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Abstract The influence of accessibility to opportunities in trip generation continues to be

debated in the specialised literature given its relevance to simulate phenomena such as

induced demand. This article estimates multiple linear regression models (MLR), spatial

autoregressive models (SAR), spatial autoregressive models in the error term (SEM) and

spatially filtered Poisson regression models (SPO) to discover whether or not accessibility

is a significant factor in trip generation using data from the urban area of Santander

(Spain). The results obtained provide evidence which shows that, on an intraurban scale,

more accessibility to opportunities decreases trip production in private vehicle for work

purpose, whereas it increases trip production in other transport modes for non—mandatory

purposes. For the correct interpretation of the estimated parameters it was important to

consider the direct and indirect effects of the independent variables in the SAR production

models. Finally, the validation of the models showed that the SAR and SEM models had a

mean squared error slightly lower than the MLR models in predicting overall trip pro-

duction. This was because the spatial models reduced the correlation of the residuals

present in the MLR models. Furthermore, the SPO models performed better in validation

mode than all the continuous models.
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Introduction and objectives

Trip generation models are the first and most important phase in traditional transport

modelling given that they provide the basic input for the remaining simulation stages

(McNally 2008). The classic specification of four stage models starts from the assumption

that changes in the distribution of activities and changes in the transport network do not

affect the number of trips being generated, a hypothesis which is difficult to justify over the

medium to long term (Martı́nez 2000; Ortúzar and Willumsen 2001).

This article proposes the inclusion of accessibility indicators in the trip generation

models to try to minimize this problem by making them sensitive to changes which may

occur within the system of activities and the transport network. The theoretical relationship

between accessibility and trip generation is supported by two basic theories (Thill and Kim

2005). Firstly, the act of making a journey is not generally an end in itself but more of a

means to perform other activities. Secondly, the fact that trip generation depends on the

services provided by the transport infrastructure, in other words, on the existence of the

phenomena known as induced demand (Cervero 2002; Goodwin 1996; Hymel et al. 2010).

The first supposition suggests that a greater presence of opportunities should lead to a

greater disposition to make journeys. The latter implies that lower journey costs will create

greater demand for transport both in terms of the number of journeys being made as well as

their length. Furthermore, greater accessibility to opportunities could also suppose a

reduction in journeys made by private vehicle (PV), an effect detected in previous research

(Cervero and Kockelman 1997). Therefore, in a determined zone, changes made both to the

location of activities and to the network should have an effect on trip generation if they

coincide with any change in opportunities or travelling costs. If the trip generation models

are not sensitive to these changes, then the transport models could provide biased pre-

dictions for example, about the resulting demand from the construction of a new transport

infrastructure.

Nevertheless, in spite of its theoretical importance, the inclusion of accessibility indi-

cators in trip generation models has proven to be problematic. In some estimations the

indicators that were used have turned out not to be significant or have produced an

unexpected sign which is why some authors have recommended against using it in practice

(Ewing et al. 1996; Hanson and Schwab 1987).

This article proposes a new evaluation of the explanatory capacity of the accessibility

variable in trip generation models controlled by the spatial effects which may occur.

Accessibility will be measured by three indicators: a gravity accessibility indicator from

each of the zones to employment, a gravity accessibility indicator from each of the zones to

education places and an indicator of the journey time to the city centre. The possible

presence of spatial autocorrelation in the error term has been scarcely addressed by tra-

ditional trip generation linear regression models in spite of the possible bias and ineffi-

ciencies in the estimated parameters. Spatial autocorrelation could occur due to social

effects resulting from interaction between households creating different patterns of trip

generation in the study area. This is a hypothesis which links in with the growing interest

around the influence of social factors in transport choices (Carrasco and Farber 2014; Scott

et al. 2013). Furthermore, the lack of any relevant variable in the model which affects the

population in a spatially differentiated way could also cause spatial autocorrelation in the

residuals of the models. It is therefore important to control the presence of these spatial

effects for the correct estimation of the models’ parameters.
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The proposed models have been estimated using disaggregated household data. Multiple

linear regression models (MLR), spatial autoregressive models (SAR), spatial autore-

gressive models in the error term (SEM) and spatially filtered Poisson regression models

(SPO) have been estimated. The four types of models will be compared as a function of the

theoretical coherence and statistical significance of the estimated parameters as well as

their goodness of fit. Finally, the models will be validated using a K—Fold type technique,

which is a recommended method for testing the predictive capacity of models, previously

not applied in this line of research (James et al. 2014).

The obtained results show that the household trip production for work and other pur-

poses was sensitive to the expressed accessibility conditions. However, whereas greater

accessibility supposed a reduction in PV trips for work purpose, it also supposed an

increase in the number of trips made using other transport modes (NPV) for non—

mandatory purposes. Trips made for study purposes showed that they could decrease in

zones providing greater accessibility using PV, although the effect was only significant

using the journey time to the city centre as an indicator. These results provide evidence

supporting the idea that accessibility is a relevant factor in modelling discretionary trip

production using modes other than the car (greater accessibility coincides with greater

household trip production, ceteris paribus) and that it could be a factor in the reduction of

PV trip generation, especially for work purposes.

Furthermore, the models which consider the presence of spatial dependence between

observations, SAR, SEM and SPO showed that there was a degree of significant spatial

dependence in trip production. It was important to consider the presence of spatial

dependence between observations, especially for the direct and indirect effects of the

variables in the SAR production models in order to correctly interpret the estimated

parameters.

Finally, the validation of the models showed that the SAR and SEM had a mean squared

error which was slightly lower than the MLR models in predicting overall trip production.

This was because the MLR models showed a degree of significant spatial correlation with

positive residuals concentrated in the periphery of the study area for trips made using PV

and concentrated in the centre for trips made for other purposes using NPV. This effect was

minimized by most of the spatial models until it lost its significance. This could be due to

the interaction between households in different zones in the study area or alternatively, to

the omission of a spatial variable with a different effect between the centre and the

periphery. Furthermore, the Poisson regression models behaved better for both, the work

journeys and those made for other purposes, underlining the importance of considering the

truncated and discrete nature of trip generation.

