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Abstract A recent paper published in this journal compares two regret based choice

models, and concludes that one of them is theoretically inferior and has a worse empirical

performance in the context of a particular data set [Rasouli and Timmermans, Trans-

portation 6:1–22, 2016]. Unfortunately, those conclusions are ill-founded as they are based

on a misinterpretation and misrepresentation of one of the two considered models. Fur-

thermore, the paper overlooks highly relevant recent work on the topic, and contains

insufficient empirical analyses. Together, these issues make that the paper provides a

confusing addition to the literature. With the aim of lifting some of this confusion, this

commentary sets out to highlight, and correct where possible, the paper’s shortcomings.

Keywords Random regret minimization � Discrete choice theory � Regret � RRM �
Commentary

Introduction

In a recent contribution to this journal, Rasouli and Timmermans compare two different

specifications of RRM models. One specification was introduced in a paper co-authored by

Timmermans (Chorus et al. 2008), the other was presented in a paper published two years

later (Chorus 2010). In the remainder of this commentary, we will refer to the former as

RRM2008, and the latter as RRM2010. In their paper (from here on denoted RT2016), they

conclude that 2010RRM is theoretically problematic, and that it has a worse empirical

performance on a particular data set. Unfortunately, the theoretical conclusion is based on a

flawed representation and interpretation of RRM2010 (and of regret based discrete choice

models in general). Furthermore, RT2016 overlooks highly relevant recent work on the
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topic which makes their comparison to a considerable extent irrelevant; and the paper

contains insufficient empirical analyses.

Importantly, this commentary will only focus on correcting flaws in reasoning and rep-

resentation, and critical omissions of past work. Our aim is not to evaluate the outcome of the

model comparison in itself (RT2016 prefer 2008RRM over 2010RRM). We are aware that,

from their inception, RRM models have sparked considerable debate, (i) in terms of their

potential and limitations as an alternative to linear in parameter RUM models and (ii) in terms

of the ‘proper’ way to model regret minimizing behaviour. We have always kept an open mind

regarding these debates, and will continue to do so; indeed, we believe academic debate is a

potentially very effective route to scientific knowledge accumulation.

However, in order to be effective, a debate about the relative quality of different models

must be based on a correct description of these models, a proper discussion of relevant past

work, adequate interpretation of the results of these models, and a sufficiently rich

empirical context. Unfortunately, RT2016 falls short on all of these aspects. This is likely

to lead to considerable confusion among readers, and may hamper scientific knowledge

accumulation. Therefore, this commentary aims to resolve this confusion; it certainly does

not aim to stifle academic debate.

In the remainder of this commentary, we will address these issues in RT2016; we start

with a rebuttal of erroneous theoretical claims in RT2016, and continue with a discussion

of overlooked past work on the topic. We conclude by considering the empirical content of

RT2016. We have chosen to avoid discussion of several minor mistakes and omissions, for

reasons of conciseness. The Appendix provides notation for the models discussed in this

commentary. Note that our notation follows that in our previous papers, and differs from

that of RT2016.

Finally, note that RT2016 compare two model specifications (RRM2008 and RRM2010)

which differ in terms of both the shape of the so-called attribute regret function as well as in

terms of the number of competitor alternatives1 used for computing total regret. In this

commentary (with the exception of the Section discussing empirical analyses), we focus only

the former of these two dimensions, as it is this dimension which causes most issues in

RT2016.2 In other words, this commentary (and the next two sections in particular) focuses on

refuting claims made in RT2016 concerning different specifications of the attribute regret

function, which computes the level of regret which is associated with comparing a considered

alternative with another alternative, in terms of a particular attribute.

