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Abstract In this study, we propose a novel method for a travel path inference problem

from sparse GPS trajectory data. This problem involves localization of GPS samples on a

road network and reconstruction of the path that a driver might have been following from a

low rate of sampled GPS observations. Particularly, we model travel path inference as an

optimization problem in both the spatial and temporal domains and propose a novel hybrid

hidden Markov model (HMM) that uses a uniform cost search (UCS)-like novel combi-

national algorithm. We provide the following improvements over the previous studies that

use HMM-based methods: (1) for travel path inference between matched GPS positions,

the proposed hybrid HMM algorithm evaluates all candidate paths to find the most likely

path for both the temporal and spatial domains. In contrast, previous studies either create

interpolated trajectories or connect matched GPS positions using the shortest path

assumption, which might not be true, especially in urban road networks (Goh et al. 2012;

Lou et al. 2009). (2) The proposed algorithm uses legal speed limits for the evaluation of

discrepancy in the temporal domain as in Goh et al. (2012), and Lou et al. (2009) only if

there is not sufficient historical average speed data; otherwise, we use historical average

speed computed from data. Our experiments with real datasets show that our algorithm

performs better than the state of the art VTrack algorithm (Thiagarajan et al. 2009),

especially for cases where GPS data is sampled infrequently.
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Introduction

Over the past years, GPS embedded handheld devices and on-car GPS systems have

become popular. This increase has led to a rich collection of GPS samples, which has now

opened up an opportunity for real-time delay estimation (Thiagarajan et al. 2009), route

planning (Gonzalez et al. 2007), congestion point detection (Li et al. 2009), transportation

mode detection (Schuessler and Axhausen 2009), and hot roads prediction (Thiagarajan

et al. 2009). For all of these studies to perform well, the initial step is map matching, which

is the correct alignment of GPS positions onto a road network and inference of the travel

path that a vehicle is following using the knowledge of road networks and GPS sam-

ples (Lou et al. 2009; Yang et al. 2013).

The success of map matching and travel path inference algorithms requires high

accuracy in GPS positions and sufficient numbers of GPS samples to be taken. Although

GPS positions are considered to be accurate up to 5 m (Thiagarajan et al. 2009), there are

several challenges in having GPS samples in high rates. First of all, sampling GPS data

drains handheld devices’ batteries quickly (Thiagarajan et al. 2010). Moreover, GPS does

not work properly in urban canyon environments (Cui and Ge 2003). Shortage in certain

roads and low number of GPS samples for different parts of roads are challenges for

algorithms that try to infer travel paths that drivers follow. The issue stands out more

especially in urban areas, where roads can be relatively short and vehicles can travel on

many different road segments in short time intervals (Hunter et al. 2014).

In this study, we propose an effective algorithm that aims to reconstruct vehicles’ travel

routes even in GPS samples taken every 2 min, a duration considered to be a low sample

rate in many studies (Chen and Bierlaire 2015; Hunter et al. 2014; Lou et al. 2009; Miwa

et al. 2012; Thiagarajan et al. 2009). For instance, if a vehicle travels at a speed of 50 km/

h, then the vehicle can travel about 1666 m between each GPS sample. In order to infer

paths successfully at these low GPS sample rates, we consider the following points:

Global rather than local

Global optimization algorithms (Horst and Tuy 2013) process all GPS samples together to

infer the most likely travel path given all input GPS samples (Hunter et al. 2014; Thia-

garajan et al. 2009), local optimization algorithms generally construct vehicle path step by

step with best choice at each step and the constructed vehicle path might not be the most

likely one (Greenfeld 2002; Yu et al. 2006). Local optimization algorithms are in general

computationally fast but their success for path inference shows a steep drop against a

sparse number of GPS observations, especially in the case of incorrect alignments at the

beginning of the local optimization algorithms. Global optimization algorithms tend to be

computationally expensive, but errors in measurements are alleviated with the consider-

ation of other GPS samples and previous decisions for travel path inference (Wenk et al.

2006). In this study, we adopt a global optimization algorithm that processes all the GPS

samples in the query to infer the travel path.