The article will be structured in the following way. ‘‘State of the Art’’ section will

provide a review of the state of the art in work relating to the inclusion of accessibility as a

variable and the consideration of spatial effects in trip generation models. The method-

ology and the study area used for estimating the models will be presented in ‘‘Methodology

and Application’’ section. This will be followed by the presentation of the results in

‘‘Results and discussion’’ section and finally ‘‘Conclusions’’ section will cover the main

conclusions that have been drawn.
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State of the art

The relationship between accessibility and trip generation has still not yet been satisfac-

torily clarified in the specialised literature. Some authors have found that this relationship

is positive and significant whereas others have found that there is no relationship what-

soever between accessibility and trip generation.

One of the first studies was by Vickerman (1974), who tested the relationship between

trip generation and accessibility using data from Oxford (United Kingdom). The author

found evidence that variations in accessibility were positively linked to trip generation.

Vickerman, however, also underlined the difficulty of estimating the model given the high

level of correlation between the independent variables, a factor which the author believed

was the main difficulty when trying to differentiate between the effects accessibility and

other factors have on trip generation.

Later, Koenig (1980) studied the relationship between trip generation and accessibility

using data from five French cities. The author used a gravity type indicator of accessibility

and correlated it with trip generation rates controlled by car possession, age group and

journey purpose. The relationship was positive in all the groups leading the author to

conclude that accessibility was a strong determining factor in trip generation.

Hanson and Schwab (1987) examined the relationship between accessibility and dif-

ferent journey choices, one of which was frequency, using data from the town of Uppsala

(Sweden). The work was controlled by various sociodemographic characteristics and the

authors concluded that, differently from Koenig (1980), the relationship between acces-

sibility and trip generation was weak and lower than expected by theoretical hypothesis.

This led the authors to state that on an intraurban scale the level of accessibility does not

need to be incorporated into trip generation models. A similar result was obtained by

Ewing et al. (1996) who tested the impact of accessibility and other land use variables on

trip rates using data from Florida (USA). The results showed that density, land use

diversity and accessibility did not have significant effects on trip generation so the authors

claimed that the conventional trip generation models without regard to location were good

enough. Negative results were also obtained by Kitamura et al. (2001) who examined data

from the Kyoto-Osaka-Kobe metropolitan area (Japan) and southern California (USA) in

order to test the effect of accessibility on trip behaviour. The authors concluded that

accessibility did not affect automobile use in study areas characterized by high industrial

and urban development.

Thill and Kim (2005) estimated multiple regressions to predict the generation of private

vehicle journeys with data from Minneapolis—St. Paul (USA). The authors used two types

of indicators of accessibility: gravity and accumulated opportunities, as well as different

manually calibrated impedance parameters. The researchers concluded that both, the trip

production and attraction models, are significantly affected by accessibility even though

the variable sign was positive or negative depending on the model.

Another line of research has focused on the role of other land use characteristics in trip

generation. Cervero and Kockelman (1997) studied the importance of the build environ-

ment in PV and NPV trip generation considering three dimensions: density, diversity and

design, using data from the San Francisco Bay Area (USA). The authors considered the

accessibility to jobs and services as part of the density concept. This research found that the

three land use factors (including accessibility) can reduce PV trip rates encouraging the use

of more sustainable transport modes. Cervero et al. (2009) examined how different

facilities and built environment characteristics: density, diversity, accessibility and
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proximity to transit influenced walking and cycling behaviour in Bogotá (Colombia). The

results showed that factors such as connectivity and proximity to cycle lanes were asso-

ciated with more physical activity whereas other factors such as density and diversity were

not. According to the authors, these results showed that given the high accessibility of most

neighbourhoods in Bogotá only the design factors were relevant. Purvis et al. (1996)

estimated non-work trip generation models incorporating the effect of work trip duration as

a measure of accessibility using data from the San Francisco Bay Area (USA). The authors

found that decreases in the work trip duration were correlated with increases in trip

generation for shopping and other purposes. In the same study area, Wu et al. (2012)

compared the auto trip rates predictions of an activity—based model with and without

considering accessibility. The authors applied the model to the San Francisco urban area

(USA) and the results allowed the authors to conclude that if trip generation had been

calculated without considering accessibility, the model would have significantly overes-

timated the number of trips made by car in denser neighbourhoods.

Other authors like Walters et al. (2013), Clifton et al. (2015) and Millard-Ball (2015)

have focused on methods of adjustment of vehicle trip generation estimates from the

Institute of Transportation Engineer’s (ITE) Trip Generation Manual (Institute of Trans-

portation Engineers 2012). In general, the authors have showed that the ITE trip rates

overestimate private vehicle trips in significant percentages such as 55 % in the case of

Millard-Ball (2015) and 49 % for AM peak traffic in Walters et al. (2013). This is because

they were often based on surveys conducted before the 1960s in areas with low accessi-

bility to opportunities, without mixed-use and where there was less congestion and fewer

transport alternatives. This line of research has highlighted the importance of taking into

account the built environment and the accessibility of every place in order to estimate more

accurate trip generation rates.

MLR is among the more commonly used methods for estimating the future evolution of

trip generation. However, MLR presents certain problems associated with modelling trip

generation as a continuous variable and not considering the possible presence of spatial

autocorrelation in the residuals of the model. Given that the data used in trip generation

models contain a strong spatial component, independently of their aggregated or disag-

gregated nature, specific econometric techniques need to be applied to minimize the

problem. If not, then the estimated parameters could show bias and may provide erroneous

inferences about the influence of variables such as accessibility.

Spatial dependence could be defined simply as the impact of the dependent variable or

the independent variables of neighbouring areas, on the dependent variable of a determined

area (Anselin 1988). In order to define the relationship between areas the analyst needs to

specify a neighbourhood matrix. Gamas et al. (2006) estimated trip generation models for

Mexico City (Mexico) considering the trips generated by unit area and the presence of

spatial effects. After finding that several of their variables were autocorrelated, the authors

applied a SAR model and thereby avoided the estimation of biased parameters resulting

from conventional MLR models (LeSage and Pace 2009).