Theoretical misconceptions and misinterpretations

At various places, RT2016 claim that RRM2010 is ‘‘theoretically inferior’’ to RRM2008,

that it has ‘‘theoretical shortcomings’’ and is ‘‘ill-founded’’ under some conditions; even

that it is ‘‘theoretically problematic’’. The reason why RT2016 believes that RRM2010 is

1 Regarding the aggregation of attribute regret to total regret, RRM2008 postulates that only regret with
respect to the best performing competitor counts, while RRM2010 postulates that regret with respect to
every better performing competitor is relevant. There are conflicting opinions in the literature as to which
variant is to be preferred for theoretical reasons (e.g., Bell 1982; Quiggin 1994); we are agnostic in this
regard, and consider it a mostly empirical question which rule should be used in the context of a particular
data set.
2 But note that Prato (2014) contains analyses that refute claims in RT2016 that the additive nature of total
regret in RRM2010 would be problematic in a route choice context including route overlap.

248 Transportation (2018) 45:247–256

123



theoretically problematic, can be found in the Introduction (Page 4, below Eq. 6). Here,

RT2016 refer to 2010RRM when they claim that

‘‘the specification is theoretically no longer consistent with the concept of regret as

the value of the regret function is positive even if the chosen alternative turns out to

be better than the foregone choice alternative. That is, Eq. (6) does not approximate

zero if attribute differences are small and/or the number of choice alternatives is

large. Moreover, the new specification estimates regret to be higher than on the

original specification, due to the constant 1 in the formulation.’’.

This phrase, which is crucial to most of RT20160s theoretical argumentation, embodies

several major misunderstandings of discrete choice theory and regret theory.3

Discrete choice theory: absolute levels of regret are meaningless

The absolute level of regret (or: utility) is meaningless. As such, it is pointless to speak

about ‘positive’ or ‘negative’ regret (or: utility) levels. As discussed in every textbook on

discrete choice modelling (e.g., Train 2009), differences in utility (in this case: regret)

levels determine choice behaviour, not their absolute levels. Adding (or, subtracting) some

constant to each alternative results in exactly the same choice model.

RT2016, in subsection ‘Non-regret regime’, discusses the size of attribute regret (under

RRM2010) when the considered alternative and a competitor alternative perform equally

well on a particular attribute. Very straightforward mathematics gives the answer: ln(2) or

0.693147 (Eq. (9) in RT2016). RT2016 then argues that ‘‘Thus, even though theoretically

regret is zero in this case, the [RRM2010] specification gives a positive value for regret’’.

This makes the RRM2010 model ‘‘ill-founded’’, according to the authors. Unfortunately, in

light of the previous paragraph, this claim itself is easily seen to be ill-founded.

In fact, Chorus (2014a) and Van Cranenburgh et al. (2015) provide an in-depth dis-

cussion of this point in the context of regret models, explaining what happens when, in the

context of the RRM2010 model, a constant of size ln(2) is subtracted from the regret level

which is associated with comparing a considered alternative with a competitor alternative

in terms of a particular attribute (see Fig. 1, where xjm and xim denote the attribute levels of

the competitor and considered alternative). As alluded to above, in terms of every relevant

model property (e.g., model fit, parameter estimates, choice probability predictions), the

shift of the regret level is—of course—irrelevant. The resulting model is exactly the same

as the original model. In this ‘Modified’ formulation of RRM2010, regret becomes

‘negative’ when a considered alternative outperforms a competitor alternative. While at

first sight this may seem behaviourally intuitive, we see no reason for favouring such a

‘modified’ regret function (perhaps other than for the sake of didactical purposes).

RT2016 is simply wrong to base their conclusion that RRM2010 is theoretically

problematic, on an inspection of absolute regret levels. As with utility-based choice

models, it is the shape of the regret function, not its position relative to the vertical axis,

that determines choice behaviour imposed by the model. See Van Cranenburgh and Prato

(2016) for visual illustrations of various recently proposed regret functions, which further

emphasize this point.