Shorter reasonable paths

While inferring the travel path between two mapped GPS samples on a road network, one

can consider the shortest path between the mapped GPS samples as the correct path, but

this assumption is not likely to hold especially when the temporal distance between two
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GPS samples is high or when the roads are in urban parts of a city. To overcome this issue,

the vehicle’s average speed for the shortest path between two GPS samples and the

historical average speed, which is the average speed of other vehicles computed from data

for the same shortest path, can be compared. If the discrepancy between historical average

speed and the vehicle’s average speed is high, one might consider other possible paths

rather than the shortest path between the two GPS samples. To the best of our knowledge,

other algorithms that combine spatial analysis only consider the shortest path (Chen and

Bierlaire 2015; Dalumpines and Scott 2011; Lou et al. 2009; Oshyaniv et al. 2014;

Schuessler and Axhausen 2009) for travel path inference problems.

In this study, we align GPS samples onto roads and infer paths between GPS samples

together with temporal and spatial constraints. In a nutshell, we prefer paths according to

their distance and fitness to historical speed data. Figure 1 and Table 1 illustrate the case.

In Fig. 1 there are two GPS samples that are ordered with their timestamps from the

earliest to the latest. There are two alternative paths connecting these two samples, as

illustrated with solid and dashed lines. Without available time data, one would have

preferred the dashed path. When historical average speed for the dashed line in Table 1 is

Fig. 1 Shorter paths rather than longer paths

Table 1 Vehicle’s average speed and historical average speeds for solid and dashed lines

Dashed route Solid route

Vehicle’s average speed
(km/h)

Historical average speed
(km/h)

Vehicle’s average speed
(km/h)

Historical average speed
(km/h)

60 20 80 85
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given, one would notice that if the dashed route were the correct one, the vehicle’s average

speed would show a significant discrepancy from historical average speed. Therefore, the

solid line would be preferred over the dashed one.

Historical data for average speed on roads

Although historical average speed computed from data is commonly used in different

traffic-related problems (Gonzalez et al. 2007; Li and McDonald 2002; Work et al. 2008),

to the best of our knowledge, most of the path inference algorithms assume constant legal

speed limits according to road types and transportation modes (Chen and Bierlaire 2015;

Hunter et al. 2014; Lou et al. 2009; Yuan et al. 2010). In this study, we use average speed

computed from historical speed data of a given road. For roads where we do not have

sufficient historical data, we use legal speed limits of roads.

In this work, we propose a hybrid hidden Markov model (HMM)-based algorithm. Our

algorithm searches for an optimal path according to a score function, which gives higher

scores for paths that are spatially close to GPS samples and whose temporal discrepancies

between the vehicle’s average speed and historical average speed are low. We compared

our algorithm with VTrack (Thiagarajan et al. 2009), which is a representative work

among studies that use HMM (Goh et al. 2012; Lou et al. 2009; Thiagarajan et al. 2009).

VTrack uses only positions of GPS samples and road network for travel path inference

problem while our algorithm uses temporal domain as well. Our results indicate that our

algorithm shows better performance in travel path inference problems than VTrack when

sparse GPS samples are available.

Related work

Map matching problems date back to the 1990s (Quddus et al. 2007). The first algorithms

matched GPS samples into shape points or edges in the road network using geometric

information of GPS samples and shapes of edges (White et al. 2000). These algorithms are

in the group of point-to-point matching and there are sets of data structures for fast

searches for the closest edge given a GPS sample (Quddus et al. 2007). However, the

closest edge or shape point is not necessarily the correct one, especially in urban road

networks, which can be quite dense in small regions.

Later, topological map matching algorithms that use geometry, connectivity, and con-

tiguity of links emerged (Greenfeld 2002; White et al. 2000; Yu et al. 2006). These

algorithms improve the performance of the geometrical algorithms by adding additional

topological information, but still they are mostly greedy algorithms and their performance

drops in the event of measurement errors or high variance in spatial accuracy of GPS

samples.

Recent studies on map matching focus not only on localization of GPS samples on a

map but also on inference of the travel path (Bierlaire et al. 2013; Chen and Bierlaire

2015; Hunter et al. 2014; Lou et al. 2009; Miwa et al. 2012; Schuessler and Axhausen

2009; Thiagarajan et al. 2009). Some of these studies focus on travel routes with sparse

GPS samples (Chen and Bierlaire 2015; Hunter et al. 2014; Lou et al. 2009; Miwa et al.

2012; Thiagarajan et al. 2009). In Aly and Youssef (2015), Goh et al. (2012), Lou et al.