Kwigizile and Teng (2009) estimated trip production and attraction models using data

from Las Vegas Valley (USA). Initially, the authors specified and estimated trip production

and attraction models using MLR. After performing a Moran I test on the models’ vari-

ables, the authors detected the presence residual autocorrelation of the trip attraction model

but not in the trip production model. This led the authors to estimate a trip attraction model

considering the presence of spatial dependence between observations. Comparing the fit

between the spatial and non-spatial models, the former showed an average deviation from

the data of 17 % faced with 31 % for the latter.
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Finally, Kim et al. (2009) detected the presence of spatial effects in the non-household

based (NHB) trip generation models in the metropolitan area of Daegu (South Korea). The

NHB trip production and attraction models showed spatial correlation in the error term

leading the authors to estimate SEM models. The NHB attraction model also showed

spatial correlation. The authors concluded that the spatial econometric models were a

useful tool for making estimations about trip generation in study areas in which there are

agglomeration economics i.e. positive externalities derived from proximity among firms

and people, that induce more travel demand (Glaeser 2010).

Although the authors in the three studies mentioned above showed that the models

considering the presence of spatial correlation in the residuals had a better fit to the data,

they did not validate the models using different data from that used in the estimation phase.

However, Lopes et al. (2014) did validate trip generation models estimated using data from

1974 with an origin–destination survey in 2003 for the city of Porto Alegre (Brazil). The

authors found that the spatial models made better predictions for the 2003 journeys than the

traditional linear regression models, although in both cases the predictions were not good

enough due to the huge changes experienced by the city over 30 years. In any case, the

predictive capacity of these models compared to the traditional MLR models is yet to be

completely clarified.

Furthermore, additional evidence is required to check if the theoretical hypothesis that

accessibility affects trip generation is correct addressing also for spatial effects between

observations usually present in cross-sectional data. These spatial effects in trip production

may be caused by various factors. Firstly, by the spatial dependence between nearby

households due to mutual social influence. Recent research has placed more emphasis on

the importance of considering social factors together with traditional factors when

explaining transport choices. Social norms (Bamberg et al. 2007), transport habits (Minnen

et al. 2015), social networks (Sherwin et al. 2014) or social cohesion (Clark and Scott

2013) may implicate spatial dependencies in the behaviour of nearby households which

generate a greater or lesser trip production than households in other areas. Another factor

to consider is the inability to measure, ore precisely measure, variables that have a dif-

ferential effect in space. This specification error may also imply autocorrelation in the

residuals of the MLR models with the estimation of biased or inefficient parameters. Both

effects can be captured with the support of models which explicitly consider situations of

spatial dependence, such as those presented in this study.

Methodology and application

This section presents the theoretical formulation of the trip generation models incorpo-

rating the accessibility factor and the presence of spatial autocorrelation in the residuals of

the models. The available data for estimating the trip generation models are also presented

here.

Modelling trip generation considering accessibility to opportunities

In trip generation modelling, a distinction must be made between trip production and trip

attraction models. Trip production models aim to predict the home-based journeys (HB),

where the origin or destination is the home, and the origin of non-home-based trips (NHB).
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Trip attraction models instead includes the trips which end is different from the home in

HB journeys, and the destination of NHB journeys (Ortúzar and Willumsen 2001).

Trip generation models can be classified by purpose. The three most commonly used

categories include: journeys for work, journeys for education and journeys for other pur-

poses. This latter class can be further divided into multiple sub-classes depending on the

requirements of the model (shopping, leisure, etc.). The estimation can be carried out using

disaggregated household data in the case of trip production or using aggregated zonal data

in modelling trip attraction. The conventional form of trip generation models corresponds

to a multiple linear regression:

y ¼ Xbþ e ð1Þ

where y is a vector with information about the dependent variable (produced or attracted

trips), b is a vector of estimated parameters and e is a vector of independent and identically

distributed (IID) errors. The matrix X contains information about the independent

variables.

Some authors have proposed the use of models which consider the truncated and dis-

crete nature of trip production (Chang et al. 2014; Lim and Srinivasan 2011). Among the

available alternatives is the non-linear Poisson regression model with probability given by

(Greene 2003):

PðyiÞ ¼
kyii e

�ki

yi!
ð2Þ

The Poisson regression assumes that each dependent variable yi is extracted from a

Poisson type discrete distribution with parameter ki, which commonly is logarithmically

linked to a linear combination of independent variables:

lnðkiÞ ¼ x
0

ib ð3Þ

However, this model has the limitation of considering that the mean and variance

conditioned by the Poisson distribution are equal, which could be problematic if

overdispersion in yi is detected. This hypothesis can be relaxed by estimating an additional

dispersion parameter, leading to a quasi-Poisson regression model (Zeileis et al. 2008).

Among the most commonly used independent variables in trip generation models are

those such as number of vehicles, household income, household size, land use and

accessibility. Various indicators have been proposed in the literature to capture the effect

of accessibility. Handy and Niemeier (1997) proposed a classification with three large

types: accumulated opportunities, gravity type and based on utility. The most frequently

used indicators are of the gravity type and generally take the following form:

Ai ¼
X

j

f ðEj;CijÞ ð4Þ

where Ej is a measure of the attraction of zone j and Cij is a measure of the journey cost

between zones i and j. The indicators of accumulated opportunities can be interpreted in a

specific way of (4) where Cij is equal to 1 if the opportunities are found within a cost cut-

off point defined by the analyst and 0 if not (Koenig 1980). The gravity indicators have an

advantage over the above in that they can differentiate the opportunities according to

journey cost without setting a binary cut-off point. The gravity indicators are also zonal,
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meaning that they provide a better understanding of the aggregate relationship between

transport and land use from those based on utility at the individual level (Horner 2004).