3 It should be noted here, that the authors of RT2016 have put forward similar erroneous claims in another
paper (Rasouli and Timmermans 2014). Unfortunately, claims made in that paper have been cited in a
leading textbook recently (Hensher et al. 2015; p 365).
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Correspondence with original Regret Theory: the role of rejoice

Here, we will explain that, in contrast to RT20160s conclusion that the attribute regret

function in RRM2010 is ‘‘theoretically no longer consistent with the concept of regret’’,

RRM2010 is in fact considerably closer to original Regret Theory than is RRM2008.4 As

mentioned above, it is the shape of the regret function that determines the behaviour

implied by the RRM model. Now, it can be easily seen (and it has been observed many

times before) that the max operator used in RRM2008 implies that regret is insensitive to

attribute changes when a considered alternative is as good as or better than a competitor on

a particular attribute, before and after the change.

For example, if a considered route (A) is already 10 min faster than a competing route

(B), RRM2008 postulates that in- or decreasing A’s travel time by, e.g., 5 min does not

change route A’s regret. In other words, in the RRM2008 model, an alternative’s regret is

invariant with respect to attribute changes in the domain of rejoice (which is the name

economists have given to the behavioural opposite of regret). In sum, the RRM2008 model

postulates that as long as a considered alternative performs better than a competing

alternative on a given attribute, it does not matter—in terms of the considered alternative’s

regret—how much better it performs.

In contrast, the RRM2010 model postulates that also in the domain of rejoice, the regret/

rejoice function is sensitive to attribute changes. That is, the RRM2010 model postulates

Fig. 1 Attribute level regret functions of RRM2010 and ‘Modified RRM2010’

4 But note that we do not wish to state that RRM2010 is therefore theoretically superior; we wish to refrain
from such normative evaluations.
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that when a considered alternative performs better than a competing alternative on a given

attribute, it does matter—in terms of the considered alternative’s regret—how much better

it performs. But—and this is a crucial aspect of any model inspired by the original Regret

Theory (Loomes and Sugden 1982)—the shape of the regret function in RRM2010 pos-

tulates that sensitivity to changes in attributes is greater in the domain of regret than in the

domain of rejoice.5 This is clearly illustrated in Fig. 1, where the right hand side represents

the domain of regret, and the left hand side the domain of rejoice. For example, the

RRM2010 model postulates that, if a considered route (A) is 10 min faster than a com-

peting route (B), in-or decreasing A’s travel time by, e.g., 5 min does change A’s regret/

rejoice. Moreover, in line with Regret Theory, the RRM2010 model postulates that the

effect of A’s travel time change would be even larger if A was the slowest route already.

In sum, RRM2008 can be considered an extreme case of Regret Theory, as it gives no

weight to attribute changes in the domain of rejoice. RRM2010, in line with Regret

Theory, postulates that regret levels are more sensitive to attribute changes in the domain

of regret than in the domain of rejoice, but that also the domain of rejoice is relevant.

RT20160s claim that RRM2010 is ‘‘theoretically no longer consistent with the concept of

regret’’ is false and misleading: if correspondence to the original Regret Theory (and, for

that matter, to Prospect Theory/Loss Aversion) is a criterion, then the opposite statement

would be considerably much closer to the truth.

New model developments which have been overlooked in RT2016.

In their abstract, RT2016 state that ‘‘Two different [regret-based] model specifications

have been introduced in the transportation literature’’. This may have been true in 2010, but

no longer so; over the past six years, several developments in RRM modelling have been

reported in the literature. In fact, much of the theoretical confusion that emerges in RT2016

could have been avoided if this more recent work on regret-based choice models would

have been considered by RT. Specifically, consideration of two recent developments,

published in other leading journals in our field (Chorus 2014a; Van Cranenburgh et al.

2015), is helpful to address misconceptions in RT2016. Furthermore, these recent devel-

opments6 make the comparisons presented in RT2016 largely redundant. See the Appendix

for notation of these and previously discussed RRM models.

First, RT2016 incorrectly state that, in 2010RRM, a ‘‘constant 1 is added to avoid that

the logarithmic function is undefined’’. Note that the constant was not just ‘‘added’’ in

RRM2010; but resulted from mathematical derivation (see Chorus 2010). And note that

removing the constant does not lead to an undefined logarithmic function; on the contrary,

it is easily seen that dropping the constant makes that the logarithm and the exponential

function cancel out against each other. In fact, as Chorus (2014b) has shown, the result

would be (an alternative mathematical specification of) a linear in parameters RUM model.