(2009) and Thiagarajan et al. (2009), HMM-based algorithms are used to model roads as

hidden states and GPS samples as observations from hidden states. For cases when there
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can be alternative paths between observations, VTrack (Thiagarajan et al. 2009) interpo-

lates new virtual GPS samples in equal intervals over the line that connects real GPS

samples. However, linear interpolation of virtual samples is not always a correct

assumption and can lead to problems when the number of virtual GPS samples outweighs

the number of real GPS samples. Another approach for extracting routes between obser-

vations is to compute shortest paths between observations (Bierlaire et al. 2013; Chen and

Bierlaire 2015; Goh et al. 2012; Lou et al. 2009). Shortest paths may not always be the

right choice, especially in urban networks (Hunter et al. 2014), as explained in Fig. 1 and

Table 1.

Recently, Aly and Youssef (2015), Bierlaire et al. (2013) and Chen and Bierlaire

(2015) use data from other sensors of mobile phones such as bluetooth, acceleration, etc.

together with GPS data to reduce uncertainty in map matching. In Yuan et al. (2010), the

authors use both spatial and temporal information of GPS samples and the road network

and derive a voting-based algorithm where samples influence each other based on their

distances. There are also path inference algorithms that derive admissible paths and filter

paths based on probabilities assigned to those roads based on training data (Bierlaire

et al. 2013; Chen and Bierlaire 2015; Hunter et al. 2014). Generation of admissible paths

can grow exponentially. HMM-based algorithms use the Viterbi algorithm to quickly find

the most likely paths by utilizing the best subsequences for each GPS sample in the

search problem.

In contrast to previous studies, we don’t have interpolated virtual samples and shortest

path assumptions to connect two matched GPS samples, and we consider historical average

speed rather than legal speed limits for temporal domain analysis.

Methodology

Problem statement

A GPS trajectory is an ordered set of observations (samples) O ¼ fO1 ! O2 ! � � � !
ONg where each Oi 2 O is a flat; lon; timeg tuple with latitude, longitude, and timestamp

of the sample. The samples in O are ordered by their time such that Oi precedes Oj if and

only if Oi:time\ ¼ Oj:time. A road network can be modeled with a graph structure G ¼
ðE;VÞ where E is the set of edges in graph G and the edges model road segments in the

road network. Each edge Ek has a start vertex Ek:start and end vertex Ek:end. V is the set of

vertices that are used to model intersections of road segments in the road network. Each

vertex Vl has (x, y) coordinates as attributes.

A path (route) R in graph G is an ordered set of edges ðe1; e2; . . .; ejRjÞ 2
E � E � � � � � E where each edge is connected to its preceding edge such as ek:end ¼
eðkþ1Þ:start and |R| is the number of edges in R.

We consider the travel path inference as an optimization problem to find the optimal

path R according to a score function F given a trajectory O and a road network G as given

in the following expression (1):

maxRFðR;O;GÞ ð1Þ
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F function

The score function F should ideally give higher scores for paths that are likely to be the

driving route. In this study, we model the problem as a derivation of the HMM (Blunsom

2004) in which roads are modeled as hidden states while GPS samples are observations over

the roads. We use emission probability (measurement equation) to score how likely an

observation is to be sampled from a road, while transition probability can score how likely the

transition between two edges is. In typical applications of the HMM to map matching and

travel path inference, states are assumed to be edges and the transition probability between

two edges is greater than zero if they are directly connected (Thiagarajan et al. 2009). In this

study, we also assume states are edges, but when two edges are not directly connected, we

generate possible paths between those edges to compute transition probability.

Emission probability P(O|E)

Emission probability gives how likely a sample is to be generated from an edge. A

common choice is normal distribution �Nðl; r2Þ for GPS observation O’s distance to its

projection on edge E (Lou et al. 2009; Thiagarajan et al. 2009).

Transition probability PðEi ! EjÞ

After the assignment of two observations into edges Ei and Ej, there can be different possible

paths that connect Ei to Ej. To compute transition probability from Ei ! Ej, we search for a

path that maximizes an exponential function expð�KÞ where K is the product of paths’ length

and discrepancy between the vehicle’s average speed and historical average speed for that

path. To formulateK’s computation in a general problem setting, we assume a driver’s pathR

that is composed of subpaths RðijÞ, which is just a path that connects road segments Ei to Ej

within R. Note that Ei and Ej are edges to which observations Oi and Oj are assigned. We

further define the HAS(e) function for edges e 2 E, which gives historical average speed for

an edge e, and AsðRðijÞÞ is the average speed of the vehicle within RðijÞ defined with in (2).