Three accessibility indicators were chosen for this work. The simplest consisted of

measuring access times from the centroids to the network plus travel times along the arcs

of the network to the city centre, from each of the zones in the study area. This type of

indicator can be useful in monocentric urban areas where there is a high centralised

concentration of opportunities. Access and travel times are not the only costs that could be

considered, but they provide a good proxy to the generalized travel cost of the trip. A

gravity indicator proposed by Cascetta (2009) and Coppola and Nuzzolo (2011) has also

been used for urban areas with a polycentric nature. These authors differentiate between

the active accessibility of a zone which can be defined as the capacity to reach the

opportunities present in other zones, and passive accessibility which is defined as the

ability of a zone to be reached from other zones. Active accessibility can be seen as a valid

indicator to predict the number of journeys produced by a zone and is formulated in the

following way:

ACC ACTi ¼
X

j

½expða2 � CijÞÞ � Ea1
j � ð5Þ

where Ej and Cij are the same as those present in Eq. (4) and a1 and a2 are parameters to be

estimated. This indicator can be easily calibrated using ordinary least squares (OLS)

transforming both sides of the expression (5) logarithmically.

Models considering the presence of spatial dependence between observations

LeSage and Pace (2009) provide an introduction to the spatial econometric models

developed in the literature. The best known spatial model is the SAR which assumes the

existence of a spillover effect in the dependent variable. The model is specified as:

y ¼ qWyþ Xbþ e ð6Þ

where q is the parameter of spatial autocorrelation, W is a weighted matrix N x N where N

is the number of observations and the remaining variables are equal to those present in (1).

If the only requirement is to specify the presence of spatial dependence in the error term

then a SEM model can be used, as follows:

y ¼ Xbþ u ð7Þ

u ¼ kWuþ e ð8Þ

where k is a parameter of autocorrelation of errors l, and e is a vector of IID errors. So in

this model the dependent variable of a location is a function of not only the independent

variables but also of the l errors of the neighbouring locations. The matrix W can be

defined in different ways depending on whether zonal or point data are available. The four

most common types of neighbourhood are: queen, rook, predetermined number of closest

neighbours and the specification of a maximum neighbourhood distance. The queen type

contiguity considers as neighbours all the adjacent locations sharing a border or a vertex

with the given location, while the rook type contiguity considers as neighbours those

locations that share a border with the reference location (Anselin 1988). Lesage and Pace

(2010a) proposed different measurements of the correlation between neighbourhood

matrices and showed how the influence of specifying W on the estimations of the
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parameters is minimal if they are correctly interpreted from the true partial derivatives

(direct impacts ? indirect impacts) and if the model is well specified.

Griffith (2013) has proposed another method for addressing spatial autocorrelation

which could be present in the residuals of the linear and non-linear models. Spatial fil-

tering, the method based on spatial filters defined as linear combinations of the eigen-

vectors chosen from a neighbourhood matrix, allow this correlation to be removed. The

eigenvectors are chosen in such a way that they show a spatial autocorrelation index which

is higher than a critical value according to the specified neighbourhood matrix. The first

eigenvector chosen E1 will be the group of real numbers with the greatest index of spatial

correlation according to the Moran I indicator. The vector E2, will present the highest index

of spatial correlation between the groups of real numbers not correlated with the E1 vector,

and so on. In this way these eigenvectors capture the spatial correlation present in the data

acting as control variables for the model.

Application to the urban area of santander

The MLR, SAR, SEM and SPO trip generation models were estimated using data from the

city of Santander (Spain). Santander is a small—medium sized city with a population of

178,400 in its urban nucleus rising to more than 280,000 in its sphere of influence. Most of

the trips in the city are made by foot (45 %) or by car (45 %), with the rest of trips made by

bus (8 %) and using other modes.

The data for the models’ estimation came from two sources. Firstly, a household survey

asked in 2010 by the University of Cantabria to 1,000 households and, secondly, the

national population and housing census (INE 2011) which provided data about the socio-

demographic characteristics and housing in the city. The households were chosen ran-

domly from a list of 73,395 households on the municipal register. The sample size was

determined by supposing a 90 % confidence level and a 5 % error level. In order to avoid

bias, the interviewer presented and collected the survey in person giving instructions about

how to fill in the forms. If there were problems when returning to collect the survey, the

interviewee was instructed to continue returning to the households up to three times in

order to minimise the number of non-response. Given that the postal address was available

for each of the surveyed households, their positions were located geographically onto an

information system (GIS) to know the area where they were located in, among a total of 86

zones in which the city was divided. This allowed the authors to relate the household

database with the census zonal data in preparation for estimating the trip production

models.

A total of 28 variables were considered for using with the household and zonal data (see

Tables 1, 2). Note that of the 1,000 households surveyed only 817 provided complete

answers. These were the ones used to estimate the trip production models.

The variables HBW-PV, HBS-PV and HBO-PV represent the trips produced by the

households: home-based work trips, home-based study trips and home-based other pur-

poses trips, using private vehicle (car or motorcycle). The variables HBW-NPV, HBS-

NPV, HBO-NPV represent the same trip purposes but in which the trips are made using

non—private vehicles (mainly on foot but also using public transport). These were the

dependent variables used in the trip production models.

