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Abstract The replacement I-35W bridge in Minneapolis saw less traffic than the original

bridge though it provided substantial travel time saving for many travelers. This obser-

vation cannot be explained by the classical route choice assumption that travelers always

take the shortest path. Accordingly, a boundedly rational route switching model is pro-

posed assuming that travelers will not switch to the new bridge unless travel time saving

goes beyond a threshold or ‘‘indifference band’’. Indifference bands are assumed to follow

lognormal distribution and are estimated in two specifications: the first one assumes every

driver’s indifference band is drawn from a population indifference band and the second one

assumes that the mean of drivers’ indifference bands is a function of their own charac-

teristics. Route choices of 78 subjects from a GPS travel behavior study were analyzed

before and after the addition of the new I-35W bridge to estimate parameters. This study

provides insights into empirical analysis of bounded rationality and sheds light on indif-

ference band estimation using empirical data.
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Introduction

The I-35W Mississippi River bridge plays a critical role in transporting commuters to

downtownMinneapolis and theUniversity ofMinnesota. Its collapse in 2007 forced 140, 000

daily users (Guo andLiu 2011; Zhu et al. 2010;Di andXuan 2014a) to switch to other parallel

bridges or to cancel their trips. Accordingly, the I-94 Bridgewas restripedwith onemore lane

in each direction to relieve traffic pressure across the river. A year later, a replacement I-35W

bridgewas rebuilt over the same location and the extra lanes on I-94were closed. The addition

of the bridge offered commuters another option to cross the river. Surprisingly, only 100, 000

daily trips on average were observed on the new bridge (Danczyk et al. 2015; Zhu 2011).

According to Zhu (2011), the total travel demand in the Minneapolis-St. Paul metropolitan

area dropped slightly in 2008 due to the economic crisis, but not enough to explain this fall-

off. In contrast, daily trips on the I-94 Bridge returned to the original level before the I-35W

bridge collapsed. Therefore, in this paper, we assume that variation in travel demands is not

the main reason for the significant traffic reduction on the replacement bridge.

To further understand the aforementioned phenomenon, two major GPS-based experi-

ments conducted by University of Minnesota researchers (Carrion et al. 2012; Zhu 2011;

Zhu et al. 2012) will be used in this study. In these experiments, 143 commuters were

selected whose route choices might be affected by the addition of the replacement bridge.

Their trips were tracked by GPS two to three weeks before and eight to ten weeks after the

reopening of the new I-35W bridge. By comparing route choices before and after, it is

posited that commuters’ ‘‘stickiness of driving habit’’ (Zhu 2011) prevented them from

taking the new bridge and thus resulted in a traffic flow drop on the new bridge, even using

the new bridge can save their travel time.

The disruption and rebuilding of the I-35W Bridge provides us a rare opportunity to use

GPS travel survey data to study route choices in response to the change in road network’s

topology. This paper aims to examine route switching behavior using GPS travel data

collected in Minneapolis in 2008.

The rest of the paper is organized as follows: In ‘‘Route switching behavior analysis’’

section, we discuss the details of the GPS experiments and present two categories of

commuters of interest, i.e., switchers and stayers, as well as worriers and no-worriers. In

‘‘Route switching behavior modeling’’ section, two models with different indifference

band specifications are presented. Accordingly, indifference bands are estimated using

GPS travel survey data with probit regression. We will show that subjects’ switching

behavior primarily depends on time saving, their bridge usage history, and whether they

are worried about driving on the bridge. In ‘‘Discussions’’ section, limitations of the paper

and the generalization of the model is discussed. Conclusions and future research direc-

tions follow in ‘‘Conclusions and future research directions’’ section.

Route switching behavior analysis

GPS-based tracking and travel survey

Figure 1 shows eleven bridges used by subjects across the Mississippi River before and

after the new bridge’s reopening. The background is the TLG network (generated and

maintained by Metropolitan Council and The Lawrence Group) which encompasses the

entire seven-county Minneapolis-St. Paul Metropolitan Area.
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To capture commuters’ travel behavioral change through longitudinal observations of

travel choices before and after the replacement I-35W Bridge opens, two types of GPS

studies were performed: (1) real-time tracking GPS led by Georgia Institute of Technology

and conducted by Vehicle Monitoring Technologies (VMTINC) and (2) logging GPS

funded by the Oregon Transportation Research and Education Consortium (OTREC2).