AsðRijÞ ¼
P

e2RðijÞ

Oj:time� Oi:time
ð2Þ

Spatial distance SDðRðijÞÞ for subpath RðijÞ is simply given in (3) as:

SDðRijÞ ¼
X

e2RðijÞ

lðeÞ ð3Þ

l is a function that returns the length of an edge in meters.

To compute temporal distance TDðRijÞ, we create average speed vector

½AsðRðijÞÞ; . . .;AsðRðijÞÞ� and historical average speed vector ½HASðe1Þ; . . .;HASðenÞ� whose
elements are historical average speeds for each edge within Rij, similar to Lou et al.

(2009). The temporal distance between these two vectors can be calculated using cosine

distance. Note that the cosine distance will be less than one, and hence multiplication of

temporal and spatial distance would be less than just spatial distance. This situation is

undesirable when searching for the best path in combinational-based algorithms. There-

fore, we add one to the cosine distance, which is one minus cosine similarity, and our

temporal distance turns out to be (4):
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TDðRijÞ ¼ 2� cos

P
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A ð4Þ

Here, K is just a multiplication of spatial distance and temporal distance given in (5) as:

K ¼
X

e2RðijÞ

lðeÞ

0

@

1

A � 2� cos

P
e2RðijÞ

AsðRðijÞÞ � HASðeÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

e2PðijÞ
AsðRðijÞÞ2
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�
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0
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1
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A ð5Þ

To write the final F function, we also define another assignment function aðoÞ : o 2 O !
e 2 R that assigns observations to edges. This function assigns each GPS observation Oi to

some edge in route (path) R. There are some restrictions for the assignment function, such

as that the first observation should be assigned to the first edge in R and the last observation

should be assigned to the last edge in R. Additionally, observations and assigned edges

should have the same order, i.e. aðOiÞ precedes edge aðOjÞ in route R if and only if Oi

precedes Oj in trajectory O.

By multiplying emission and transition scores and using the a function, we can write the
F function as follows:

FðR;O;GÞ ¼ maxaPðe1jO1Þ �
YjT j

i¼2

PðOijaðOiÞÞ � PðaðOði�1ÞÞ ! aðOiÞÞ ð6Þ

Finding R that maximizes F

Finding R that maximizes F can be done by the Viterbi algorithm, which uses the dynamic

programming technique. However, in real map datasets, there would be thousands of edges

or hidden states, and the Viterbi algorithm would need to fill a table of size

jEj � jOj (Blunsom 2004). Since GPS samples are generally considered to be accurate up

to some distances, consideration of all edges in a map would be very impractical. In this

study, similar to data relevance concept in Bierlaire et al. (2013), we assume that an

observation would be sampled from one of the N nearest edges. Having a constraint to

consider the N nearest edges for each observation, the Viterbi algorithm would need to fill

a table of size N � jOj, where N is significantly less than |E| for real datasets.

The Viterbi algorithm starts by assigning the first observation into candidate edges and

then computes their scores. For a new observation, it extends previous scores by multi-

plying the transition score of a new observation’s candidate edges from previous edge and

emission scores for each candidate edge. This process iterates until the last observation. A

backtracking algorithm is then used to find the most likely edge sequence.

To compute transition scores, we assume that two successive observations are assigned

to two edges Ei and Ej. There can be many possible paths between edges Ei and Ej and the

goal is to find the path that gives the maximum transition score among all possible paths as

transition scores. To solve this problem, we propose an algorithm similar to uniform cost

search (UCS) that starts the search from the source edge Ei and gradually expands highest

scored paths until it reaches the target edge Ej (Verwer et al. 1989). The pseudocode of the

algorithm is given as follows:

The algorithm above uses a node structure that has a parent, an edge, and distance

attributes. This node structure is used to represent paths. The algorithm starts with the
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Require: Ei as source edge