The AGE variable represents the mean age of the household members. Given that the

relationship between age and trip production is probably quadratic, the variable has also

been specified squared in the models (AGE2). The variable CHILDREN represents the

number of children in the household under 6 years old. The variables WOMEN,
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Table 1 Descriptive statistics of the variables contained in the household survey database (N = 817
households)

Variable Minimum Maximum Mean SD Description

TTRIPS 0 22 5.53 3.55 Total Trips

HBW-PV 0 12 0.64 1.40 Home-based Work Trips by private vehicle

HBS-PV 0 8 0.21 0.86 Home-based Study Trips
by private vehicle

HBO-PV 0 8 0.55 1.29 Home-based Other Trips
by private vehicle

HBW-NPV 0 6 0.82 1.46 Home-based Work Trips by non-private
vehicle

HBS-NPV 0 12 0.72 1.63 Home-based Study Trips
by non-private vehicle

HBO-NPV 0 12 2.60 2.56 Home-based Other Trips
by non-private vehicle

AGE 15 95 50.19 17.60 Households members mean age

AGE2 225 9025 2828.23 1847.27 AGE variable squared

CHILDREN 0 2 0.02 0.18 N8 household children\6 years

WOMEN 0 4 1.22 0.70 N8 Household women

WORKERS 0 4 0.93 0.86 N8 Household workers

SIZE 1 6 2.24 0.95 Household size

D_INCOME2 0 1 0.29 0.45 Dummy income = 2

D_INCOME3 0 1 0.54 0.50 Dummy income = 3

D_INCOME4 0 1 0.13 0.34 Dummy income = 4

VEH 0 4 0.96 0.77 N8 household vehicles

Table 2 Descriptive statistics of the variables contained in the zonal database (N = 86 zones)

Variable Minimum Maximum Mean Std.
deviation

Description

ACCW-PV 490.56 535.56 524.56 7.80 Active Accessibility to work places
using PV

ACCS-PV 105.04 118.70 115.05 2.43 Active Accessibility to education
places using PV

ACCW-NPV 181.22 1493.72 1042.67 304.89 Active Accessibility to work places
using NPV

ACCS-NPV 33.68 213.74 140.77 45.95 Active Accessibility to education
places using NPV

CBD-PV 0 18.57 13.24 1.79 Travel time to CBD using PV (min)

CBD-NPV 0 90.55 29.51 17.44 Travel time to CBD using NPV (min)

HOUSEHOLDS 124 2104 727.28 430.25 N8 Households

EMP 37 4604 778.38 958.27 N8 work places

EDU 0 12857 503.45 1458.19 N8 Education places

POP 458 5904 2074.38 1217.57 Population

POP_DEN 1.54 891.81 210.37 208.58 Population density (POP/ha)
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WORKERS and SIZE represent, respectively, the number of women, workers and the total

number of people in the household.

The income variable referring to the overall monthly household income can be within

the following ranges: (1) income less than 600 euros (€), (2) income from 600 to 1200 €,
(3) income from 1200 to 2500 € and (4) income over 2500 €. To avoid non—linearity

problems, the income variable has been transform in three dummy variables:

D_INCOME2, D_INCOME3 and D_INCOME4. As each household can only belong to

one of the intervals, the corresponding dummy variable takes a value of 1 in that class and

0 in the others. If the household belongs to the interval (1), the three dummy variables take

the value 0.

The accessibility indicators: ACCW-PV, ACCS-PV, ACCW-NPV and ACCS-NPV

were calculated from expression (5). These four accessibility indicators represent,

respectively: accessibility to work by PV, accessibility to places of education by PV,

accessibility to work by NPV and accessibility to places of education by NPV. The

dependent variables used in their calibration were: the trips by PV for work and other

purposes, the PV trips for study purpose, the NPV trips for work and others purposes and

the NPV trips for study purpose. Given that the accessibility indicators try to evaluate the

interactive potential of an area, the real trip distribution provides the most suitable data for

their calibration. The number of jobs and the education places in zone j (see variables EMP

and EDU in Table 2) were introduced into ACCW and ACCS, respectively, as variables of

opportunities. The places of education have covered all levels: primary, secondary and

university. Accessibility to employment is considered to be a good indicator of both work

related and other purposes trips, while places of education are a better accessibility indi-

cator of trips made for study purpose. The cost matrix used corresponded to the sum of

access times, from each centroid to the transport network, and travel times at free flow by

car for the PV accessibility indicators. The composite cost (Ortúzar and Willumsen 2001)

of access plus travel times by foot and bus modes was used for the NPV accessibility

indicators.

As can be seen in Table 3 the estimations of the parameters gave fits, according to R2 of

around 0.6 except for the case of accessibility to education places by PV where the fit was

poorer. The parameters had the expected signs (positive for opportunities and negative for

travel times) where the impedance parameter is somewhat greater in the case of accessi-

bility to education places and using NPV which is what was to be expected.

The CBD-PV and CBD-NPV variables can also be interpreted as measures of acces-

sibility but in this case only for the opportunities present in the city’s urban centre. They

Table 3 Estimation of the parameters of the accessibility indicators

Variable Accessibility
Employment (PV)

Accessibility
Education places
(PV)

Accessibility
Employment (NPV)

Accessibility Education
places (NPV)

a p value a p value– a p value a p value

Ln_E 0.330 0.000 0.185 0.000 0.596 0.000 0.472 0.000

Cost -0.019 0.000 -0.026 0.000 -0.041 0.000 -0.061 0.000

R2 0.66 0.32 0.73 0.59
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represent the access and travel time, in min, taken by a private car at free flow and the

access and travel composite cost, in min, of foot and bus modes respectively. The city of

Santander has a marked monocentric character, meaning the variables of accessibility and

CBD show an important negative correlation with R2 below -0.7 in all the indicators (see

the times to CBD in Fig. 1). The employment density (see Fig. 2) also highlights this

monocentric nature of the city with a great many jobs concentrated along this central axis.

The meanings of the remaining variables: HOUSEHOLDS, EMP, EDU, POP and

POP_DEN are described in Table 2.

Results and discussion

Trip production for work purpose without and considering spatial
dependence between observations

Table 4 present the parameters for HBW trip production models without and considering

spatial dependence between observations. The models were estimated using OLS (MLR),

maximum likelihood (SAR and SEM) and quasi-maximum likelihood (SPO). The speci-

fications of the MLR models include all the variables present in the data base except for

HOUSEHOLDS and POP_DEN as they showed a high correlation with the variable POP.

In addition, all the models are shown only with the ACC variable in the specification given

that this and CBD could not be used simultaneously because of their strong correlation.

