). In contrast, congestion is

evident on almost all roads inside the city area, but not as important on the tangential

motorway.
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[g]

(861.5, 2349.7]

(624.6, 861.5]

(469.4, 624.6]

(306.2, 469.4]

(195.7, 306.2]

(112, 195.7]

(59.1, 112]

(24.3, 59.1]

(5.1, 24.3]

[0, 5.1]

[h]

(472.7, 2477.3]

(279.1, 472.7]

(149.9, 279.1]

(68.5, 149.9]

(27.4, 68.5]

(11.2, 27.4]

(3.9, 11.2]

(0.9, 3.9]

(0.1, 0.9]

[0, 0.1]

(a) (b)

Fig. 6 Absolute emissions [in ðgÞ] and delays [in ðhÞ]. Values are scaled to full population. a Absolute NO2

emission. b Absolute delay

Footnote 14 continued
this purpose. The smoothing radius is assumed to be 500 m. For more information on the exact visualization
procedure, please refer to Kickhöfer (2014).
15 All important pollutants are considered for pricing. For illustration purposes, the emission plot only
shows NO2.
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Figure 7 shows the changes in NO2 emissions and in delay for the off-peak hours (i.e.

00:00–07:00, 10:00–15:00 and 18:00–24:00).16 An increase in emissions or delays is

represented by red color, a decrease by green color. The spatial plots on the left show the

change in NO2 whereas the plots on the right show the change in delays with respect to the

BAU scenario. For the EI case, Fig. 7a, d show that agents are re-routing towards shorter

distance routes. This is indicated by an increase of emissions and delays in the inner city.

As a consequence, NO2 emissions are decreased in particular on the north-west tangential

motorway and other long-distance routes, basically wherever NO2 emission was high in the

BAU. For the CI case, Fig. 7b, e show that agents re-route from congested links to non-

congested and longer distance routes. Thus, NO2 emissions and delays are decreased

significantly inside the central areas of Munich. On the contrary, NO2 emissions are

increased on parts of the tangential motorway where NO2 emissions were already high in

the BAU scenario. The effect of combined pricing on a spatial level is shown in Fig. 7c and

7f. Since congestion costs dominate emission costs, the patterns in ECI are similar to those

from CI. However, the combined pricing yields a decrease in NO2 emissions and delays in

most areas of the city.

The lessons learned here are that—for congested regimes—the two pricing schemes (EI

and CI) affect the route choice behavior of agents by tendency into opposite directions: EI

towards shorter distance routes, increasing congestion; CI towards longer distance routes,

increasing emissions.

Discussion

The goal of this paper is to present a simulation-based approach to calculate and internalize

the correct dynamic price levels for congestion and emission externalities simultaneously.

For a large-scale real-world case study, it is shown that this iterative calculation of prices

allows to identify the amplitude of the correlation between these two externalities without

explicitly calculating correction factors. The approach combines activity-based demand

with dynamic traffic flow simulations. Behavioral reactions to time-dependent vehicle-

specific congestion and/or emission tolls are modeled for every agent of the system.

Clearly, given this complexity of the approach, several assumptions and simplifications are

made. In the following, it is discussed to what extent these assumptions and simplifications

might influence the results structurally and how the they can be used for deriving or

evaluating policy interventions.

Commercial traffic The full behavioral modeling of commercial vehicles is beyond the

scope of the present study (see Schröder et al. 2012; Zilske et al. 2012 for some ongoing

work to integrate this in the model). However, to not simply ignore congestion and

environmental effects of the commercial vehicles, they are simulated as freight user group

in the scenario along with the other user groups. With respect to congestion, other vehicles

can delay a truck and a truck can delay other vehicles. In that sense, congestion effects are

accounted for. The only assumption here is that one truck uses as much road capacity as

one car. That is, the congestion toll for trucks is underestimated. This should be tackled in

the future by modifying the queue model in such a way that it accounts for passenger car

equivalents (see Agarwal et al. 2015, 2016 for some ongoing work in this context). With

respect to emissions, vehicle and engine type are assumed to be identical for all trucks.

There is no differentiation by type of commercial vehicle. However, if data is available, the

16 In peak hours, the congestion pricing scheme and combined pricing scheme exhibit similar patterns.
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approach in principle allows for this differentiation according to the HBEFA database.

That is, the emission toll is as accurate as the underlying demand data allows. In absence of

a separate behavioral model for commercial vehicles, the VTTS for trucks is assumed to be

identical to the VTTS of car users, which is certainly lower than the typical values from the

literature. Hence, the vehicles will by tendency choose routes with too short distances and

too long travel times in comparison to reality. However, as they are only allowed to change

their route (other user groups can additionally switch mode), the effect of this simplifi-

cation on the overall results is expected to be small.