Require: Ej as target edge

Require: Oi as observation assigned to Ei

Require: Oj as observation assigned to Ej

create set ExpandedEdges for set of expanded edges

create priority queue Queue for edges to be expanded

create Node

Node.edge ← Ei

distance ← distance from projection of Oi on Ei to Ei.end

Queue ← Node

while Queue is not empty do

Candidate ← Queue.remove

if Candidate.edge eq Ej then

return Candidate

else if ExpandedEdges does not contain Candidate.edge then

for Neighbor : neighbors(Candidate.edge) do

create NeighborNode

NeighborNode.edge ← neighbor

NeighborNode.distance ← Candidate.distance+distance(Neighbor)

NeighborNode.parent ← Candidate

if NeighborNode.edge eq Ej then

timeFactor ← computeT imeFactor(averageSpeed, neighborWithDistance)

NeighborNode.distance = NeighborNode.distance∗timeFactor

end if

Queue ← NeighborNode

end for

expandedNodes ← candidate.node

end if

end while

return Rij subpath between Ei and Ej and its distance
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source edge as the path and adds it to a priority queue. It then iteratively pops the path with

the lowest distance and adds new paths by expanding the last popped node with its

neighbors. Before pushing a new path into the priority queue, the algorithm checks whether

the target edge is the last edge on the path, and if it is, the algorithm computes the deviation

of the path from historical speed data and multiplies the speed deviation by the distance of

the path. This process continues until the algorithm pops a path that ends on the target

edge. This algorithm finds subpath RðijÞ that is optimal according to expression (5), which

reflects both the spatial and temporal domains.

Experiments

Dataset

We have used mobility traces of taxi cabs in Rome, Italy (Bracciale et al. 2014). The

dataset contains GPS positions collected from 320 taxi drivers that work in the center of

Rome over the course of two months. Samples are collected approximately every 15 s. For

the road network, we extracted a road network for the center of Rome from Open-

StreetMap (OpenStreetMap 2015) and ignored nodes that are not related to the road net-

work. In the pruned map, there are about 100K ways and 500K shape points. Finally, we

manually labeled 25 routes for 50 GPS samples from 5 drivers and used these 25 routes as

our ground truth. Average time for routes is about 12.5 min. For historical speed data, we

run our algorithm using all GPS samples for all drivers except the ones used in our test

routes and compute the average speed for each road in the road network. For roads without

historical speed data, we use speed limits on the road if they exist.

Experiment setup

For evaluating our algorithm with low frequency GPS samples, we reduced the number of

GPS samples by only keeping a single GPS sample in every M GPS samples. In this

experiment, we have used M ¼ 1; 2; 4; 8 values to reduce the number of GPS samples and

inferred routes using reduced trajectories. We then evaluate the success of our algorithms

and other comparison algorithms with Jaccard similarity for each route and take the

average as the overall success of the algorithm. Besides the M parameter, there are also

other parameters such as l and r in computation of emission probability, and N as the

number of candidate edges for each observation. Here, we selected l ¼ 0, N ¼ 10 and

tested different values of r 2 1; 5; 10.

Computational performance

We also compute average time to infer paths for our queries to show our algorithm’s

practical feasibility. Our code is implemented in Java and tests are performed on an Intel

Core i5-3337U CPU @ 1.80GHz 4, 8 GB RAM HP laptop. Average time to infer travel

paths for the hybrid HMM algorithm is measured as 1.27 s.
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Comparison algorithms

We have compared our algorithm with VTrack, which, like our proposed algorithm is also

based on the HMM, but it assumes at least one single GPS sample (observation) to be

generated from each edge (state) on the path. To have enough GPS samples, VTrack

creates interpolated virtual GPS samples for its algorithm to work. It also has outlier

removal as a pre-processing step (Thiagarajan et al. 2009), but in our experiments, we

have not implemented outlier removal since, in our case, test routes are manually labeled

by using all GPS samples with high frequency and these are chosen to have no outliers.

Results

We present the performance of our algorithm for different M and r values given in

Table 2. The results show that the best performance is achieved when r ¼ 10 and M ¼ 1.

The results also indicate that when all GPS samples are used, our algorithm infers close

routes (over 0.9 similarity) to the ones that are manually labeled. For the case where we

decrease the number of GPS samples, the performance also drops, as expected. The

algorithm achieves the best performance in general at r ¼ 10, which indicates that the

standard deviation of GPS samples’ accuracy is best modeled with 10 m. The results

indicate that even with samples taken every 2 min (M = 8), we can achieve 0.82 perfor-

mance, while it is 0.9 for samples taken every 1 min (M = 4).