Only the variables which were clearly significant in the MLR models were considered in

the case of the spatial models. In brackets, below the estimated parameters, are the p—

value of the t test considering that the parameter is significantly different from zero if the

Fig. 1 Distribution of households, total trips by household and travel time to CBD by Private Vehicle
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value is equal to or lower than 0.1 (a confidence level of at least 90 % to avoid a type l

error).

Eight models were estimated corresponding to the home-based trips for work purpose.

The spatial models were specified considering the possible presence of spatial dependence

in the dependent variable (SAR), in the residuals of the model (SEM) and using spatial

filtering (SPO). The programming language R and the software package spdep (Bivand

et al. 2015) were used to estimate the models.

The MLR models had a fit of 20 and 30 % of the explained variance. The variable

WORKERS was clearly significant and positive with an effect of 0.5 trips in the PV model

and 1 trip per additional worker in the NPV model. The variable AGE was significant to a

95 % confidence level and had a positive sign only in the NPV model. In this case AGE2

was negative suggesting that after reaching a certain age, the journeys for work purpose

start to decrease. The variable WOMEN was not significant for any case, while CHIL-

DREN was negative for HBW-NPV journeys, suggesting that households with children

tend to use less alternative transport modes when the workers travel to their jobs. The

vehicles owned by the households (VEH variable) were clearly significant in the two

models although with opposite signs (car ownership reduces the journeys made using

alternative modes to the private vehicle). Household income was not a significant factor in

explaining trip production in any of the cases and POP was only significant and positive in

some of the PV models.

The variable ACC is the most relevant to the aims of this study. The variable was

significant in the PV trips and clearly not significant in the NPV trips. In the PV trips, ACC

showed a negative sign, meaning these are reduced, ceteris paribus, as accessibility to work

opportunities increased. The introduction of the variable in a logarithmic form was also

tested to capture if the accessibility had decreasing returns, but the results did not increase

Fig. 2 Employment density in the study area
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the goodness of fit of the models or the significance of the variable. If the models are

estimated using the CBD variable, the results for other parameters were very similar, and

the CBD parameter showed a positive sign and was more clearly significant than the

accessibility indicator (parameter value: 0.125 and p value = 0.000 in the MLR-HBW-PV

model). The effect is therefore the same, as the distance from the centre increased so did

the number of journeys made by private vehicle.

For the two MLR models, the Moran I index was calculated for the residuals of the

regression. The index was significant in the case of the PV trips, leading to the acceptance

of the hypothesis of spatial autocorrelation in the residuals of the model. The Robust

Lagrange Multiplier Test (Robust LM Test, see Table 4) was also performed on the MLR

models in order to confirm the presence of spatial dependence in the dependent variable

(LM—lag) or in the error term (LM-Error). The test was clearly significant for the two

cases in the HBW-PV trips although the LM—lag test showed a higher value.

The trip production models considering spatial dependence were specified with the

same variables which had shown to be significant and not correlated in the MLR models.

Different specifications were also made to check if the variables that had previously not

been significant became significant using the spatial models, however, in all cases the

results were negative. Spatial autoregressive models with autoregressive disturbances

(SARAR models) were also tested but the results were very similar to the SAR and SEM

models considering the parameters estimated and the goodness of fit.

Given the nature of the household data (point data structure), a neighbourhood matrix

with ten nearby neighbours was used. It was preferred to use this type of matrix rather than

a distance matrix because the latter may generate a very irregular distribution of neigh-

bours between observations. This phenomena is to be avoided because it may violate the

regularity hypothesis which is required to obtain the asymptotic properties of the esti-

mators and the statistical tests (Anselin 2002).

The parameters obtained in the MLR models are similar to those from SAR and SEM,

although the MLR models do have a certain tendency to slightly overvalue some values

compared to the spatial models (for example the parameters of the variable ACC equal to

-0.013 vs. -0.009 in the SAR model). The SPO model was estimated as a quasi—Poisson

model, given that overdispersion was significant using a regression-based test (Cameron

and Trivedi 1990).

The accessibility indicator ACC was nearly significant in the SAR model and signifi-

cant, at a 90 % confidence level, in the SEM and SPO models. If the CBD variable is

introduced, the parameter was clearly significant (e.g. parameter value: 0.094 and p-

value = 0.000 in the SAR-HBW-PV model). By calculating the elasticity of the ACC

variable in the HBW trips using the expression bðX
�
YÞ, it can be seen how the PV

generated trips are elastic with an absolute value between 7.4 and 10.7 %, depending on

the model per 1 % increase in the accessibility indicator. In the case of the Poisson model,

the estimated parameter gives a reduction of 1.6 % in the trip production by PV, per one

additional unit increase in the ACC indicator.

The fit of the SAR and SEM PV models was very similar but slightly better in the case

of the SAR model. In both cases the q or k parameters were clearly significant. The LR

test, which allows the fit of the SAR and SEM models to be compared with the fit of the

MLR models (Ortúzar and Willumsen 2001), presented significant values (i.e. the spatial

models had a significantly better fit to the data). The Moran I test performed on the

residuals, also showed that the spatial correlation decreased and was not statistically sig-

nificant at a 95 % confidence level in all the models.
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Therefore, the results seem to indicate the presence of a moderate degree of spatial

autocorrelation in the error term, in the case of the MLR-HBW-PV model. Figure 3 shows

the Getis—Ord Gi* statistic (Ord and Getis 1995) estimated with the residuals of this

model. The point observations from the households have been transformed into polygons

using the Thiessen polygons technique. Note how the positive residuals, where the model

makes predictions below the observed values, are significantly concentrated in the city

outskirts, whereas the negative residuals are concentrated significantly closer to the city

centre. This would suggest that the accessibility variables ACC and CBD partially capture

the effect of increased HBW and PV trip generation producing an effect of spatial cor-

relation in the residuals. This effect is minimized by the spatial models meaning spatial

correlation ceases to be significant.