Figure 1 in Chorus (2014a) clearly illustrates how the constant should be interpreted as a

5 Choice modellers familiar with Prospect Theory models (Kahneman and Tversky 1979) and models based
on the notion of Loss Aversion (Tversky and Kahneman 1991), will notice the conceptual similarities
between those models and RRM models: loss aversion postulates that losses with respect to a reference point
loom larger than gains of equal magnitude. In RRM models, the reference point consists of the attribute level
of a competing alternative.
6 Introductions to these more recent models, as well as to more conventional RRM models, can be found at
www.advancedrrmmodels.com. In addition, that website contains code for different softwares, as well as
several data sets, which may be freely used to try out different RRM models.
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measure of regret aversion: as it moves away from one and starts to approach zero, the

convex regret function starts to ‘fan out’ and approximate a linear function where regret is

no longer overweighted compared to rejoice (this eventually implies classical linear in

parameters RUM behaviour when the constant equals zero). Furthermore, that paper

explains and shows how this regret aversion parameter can be estimated from choice data

together with taste parameters, in a so-called G-RRM model (where ‘G’ stands for Gen-

eralized). When RT in their Conclusions and Discussion section claim that RRM20100s
‘‘problems would be less if a smaller value [of the constant] had been chosen’’, they are

clearly misunderstanding the role of this constant, and they are overlooking recent studies

(Chorus 2014b; Mai et al. 2015) which show that the constant is in fact an estimable regret

aversion parameter, governing the relative weight of regret and rejoice.

Second, it has been convincingly shown recently (Van Cranenburgh et al. 2015), that

the attribute regret functions embedded in RRM2008 and RRM2010 are in fact two very

special cases of a more generic attribute regret function, whose shape can be estimated.

That is, the lRRM model proposed in Van Cranenburgh et al. (2015) contains an estimable

parameter (l). If it approaches zero, the attribute regret function embedded in RRM2008 is

obtained7; if it equals one, the attribute regret function embedded in RRM2010 is obtained

(and if it becomes arbitrarily large, a linear in parameters RUM model is approximated). In

other words, l governs the shape of the attribute regret function, and as such, the degree to

which regret is more important than rejoice: if it approaches zero, rejoice becomes irrel-

evant, as in RRM2008. If it equals one, regret is more important than rejoice but also

rejoice is relevant. If it becomes large and positive, regret and rejoice become equally

important (giving rise to linear in parameters RUM behaviour). Beyond these special cases,

estimable parameter l can take on every value in the domain [0, ? ?], governing the

shape of the regret function—i.e., the extent to which regret is more important than rejoice.

In sum, where RT2016 make erroneous claims about theoretical inferiority/superiority

of the attribute regret functions embedded in two particular RRM models, they fail to

acknowledge that these regret functions are special cases of a more recently proposed,

much richer and more generic model (lRRM). In fact, this more generic model allows for

the empirical estimation—as opposed to ‘theoretical’ assertion—of the degree to which

regret weighs more heavily than rejoice (which is conceptually similar to estimating a Loss

Aversion parameter in Prospect Theory inspired models). This makes the theoretical dis-

cussion in RT2016, as far as the shape of the regret function is concerned, largely

redundant (in addition to being flawed, as explained further above).