Externalities from public transport As a reaction of pricing emissions and/or conges-

tion, an individual car users may switch to more environmentally friendly or less congested

transport modes. In this paper, PT is meant to represent all other transport modes and is

assumed to run emission and congestion free. This is a valid assumption as long as PT

operates as a completely separate system and runs on electric power only. In real-world

scenarios, however, there exist interactions between individual transport modes and PT.

Hence, absolute congestion and emission externalities will be higher than in the case study

presented here. It is therefore planned to include the external costs of public transport in the

simulations (see, Kaddoura et al. 2015b for a related study).

Simulation of a sample In the present study, 1% of total population is simulated on the

network to reduce the computational efforts, i.e. every agent represents 100 similar agents.

The network capacities are therefore scaled down by the same ratio. It has been showed

that sufficiently realistic traffic patterns can be obtained with small sample size scenarios

(see e.g. Nagel 2008, 2011). In consequence, it is assumed that the congestion and emission

calculations also yield realistic values. In future studies, a comparison of the results

obtained by simulations with different sample sizes should be performed.

Choice dimensions In this study, agents are only allowed to change their route and/or

their mode of transport. Incorporating other choice dimensions such as departure time or

location choice will certainly have an impact on the results. For instance, the potential

efficiency gains depend on the implicit price elasticities of car travel demand. More options

by tendency increase the demand elasticities and with it the potential efficiency gains. That

is, the figures presented in this papers are rather at the lower bound of the potential impacts

induced by pricing congestion and/or emission externalities.

Improved scenario setup In the present study, the scenario setup is improved by

introducing a faster public transit for (reverse) commuters which is a more viable option to

commute between the city center and suburbs. Consequently, the decrease in the emission

costs under different pricing schemes is more significant in the present study than in the

previous study by Agarwal and Kickhöfer (2015). Hence, an improved scenario setup

yields more realistic elasticities and is important for estimating the potential welfare gains

from pricing schemes.

Emission cost factors from literature The determination of exact external environmental

and health costs is close to impossible because the uncertainty range for these costs is very

high (Tol 2005). Additionally, the cost factors vary highly depending on the number of

affected individuals, buildings, etc. Because of that uncertainty, the present study uses

average emission cost factors from Maibach et al. (2008) the resulting simulated average

emission toll values turn out to be close to average cost factors from other studies (see

section ‘‘Pricing: driving forces’’). In order to address the uncertainty of the overall value

of the cost factors, scenarios with upper and lower estimates could be modeled in future

work. In order to address the spatial variation of the cost factors, the MATSim framework

could be used to obtain highly differentiated toll levels depending on the number of

affected individuals (see Kickhöfer and Kern 2015). Finally, one could derive cost factors
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endogenously from the simulation, which would give the avoidance costs for reaching a

certain political objective (see Kickhöfer and Agarwal 2015).

Policy implications The individual tolls in this paper are obtained by using the idea of

marginal social cost pricing in an agent-based context. Even though the resulting highly

differentiated tolls are difficult to implement and it additionally is unclear if users would

actually understand the ever-changing price signals correctly, marginal social cost pricing

still lays the foundation to derive toll values for reality. The time-dependent vehicle-

specific tolls obtained by the presented approach can be aggregated or averaged in many

ways, and it is a part of future research to find good pricing schemes which obtain most of

the benefits but still remain feasible to implement, always depending on the scenario and

the requirements of the case. One option for transferring the insights from marginal cost

pricing into recommendations for policy makers are the back-calculated tolls presented in

the paper (corrected average toll levels per kilometer). They exhibit, for the case study

under consideration, the interrelationship between the external cost components and how

their respective contribution to the overall effect changes over time of day. Apart from

deriving the correct price levels for policy making, the welfare maximizing system state

can be used as a benchmark to evaluate other policies such as traffic calming measures

(speed humps/bumps, speed limit restrictions; Buehler and Pucher 2011; Ghafghazi and

Hatzopoulou 2014), parking policies (Wall 2011; Attard and Ison 2015) and traffic control

measures (Li et al. 2004; Osorio and Nanduri 2015) with respect to various indicators. This

seems a promising road for future applications of the proposed approach.

Conclusion

This study investigates separate marginal social cost pricing strategies for congestion and

emission externalities in a real-world case study of the Munich metropolitan area. The two

pricing strategies are then combined to obtain a simulation-based approach to calculate and

internalize the correct dynamic price levels for both externalities simultaneously. Since the

underlying multi-agent simulation framework is computational efficient, the presented

approach is—in contrast to analytical models—suitable for the calculation of highly dif-

ferentiated tolls in large-scale simulations with dynamic traffic flows and activity-based

demand.

As expected, the results indicate that the two externalities are positively correlated. It is

demonstrated that the combined pricing yields the lowest level of emission and congestion

externalities for the whole population as well as for individual user groups. It also yields

the highest level of system welfare. The main driving force behind this overall effect is

found to be modal shift from car towards public transit. Interestingly, this effect is present

on the aggregated level but it was also found that external cost pricing can increase the car

share of urban travelers who profit from a capacity relief which results from the reduction

in car share of other travelers.