Trip production for study purpose without and considering spatial
dependence between observations

The models of trip production for study purpose can be seen in Table 5. The fit of the MLR

models was similar to that of the models for work purpose although slightly higher in the

case of the NPV trips and slightly lower for the PV trips. The variable accessibility to

places of education was clearly not significant for the PV and NPV trips in the MLR

models. However, if the models are specified using the CBD variable, this was significant

for the PV trips with an estimated parameter of 0.04 (p—value: 0.02) and an elasticity of

2.5 % for an increase of 1 % in journey time. The LR tests were significantly better in the

cases of SAR-HBS-PV and SEM-HBS-NPV although with moderate values. The Poisson

models also showed a significant overdispersion because of which they were estimated as

quasi—Poisson models. In the case of SPO-HBS-PV, if the model was specified with the

Fig. 3 Getis—Ord Gi* statistic in the residuals of the MLR-HBW-PV models
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CBD variable, the estimated parameter was also significantly different from 0, with a value

for the parameter of 0.163 (p-value: 0.018).

Trip production models for other purposes without and considering spatial
dependence between observations

Table 6 shows the parameters for the trip production for other purposes in the MLR, SAR,

SEM and SPO models.

The MLR models had a poor fit in the case of the PV trips and a better performance in

the NPV with 30 % of the explained variance. The most noteworthy change with respect to

HBW and HBS models was the positive sign of the ACC parameter in the case of NPV

trips. This means that in this case, greater accessibility to opportunities significantly

increases the number of trips that are produced. In the case of the journey time to the city

centre, the longer the journey time, the fewer household trips were produced by NPV with

a parameter value equals to -0.032 (p—value: 0.000). The Moran I index presented clearly

significant values whereas the LM—test was only significant for the lag type model.

In the spatial models, the accessibility variables continue to be clearly significant for the

HBO-NPV. If the elasticities of the ACC variable are calculated for the HBO-NPV trips, it

can be seen how the trips being produced are inelastic, with a value between 0.4 and 0.8 %

according to the model. The quasi—Poisson SPO-HBP-NPV model estimated an increase

of 0.1 % for one additional unit in the indicator of accessibility to opportunities. This

shows that although accessibility increases so does the production of HBO trips using

alternative modes to the private vehicle, although the growth is not very high.

Figure 4 shows a representation of the Getis—Ord G* statistic for the residuals of the

MLR-HBO-NPV model, once again representing the households as Thiessen polygons. In

this case, contrary to the details shown in Fig. 3, the positive residuals are mainly

Fig. 4 Getis—Ord Gi* statistic in the residuals of the MLR-HBO-NPV model
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concentrated in the city’s central zone, whereas the negative residuals are located in the

peripheral areas. This effect explains the spatial correlation in the residuals of the MLR

models, an effect which is minimized by the spatial models in which the Moran I index

ceased to be significantly different from zero with the exception of the SAR-HBO-NPV

model.

Total impacts of the SAR models, eigenvector coefficients and comparison
of the results

The total impacts on the dependent variable were also calculated in the SAR models. These

effects take into account the direct effect of each independent variable on the dependent

variable, as well as the indirect effects of spatial spillover from the dependent variable

towards neighbouring observations and from neighbouring observations towards the local

dependent variable (see Table 7) (LeSage and Pace 2010b). Taking these direct and

indirect effects into account, the SAR models infer that the total effect of changing certain

variables, particularly SIZE, WORKERS and VEH, is greater than that estimated using the

MLR models. This data provides evidence of the existence of spatial effects on the trip

production rates. The parameters estimated in the Poisson models for the eigenvectors of

the spatial filter can also be seen in Table 8. The SPO-HBO-NPV model was the one that

presented a greater number of significant eigenvectors when constructing the spatial filter.

Comparing these results with other studies, these agree with those of Vickerman (1974)

who showed that accessibility was a positive factor in trip production, mainly for optional

journeys for shopping or leisure purposes. Furthermore, the fits of the models were similar

to those obtained by Vickerman after they removed the collinearity problems associated

with the models. Using a similar study area to the one used in this research (monocentric

small—medium sized city), Hanson and Schwab (1987) also found a significant, although

weak, effect of accessibility on optional journeys, although the only indicator of accessi-

bility used by these authors was the accumulated opportunities type, they did not use

gravity type indicators or journey time to city centre in spite of even the authors themselves

recognising ‘‘If distance of the residence from the central business district (CBD) can be

taken as a valid surrogate for the density of opportunities (…) then there is some evidence

that low accessibility levels are related to lower trip frequencies’’. Thill and Kim (2005)

found that trip production was affected positively or negatively by accessibility, similarly

to the results of the models presented in this research considering the difference between

using PV and NPV. Cervero and Kockelman (1997) also found that accessibility could be a

negative factor in trip production for the PV mode as has been found in the models

presented.

If these results are compared to those obtained in other research including the possible

presence of spatial dependence between observations, Gamas et al. (2006) found that the

MLR models they estimated showed biased parameters that overvalued the influence of

specific variables compared to spatial models. This phenomenon is similar to that found in

the present study when addressing only the direct effects of each independent variable.

However, if the indirect effects are also considered in the case of the SAR model (untested

by Gamas et al. (2006)) the effect of certain variables may be greater than that found by the

MLR models. The results of Kwigizile and Teng (2009) also found that the ordinary

regression models generally overvalued the estimated parameters when compared with the

spatial models, although the authors did not address the influence of indirect effects.

Finally, Kim et al. (2009) found the presence of spatial autocorrelation in both non-home-

based (NHB) trip production and attraction. There seems to be evidence that both trip

1598 Transportation (2017) 44:1577–1603
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production and attraction may present the effects of spatial correlation and that this is

dependent on the characteristics of the study area.

Validation of the models

The models in the predictive phase were validated using a K—Fold type cross—validation

(James et al. 2014). The models chosen for the validation were MLR-HBW-PV, SAR-

HBW-PV, SEM-HBW-PV and SPO-HBW-PV among the PV models and MLR-HBO-

NPV, SAR-HBO-NPV, SEM-HBO-NPV and SPO-HBO-NPV among the models in other

modes of transport. These models were selected because they were the ones that showed a

greater degree of spatial correlation and where the LR test demonstrated a better

improvement in the fit compared with the MLR models.