The results for the VTrack algorithm are presented in Table 3. The results indicate that

our algorithm performs better than VTrack for all different values of M. VTrack drops

under 0.7 at M ¼ 8. The under-performance of VTrack can be explained by VTrack’s

assumption of linearly interpolated GPS samples. We elaborate on the situation with an

example set of GPS samples for the VTrack algorithm in Table 4. In figures a and b in

Table 4, we show a set of high frequency GPS samples and the manually labeled path from

these samples. In figure c in Table 4, we illustrate sparse GPS samples when only one GPS

sample is kept for every M ¼ 4 samples. Figure d in Table 4 shows interpolated GPS

samples between observed GPS samples for the VTrack algorithm. Figure e in Table 4

Table 2 Average Jaccard similarity of the inferred paths and manually labeled routes for the hybrid HMM
algorithm

r ¼ 1 r ¼ 5 r ¼ 10

M ¼ 1 0.93 0.97 0.99

M ¼ 2 0.89 0.91 0.91

M ¼ 4 0.84 0.87 0.90

M ¼ 8 0.79 0.81 0.82

Table 3 Average Jaccard similarity of the inferred paths and manually labeled routes for the VTrack
algorithm

M ¼ 1 0.85

M ¼ 2 0.81

M ¼ 4 0.74

M ¼ 8 0.69
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shows the path inferred by VTrack considering both virtual and original GPS samples by

just considering the spatial domain. Our algorithm, which does not assume the shortest

path, is the correct one. It explores different paths and their scores with respect to both the

spatial and the temporal domain, and it selects the correct path instead of the spatially

closest path, as seen in figure f in Table 4.

We also performed another analysis that uses only speed limits instead of historical

speed data with the hybrid HMM algorithm. The results are listed in Table 5. When we

compare results of the hybrid HMM using historical average speeds in Table 2, we see that

for most of the different r and M, historical average speed shows better performance than

Table 4 A table showing a set of figures for illustration of the VTrack and hybrid HMM algorithms

(a) High Frequency GPS 
Samples (M = 1)

(b) Labeled Path (c) Sparse GPS Samples
 (M = 4)

(d) Interpolated GPS
 Samples

(e) Path by VTrack (f) Path by Hybrid HMM

Table 5 Average Jaccard similarity of the inferred paths and manually labeled routes for the hybrid HMM
algorithm using only speed limits

r ¼ 1 r ¼ 5 r ¼ 10

M ¼ 1 0.91 0.95 0.97

M ¼ 2 0.86 0.91 0.91

M ¼ 4 0.84 0.87 0.89

M ¼ 8 0.77 0.78 0.79
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just using speed limits. The results can be explained by the fact that speed limits do not

reflect real average speeds on roads. Especially in dense urban parts of the city, the real

average speed might be lower than speed limits, while the opposite might be true on

highways. We also computed the percentage of roads for which we had historical average

speed as 71% in our experiments; for the rest, we used speed limits. This indicates that

using high frequency GPS samples to infer travel paths for other drivers and infer historical

average speeds can improve the results when we encounter scarcity of GPS samples in

travel path inference problems.

Conclusion

In this work, we propose a novel travel path inference method that maps GPS samples onto

a road map and also infers routes with a low rate of sampled GPS data. Our results show

that our algorithm can be used for path inference with high frequency GPS samples as well

as for cases with low frequency GPS samples. Our algorithm is novel because it handles

the assignment of GPS samples and inference of routes between assigned GPS samples in a

new way as a single optimization problem, using both temporal and spatial data. The

optimization problem can also be expanded with other factors such as weather, time of day,

road work, etc. if relevant data is available.

For practical usage, collecting GPS data with handheld mobile devices is energy-con-

suming and algorithms that work on sparse GPS samples are more likely to be adopted for

applications that target large sets of people. As a future direction, we are also aiming to

show that our model could work with other datasets that are typically sparse such as WiFi

traces or GSM/cell tower data and develop algorithms that will work on distributed sys-

tems to achieve scalability and high throughput in real time. With high throughput, we can

work on tools that can learn massive numbers of people’s driving patterns from inferred

paths or can conduct further analysis for anomalies in traffic such as car accident, or for

better route recommendation systems.

Additionally, road networks from real datasets are quite complicated and it might be

possible to simplify road networks without significant loss in performance. Simplification

of large road networks is still a challenging problem to be solved.
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(#113C037).