Empirical comparisons based on only one dataset and two model
specifications

This brings us to the topic of empirical analyses. Although in their early days, RRM

models were often compared to linear in parameter RUM models based on one or a couple

of datasets (also by the first author of this commentary), it has since been well established

(e.g. Hess et al. 2012; Boeri et al. 2014; Hess et al. 2014; Chorus et al. 2014; Hess and

Chorus 2015) that the relative performance of—different specifications of—RRM models

varies widely across data sets, and even across different classes of individuals within the

7 But note that the total regret (i.e., aggregated over all attributes) as computed in l RRM model presumes
that comparisons with all competing alternatives are relevant, whereas RRM2008 only focuses on the
comparison with the best competing alternative. For the present discussion, this distinction is irrelevant.
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same data set. Several dozens of empirical comparisons between RRM (in various spec-

ifications) and RUM which have been reported in the literature over the past few years,

further illustrate this point. Regarding the empirical performance of RRM models with

different shape of the attribute regret function, Van Cranenburgh et al. (2015) use ten

different data sets to confirm that also this aspect is highly data set specific.

For further illustration, we here present new results, in the context of ten different data

sets (i.e., the same ones that were considered in Van Cranenburgh et al. 2015). We provide

model fit (final LogLikelihood) for a variety of RRM models, including the 2008RRM and

2010RRM models.8 Table 1 lists, from left to right, the choice context, and model fit for: a

linear in parameters RUM model, RRM2008, RRM2010, the G-RRM model, and the

lRRM model (all in Multinomial Logit form). Results can be summarized as follows:

• Concerning the comparison between RRM2008 and RRM2010, which is the topic of

RT2016, it turns out that RRM2008 (the model preferred by RT2016) has a better

model fit on only two out of ten data sets. RRM2010 fits the other eight data sets better.

If one would like to base a generic behavioural conclusion on these analyses

(something we would advise against), that conclusion would be that RRM2010 is to be

preferred over RRM2008 as a model of decision making.

• Taking also the other models into account, it is directly seen that model fit varies

greatly. Unsurprisingly (as it is the most generic model at the cost of one extra

parameter), the lRRM has the best fit on all but one data sets. One some data sets, large

values for l are found, implying no regret aversion (and linear additive RUM

behaviour). On other data sets, values close to zero are obtained, implying extreme

levels of regret aversion. The special case of 2010RRM (i.e., l & 1) is obtained for

two data sets. In short, results indicate that the shape of the regret function, estimated

by means of a regret aversion parameter, varies greatly across data sets.

In light of these new results, as well as results reported in the literature over the past few

years, it may be said that the empirical analysis of RT2016 certainly provides another data

point to the discussion, but certainly does not warrant drawing conclusions as to the

relative performance of different RRM models.

In sum, if one wants to empirically compare different specifications of RRM, our advice

would be to not do so, based on a single dataset. Furthermore, we argue that in light of

recent developments (see previous section) a comparison between only the special cases

embodied by RRM2008 and RRM2010 is not particularly insightful. Rather, we advise to

estimate the generic lRRM model, to consider each data set in separation, and to refrain

from drawing generic conclusions as to the (estimated) shape of the regret function—it will

generally differ a lot across data sets. In their Conclusions and Discussion section, RT2016

do mention that replication of their results on other data sets is needed, but we believe that

this should have been done in the paper itself, and also that other regret functions than just

the two special cases looked at in RT2016 should have been considered.

8 We use the exact same specifications as used in RT2016 (Eqs. 1, 2 and 6). That is, for 2008RRM we use
the max-operator in the attribute regret function, and to compute total regret we only consider the best
competitor alternative. For 2010RRM we use the so-called LogSum-operator in the attribute regret function,
and to compute total regret we consider all competitor alternatives.
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Conclusion

As said in the Introduction, we most welcome theoretical and empirical comparisons

between different decision rules embedded in choice models, including but not limited to

comparisons between regret-based models and utility-based models, and between different

types of regret-based models (as in RT2016). We believe such studies to have a lot of

potential to enrich our knowledge of choice models and ultimately, of human decision

making behaviour; leading to better forecasting and more informed policy making.

However, such comparisons need to be done carefully, with proper acknowledgement of

the basics of discrete choice theory and the state-of-the-art in regret based modelling, and

based on a sufficiently rich empirical context. This commentary explains where RT2016

falls short in these regards and it tries to set the record straight, with the aim to avoid

confusion caused by erroneous claims.