The SAR and SEM models can work in predictive phase using the technique proposed

by Bivand (2002). Bivand proposes separating the model terms in the trend, the signal and

the noise. The trend in both the SAR and SEM models is given by the matrix Xb, in other

words, the matrix of independent variables and the vector of parameters to be estimated.

The signal in the SAR model can be found using:

q
^
Wy

^
¼ q

^
WðI � q

^
WÞ�1

X b
^

ð9Þ

The above has the inconvenience of losing the part of the signal belonging to the error

term. In the SEM model the signal is equal to 0 meaning that the prediction is given only

by the trend.

The validation was done by randomly dividing the sample into 10 groups, successively

estimating the models with 9 of the groups and performing the prediction with the

remaining group. This process was repeated with all 10 groups until all the observations

had a prediction value in validation mode. Later, the mean squared error (MSE) was

calculated for the residuals of the predictions compared to the real value. In various

empirical applications the cross—validation with 5 or 10 groups has shown no excessive

bias or variance in the estimation of the MSE (James et al. 2014; Kohavi 1995). The cross-

validation estimate is computed for k groups as:

CVk ¼
1

k

Xk

i¼1

MSEi ð10Þ

The results of the validation were similar for the MLR, SAR and SEM models (see

Table 9). However, the SAR and SEM models have a slight advantage over the MLR based

Table 9 Cross—Validation of
the models

Model CV

MLR-HBW-PV 1.578

SAR-HBW-PV 1.572

SEM-HBW-PV 1.576

SPO-HBW-PV 1.431

MLR-HBO-NPV 4.685

SAR-HBO-NPV 4.682

SEM-HBO-NPV 4.646

SPO-HBO-NPV 4.396

Transportation (2017) 44:1577–1603 1599

123



model in terms of their ability to predict trip production in both the PV and NPV modes.

This improvement in prediction is almost certainly due to the spatial models helping to

reduce spatial correlation in the residuals generated in the periphery and the urban centre

with the HBW and HBO trips, respectively. The Poisson regression models SPO-HBW-PV

and SPO-HBO-NPV presented the lowest MSE. This was probably due to the better

adaptation of the Poisson distribution to the patterns of household trip generation.

Conclusions

This article has described work to estimate MLR, SAR, SEM and quasi-Poisson models

considering spatial effects between observations, to predict the number of trips made by a

sample of households in the urban area of Santander (Spain). The models were specified

with indicators of accessibility to opportunities in order to determine if this is a significant

factor when explaining trip generation. This aspect is important when considering that

journey demand should be sensitive to the transport costs implied in accessing the

opportunities, an expected fact according to the available theory about induced demand

and microeconomic logic.

The estimated MLR models showed how the production of journeys is sensitive to the

ACC variable, a gravity type accessibility indicator, and the CBD variable, the time it takes

to get to the city centre. This sensitivity was the opposite in the trips produced using private

vehicle and other modes of transport. While in the case of PV trip production for work

purpose, accessibility elastically reduced the number of trips, for other modes of transport

(mainly on foot), accessibility could increase trip production, especially for optional trips,

although in a non-elastic way. These results provide evidence that, on an intraurban scale

and for an urban area like the one being studied, accessibility could be a significant factor

in the production of trips and that trips made using a private vehicle could be reduced by

increasing accessibility to opportunities. Therefore, it would be recommendable to use

some type of accessibility indicator for simulating the possible effects of changes made to

the transport supply or the pattern of activities. If this is not done then the predictions

would surely misestimate the transport demand of optional trips by NPV or mandatory trips

by PV in the network being studied. In the case of the urban area of Santander, a city with a

monocentric distribution of opportunities, the journey time from each zone to the city

centre was an indicator for estimating trip production as good as the gravity type indicator

in terms of the goodness of fit of the models. In the case of other urban areas with more

decentralised distributions of opportunities, gravity accessibility indicators could be more

suitable for predicting trip production.

The models which considered the presence of spatial dependence between observations,

SAR, SEM and SPO were able to support these results and deal with the existence of a

significant degree of spatial dependence in the production of HBW-PV and HBO trips and,

to a lesser degree, HBS trips. The consideration of the presence of spatial dependence and

the direct and indirect effects of the variables in the SAR production models was important

in the estimation and correct interpretation of the parameters which in the cases of the

variables SIZE, WORKERS and VEH showed greater effects than those estimated by the

MLR models. This phenomenon points to the effects of spatial correlation in the residuals

derived from the fact that in the urban periphery the MLR models underestimate the

production of HBW trips using private vehicle, while the production of HBO trips by

alternative modes of transport was underestimated in the urban centre. Although this effect
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is not of any great magnitude in the study area (a small-medium sized city without sig-

nificant congestion problems), it could be higher in larger urban areas with worse traffic

conditions. This effect could be due to mutual social influence between households

resulting from different social characteristics between city centre households and those in

the suburbs. In addition, the lack of a variable with spatially differentiated effects could

also cause spatial autocorrelation in the residuals of the linear models although the fit of the

SAR models and the LM-lag tests were higher than the fit of the SEM models and the LM-

error tests for both, the MLR-HBW-PV and the MLR-HBO-NPV specifications.

Finally, the validation of the models using cross—validation with 10 groups, showed

that the spatial models had a mean squared error slightly lower than the MLR models in the

prediction of overall trip production, derived from the explicit consideration of the effect of

spatial correlation in the residuals in the centre and periphery of the study area. In addition,

the SPO models performed better than the continuous models by considering the truncated

and discrete nature of trip generation.

Future lines of research stemming from the present work could involve the application

of similar models in other study areas to determine the importance of differences in

accessibility and spatial correlation between observations in larger cities with greater

problems of traffic congestion. Furthermore, it would also be of interest to test the exis-

tence of spatial heterogeneity in the parameters of trip generation models, a path already

opened by other researchers (Roorda et al. 2010) which could also be applied in evaluating

the accessibility effects.
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