Furthermore, it was found that simply combining the average toll levels obtained from

the isolated pricing schemes or from uncorrected exogenous cost estimates will result in

overpricing. The amplitude of this effect was shown to be more important in peak hours for

emissions and in off-peak hours for congestion. Policy makers should, hence, account for

the correlations between different externalities and correct the cost estimates. As the main

contribution of this paper, it was shown that the joint internalization approach makes it

possible to identify the amplitude of this correlation between the externalities under
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consideration. The methodology is then used to derive corrected average toll levels per

vehicle kilometer. An aggregation according to any other desired simplification rule seems

feasible, which offers opportunities for policy design.

Finally, the spatial distribution of changes in the externalities was analyzed. It was

shown that pricing emissions steers agents on shorter distance routes and pricing con-

gestion pushes agents on shorter travel times routes with potentially longer distance routes.

Thus, for congested areas, route choice behavior of agents is by tendency affected into

opposite direction by the two pricing schemes. This needs to be accounted for when

designing real-world policies: an emission (or distance)-based toll might increase con-

gestion whereas a congestion-based toll might increase emissions. Therefore, the presented

model seems necessary to simultaneously account for both externalities. In future research,

the model is planned to be integrated with agent-based pricing schemes of other relevant

externalities such as emission exposure (Kickhöfer and Kern 2015), noise exposure

(Kaddoura et al. 2016) and accidents.
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Böhme, S., Eigenmüller, L.: Pendlerbericht Bayern. Tech. rep, IAB (2006)
Börjesson, M., Kristoffersson, I.: The Gothenburg congestion charge. effects, design and politics. Transp.

Res. Part A Policy Pract. 75, 134–146 (2015). doi:10.1016/j.tra.2015.03.011
Buehler, R., Pucher, J.: Sustainable transport in Freiburg: lessons from Germany’s environmental capital.

Int. J. Sustain. Transp. 5(1), 43–70 (2011). doi:10.1080/15568311003650531
Cetin, N., Burri, A., Nagel, K.: A large-scale agent-based traffic microsimulation based on queue model. In:

Swiss Transport Research Conference (STRC), Monte Verita, Switzerland. http://www.strc.ch, see
http://www.strc.ch (2003)

870 Transportation (2018) 45:849–873

123

http://dx.doi.org/10.1016/j.procs.2015.05.165
http://dx.doi.org/10.1016/j.procs.2015.05.173
http://dx.doi.org/10.1007/978-3-319-33482-0_53
http://dx.doi.org/10.1007/978-3-319-33482-0_53
http://dx.doi.org/10.1287/trsc.27.2.148
http://dx.doi.org/10.1016/j.cstp.2014.07.001
http://dx.doi.org/10.1016/j.atmosenv.2004.10.001
http://dx.doi.org/10.1016/j.tra.2015.03.011
http://dx.doi.org/10.1080/15568311003650531
http://www.strc.ch
http://www.strc.ch


Charypar, D., Nagel, K.: Generating complete all-day activity plans with genetic algorithms. Transportation
32(4), 369–397 (2005). doi:10.1007/s11116-004-8287-y

Chen, L., Yang, H.: Managing congestion and emissions in road networks with tolls and rebates. Transp.
Res. Part B Methodol. 46, 933–948 (2012). doi:10.1016/j.trb.2012.03.001

Creutzig, F., He, D.: Climate change mitigation and co-benefits of feasible transport demand policies in
Beijing. Transp. Res. Part D Transp. Environ. 14(2), 120–131 (2009). doi:10.1016/j.trd.2008.11.007

Daniel, J.I., Bekka, K.: The environmental impact of highway congestion pricing. J. Urban Econ. 47,
180–215 (2000). doi:10.1006/juec.1999.2135

Eliasson, J., Hultkrantz, L., Nerhagen, L., Rosqvist, L.S.: The Stockholm congestion—charging trial 2006:
overview of effects. Transp. Res. Part A Policy Pract. 43, 240–250 (2009). doi:10.1016/j.tra.2008.09.
007

Follmer, R., Kunert, U., Kloas, J., Kuhfeld, H.: Mobilität in Deutschland—Ergebnisbericht. Tech. rep.,
infas/DIW, Bonn, www.kontiv2002.de (2004)

Gawron, C.: Simulation-based traffic assignment. Ph.D. thesis, University of Cologne, Cologne, Germany
(1998)

Ghafghazi, G., Hatzopoulou, M.: Simulating the environmental effects of isolated and area-wide traffic
calming schemes using traffic simulation and microscopic emission modeling. Transportation 41,
633–649 (2014)

Horni, A., Nagel, K., Axhausen, K.W.: Introducing MATSim. In: Horni, A., Axhausen, K.W., Nagel, K.
(eds.) The Multi-agent Transport Simulation MATSim, Ubiquity, London, chap. 1. http://matsim.org/
the-book (2016)
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