To summarize

• RT2016 claims that the RRM model proposed in Chorus (2010) has theoretical

problems, is ill-founded and is theoretically inferior to another RRM model proposed in

Chorus et al. (2008). We show that these claims are unjustified, as they are based on a

misconception of Discrete Choice Theory in general and Regret Theory in particular.

• RT2016 compares two RRM models which were proposed more than 6 years ago,

while more recent work has convincingly shown that the attribute regret functions

embedded in the two considered models are special (extreme) cases of a more generic

RRM model; what’s more, it is now widely acknowledged that the shape of the regret

function can and should be estimated from choice data, rather than fixed by the analyst

a priori as in RT2016.

• The empirical performance of models which embed different shapes of the regret

function, varies a lot across data sets. Therefore, RT2016’s conclusion that one

particular model form (RRM2008) performs better than another one (RRM2010) in the

context of just one data set, is not of much value. Our own analyses based on ten

Table 1 Model fit results for ten data sets and five model types, including RRM2008 and RRM2010

Choice content Model fits

Linear-additives
RUM

RRM2008 RRM2010 G-
RRM

c lRRM l

Parking lots -406 -368 -405 -405 1 -380 \0.01

Shopping dest -2305 -2324 -2301 -2301 1 -2263 0.14

Departure time -795 -792 -794 -794 1 -792 0.02

Policies -240 -247 -239 -239 1 -239 1.01

Routes -1092 -1120 -1094 -1092 0 -1092 4.51

Routes -1272 -1309 -1278 -1272 0 -1272 [5

Car types -4193 -4240 -4194 -4193 0 -4193 [5

Routes -4024 -4145 -4038 -4023 0 -4024 [5

Routes -2613 -2648 -2605 -2605 1 -2605 0.94

Dating -3688 -3716 -3648 -3648 1 -3591 0.15
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different data sets suggest that while RRM2008 performs better than RRM2010 on two

data sets, it performs worse on the other eight. More generally speaking, we find—as

expected—that the estimated shapes of attribute regret functions differ substantially

across data sets, implying that one should be extremely cautious to generalize results

based on just one data set.

The aim of this commentary was to resolve confusion that emerges from the misconcep-

tions and misinterpretations presented in RT2016. It is certainly not meant to discredit the

authors of that paper. On the contrary, we note that Soora and Harry at the end of their

paper indicate that they plan to continue their work on regret modelling, and we look

forward to collaborate with them on this fascinating topic, following up on previously

successful collaborations like the one which resulted in the RRM2008 model (Chorus et al.

2008).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Notation of different RRM models discussed in this
commentary

The total (systematic) regret associated with a considered alternative is given as follows,

for the different RRM models discussed in this commentary:

2008RRM (Chorus et al. 2008)

Ri ¼ max
j 6¼i

X

m

max 0; b � xjm � xim

� �� �
( )

2010RRM (Chorus 2010)

Ri ¼
X

j 6¼i

X

m

ln 1 þ exp bm � xjm � xim

� �� �� �

G-RRM (Chorus 2014a)

Ri ¼
X

j 6¼i

X

m

ln cm þ exp bm � xjm � xim

� �� �� �

lRRM (van Cranenburgh et al. 2015)

Ri ¼
X

j 6¼i

X

m

lm � ln 1 þ exp
bm

lm

xjm � xim

� �� 	� 	

Here, R denotes total (systematic) regret, i denotes the considered alternative, j a com-

petitor alternative, m an attribute, x an attribute level, and b a taste parameter. In the

G-RRM model, c represents an estimable regret aversion parameter which may take on

values between zero and one. In the lRRM model, l represents an estimable regret

aversion parameter which may take on values between zero and ??. See main text, as

well as cited papers, for in-depth discussions of models arising from different values for

these regret aversion parameters.
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Note that the above notation only refers to systematic or ‘observed’ regret; depending on

the chosen error term specification, Multinomial or Mixed Logit choice models are obtained.
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