References

Aly, H., Youssef, M.: Semmatch: road semantics-based accurate map matching for challenging positioning
data. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic
Information Systems, p. 5. ACM (2015)

Bierlaire, M., Chen, J., Newman, J.: A probabilistic map matching method for smartphone GPS data.
Transp. Res. Part C Emerg. Technol. 26, 78–98 (2013)

Blunsom, P.: Hidden Markov models. Lect. Notes 15, 18–19 (2004)
Bracciale, L., Bonola, M., Loreti, P., Bianchi, G., Amici, R., Rabuffi, A.: CRAWDAD dataset roma/taxi (v.

2014-07-17). Downloaded from http://crawdad.org/roma/taxi/20140717/taxicabs, July 2014. traceset:
taxicabs

Chen, J., Bierlaire, M.: Probabilistic multimodal map matching with rich smartphone data. J. Intell. Transp.
Syst. 19(2), 134–148 (2015)

244 Transportation (2018) 45:233–246

123

http://crawdad.org/roma/taxi/20140717/taxicabs


Cui, Y., Ge, S.S.: Autonomous vehicle positioning with GPS in urban canyon environments. IEEE Trans.
Robot. Autom. 19(1), 15–25 (2003)

Dalumpines, R., Scott, D.M.: GIS-based map-matching: development and demonstration of a postprocessing
map-matching algorithm for transportation research. In: Advancing geoinformation science for a
changing world, pp. 101–120. Springer (2011)

Goh, C.Y., Dauwels, J., Mitrovic, N., Asif, M.T., Oran, A., Jaillet, P.: Online map-matching based on hidden
Markov model for real-time traffic sensing applications. In: 2012 15th International IEEE Conference
on Intelligent Transportation Systems (ITSC), pp. 776–781. IEEE (2012)

Gonzalez, H., Han, J., Li, X., Myslinska, M., Sondag, J.P.: Adaptive fastest path computation on a road
network: a traffic mining approach. In: Proceedings of the 33rd international conference on Very large
data bases, pp. 794–805. VLDB Endowment (2007)

Greenfeld, J.S.: Matching GPS observations to locations on a digital map. In: Transportation Research
Board 81st Annual Meeting (2002)

Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer Science and Business Media,
Berlin (2013)

Hunter, T., Abbeel, P., Bayen, A.: The path inference filter: model-based low-latency map matching of
probe vehicle data. IEEE Trans. Intell. Transp. Syst. 15(2), 507–529 (2014)

Li, M., Zhang, Y., Wang, W.: Analysis of congestion points based on probe car data. In: 12th International
IEEE Conference on Intelligent Transportation Systems, 2009. ITSC’09, pp. 1–5. IEEE (2009)

Li, Y., McDonald, M.: Link travel time estimation using single GPS equipped probe vehicle. In: The IEEE
5th International Conference on Intelligent Transportation Systems, 2002. Proceedings, pp. 932–937.
IEEE (2002)

Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for low-sampling-rate GPS
trajectories. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pp. 352–361. ACM (2009)

Miwa, T., Kiuchi, D., Yamamoto, T., Morikawa, T.: Development of map matching algorithm for low
frequency probe data. Transp. Res. Part C Emerg. Technol. 22, 132–145 (2012)

OpenStreetMap. OpenStreetMap openstreetmap. (2015). https://www.openstreetmap.org. Accessed 5 Sep
2015

Oshyaniv, M.F., Sundberg, M., Karlström, A.: Consistently estimating link speed using sparse GPS data
with measured errors. Proc. Soc. Behav. Sci. 111, 829–838 (2014)

Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms for transport applications:
state-of-the art and future research directions. Transp. Res. Part C Emerg. Technol. 15(5), 312–328
(2007)

Schuessler, N., Axhausen, K.: Processing raw data from global positioning systems without additional
information. Transp. Res. Rec. J. Transp. Res. Board 1(2105), 28–36 (2009)

Schuessler, N., Axhausen, K.W.: Map-matching of GPS traces on high-resolution navigation networks using
the multiple hypothesis technique (MHT). Arbeitsberichte Verkehrsund Raumplanung 568, 1–22
(2009)

Thiagarajan, A., Biagioni, J., Gerlich, T., Eriksson, J.: Cooperative transit tracking using smart-phones. In:
Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, pp. 85–98. ACM
(2010)

Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H., Toledo, S., Eriksson, J.:
Vtrack: accurate, energy-aware road traffic delay estimation using mobile phones. In: Proceedings of
the 7th ACM Conference on Embedded Networked Sensor Systems, pp. 85–98. ACM (2009)

Verwer, B.J.H., Verbeek, P.W., Dekker, S.T.: An efficient uniform cost algorithm applied to distance
transforms. IEEE Trans. Pattern Anal. Mach. Intell. 11(4), 425–429 (1989)

Wenk, C., Salas, R., Pfoser, D.: Addressing the need for map-matching speed: localizing global curve-
matching algorithms. In: 18th International Conference on Scientific and Statistical Database Man-
agement, 2006, pp. 379–388. IEEE (2006)

White, C.E., Bernstein, D., Kornhauser, A.L.: Some map matching algorithms for personal navigation
assistants. Transp. Res. Part C Emerg. Technol. 8(1), 91–108 (2000)

Work, D.B., Tossavainen, O.-P., Blandin, S., Bayen, A.M., Iwuchukwu, T., Tracton, K.: An ensemble
kalman filtering approach to highway traffic estimation using GPS enabled mobile devices. In: 47th
IEEE Conference on Decision and Control, 2008. CDC 2008, pp. 5062–5068. IEEE (2008)

Yang, H., Cheng, S., Jiang, H., An, S.: An enhanced weight-based topological map matching algorithm for
intricate urban road network. Proc. Soc. Behav. Sci. 96, 1670–1678 (2013)

Yu, M.: Improved positioning of land vehicle in ITS using digital map and other accessory information. PhD
thesis, The Hong Kong Polytechnic University (2006)

Transportation (2018) 45:233–246 245

123

https://www.openstreetmap.org


Yuan, J., Zheng, Y., Zhang, C., Xie, X., Sun, G.-Z.: An interactive-voting based map matching algorithm.
In: Proceedings of the 2010 Eleventh International Conference on Mobile Data Management,
pp. 43–52. IEEE Computer Society (2010)

Erdem Ozdemir received the B.S. and M.S. degrees in computer engineering from Bilkent University,
Turkey, in 2008 and 2011, respectively. He is currently a Ph.D. student under the supervision of Dr. Ahmet
Ercan Topcu in the Department of Computer Engineering at Yildirim Beyazit University, Ankara. His
research interests include the use of probabilistic methods on complicated problems.

Ahmet E. Topcu received his B.S. degree Electrical and Electronics Engineering from the Middle East
Technical University, Ankara, Turkey, in 1997. He completed M.S. degree from the Syracuse University,
Syracuse, New York, US in 2001, and Ph.D. degree from the Indiana University, Bloomington, Indiana, US.
In 2011, he joined the Department of Computer Engineering, Yıldırım Beyazıt University, Ankara, Turkey
as an Assistant Professor. His current research interests include cloud computing, and big data analytics. He
worked as a researcher at Louisiana State University, Baton Rouge, Louisiana, US for a year after
completion his Ph.D. degree. He is also reviewer at SCI indexed international journals, committee member
and referee for the grant projects.

Dr. Ozdemir completed his B.Sc and M.Sc in electrical engineering at METU, Ankara Turkey in 1996 and
1998 in, respectively. He received his Ph.D. from Syracuse University, Syracuse, USA in 2005 from
electrical engineering. Between 1999–2012 he has worked in the area of broadband communication with the
focus on CATV systems and 4G wireless systems. He is currently with Istanbul Sehir University, Istanbul,
Turkey as an Asst. Prof at the EE department. His research interests are traffic density estimation via
wireless devices, receiver algorithms for OFDM based systems, 5G receiver design, and FM band
directional channel modeling.

246 Transportation (2018) 45:233–246

123


	A hybrid HMM model for travel path inference with sparse GPS samples
	Abstract
	Introduction
	Global rather than local
	Shorter reasonable paths
	Historical data for average speed on roads

	Related work
	Methodology
	Problem statement
	F function
	Emission probability P(O|E)
	Transition probability P(E_i \rightarrow E_j)

	Finding R that maximizes F

	Experiments
	Dataset
	Experiment setup
	Computational performance
	Comparison algorithms
	Results

	Conclusion
	Acknowledgments
	References