There are total 143 subjects (VMTINC recruited 46 subjects while OTREC2 had 97
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subjects). These subjects were: commuters in the Twin Cities, between the age of 25-65,

legal drivers, have a full-time job and follow a ‘‘common’’ work schedule, drive alone to

work, and are likely to be affected by the opening of the replacement I-35W Bridge (as

most of them should cross the Mississippi River for commuting according to their home

and work locations). Interested readers can refer to Zhu et al. (2010) for more details on

participant selection. These two GPS studies provide the following data for 143 subjects

two to three weeks before September 18, 2008 (the day when the replacement I-35W

bridge was opened) and one or two months afterwards:

• Each subject’s home and work locations;

• Each subject’s day-to-day commuting routes;

• Each subject’s day-to-day travel time.

Figure 2 illustrates home and work locations of 143 subjects participating in the study.

Subjects’ sociodemographic information, including age, income, gender, race, and

education degree, was also collected via one-time online survey, as well as their familiarity

with Twin Cities’ road network (e.g., years living in Twin Cities, the current home and the

work place, years living in the current home, and years working in the current workplace).

To understand whether occurrence of the disaster affected subjects’ choices, questions

were asked as to whether they are worried about driving on or under bridges. Each

subject’s travel mode to work was also explored. To understand subjects’ bridge choice

before its collapse, we also asked them whether they used the old I-35W Bridge to

commute, among them 88:4% claimed they used the I-35W Bridge as their usual commute

Fig. 2 Home and work locations of 143 subjects [cited from Levinson et al. (2012)]
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route before its collapse and 70% claimed that they planned to use the new I-35W bridge

after its opening.

Subject classification

A ‘‘crosser’’ is the commuter whose home and work locations are on different sides of the

river. Specifically, a crosser’s commuting route options may be enlarged by the addition of

the new bridge. Otherwise the subject is a ‘‘non-crosser’’. In general a non-crosser’s route

options are not enlarged by the existence of the new bridge.

When the addition of the new bridge saves crossers’ commuting time, a crosser chooses

either to change to the new bridge or not. Thus we further divide those crossers into the

following two categories:

• A crosser who switches to the new I-35W bridge when the new travel time is shorter is

a ‘‘Switcher’’;

• A crosser who does not switch to the new I-35W bridge when the new travel time is

shorter is a ‘‘Stayer’’.

Remark

1. Switchers in our definition refer to those who switch to I-35W Bridge, excluding those

who switch routes but to a different bridge or different road segments. We did observe

two subjects who switched from one existing bridge to another after the new bridge

was built and their travel time got improved, but choosing the new bridge can actually

save them more commuting travel time. To avoid confusion, we will not include these

two subjects in this study.

2. To model route switching behavior, in this paper, we are only interested in those

subjects whose travel time can be saved by taking the new bridge. In the scenarios

when the reopening of the I-35W Bridge cannot save travelers travel time: if they

stayed, that is because the new route is not appealing, which will not help understand

behavior; if they switched, other factors than travel time may dominate their choices

and those factors may not be easily observed. Therefore only those whose travel time

saving is positive are taken into consideration.

Switchers and stayers

Most subjects use more than one path and switch routes from time to time. To facilitate

route switching modeling, we define a ‘‘commonly chosen route’’ as the route a commuter

uses most frequently during the study period. The commonly chosen route from the

beginning of the study period up to September 18, 2008 is the ‘‘before-route’’, and the one

from September 18, 2008 until the end of the study is the ‘‘after-route’’.

Remark

1. Even after drivers stabilize their route choices, drivers may still switch en-route at

junction points or intersections, but commuters do not switch commuting routes as

frequently as they do for other travel purposes. Accordingly, the travel time along all

possibly chosen commuting routes should be quite similar, otherwise commuters will

not stay on those longer routes. To include these possible alternative routes, we define
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the same routes as those which overlap at least 95% in length and start within a 600 m

(approximately 4 city blocks) radius from home and end in a 600 m radius from the

work location.

2. Each commuter’s experienced travel time on a path varies from day to day due to

uncertainty in traffic conditions. Therefore ‘‘average travel time’’ on a before-route or

on an after-route for a commuter is computed as the mean of day-to-day GPS

measured travel time on that route when he or she uses it.

In this study, 47 switchers and 31 stayers are identified. So there are 78 subjects of

interest.

To obtain the travel time savings brought by taking the new I-35W bridge, we need to

identify routes via the new bridge. For switchers, the after-route is the route via the new

bridge. Stayers, on the other hand, never use the new bridge and therefore a route via

I-35W bridge for each stayer should be first identified. To identify stayers’ hypothetical

travel time on the new bridge, a tool generated by Zhu (2011), i.e., speed map, will be used.

The speed map aggregates GPS data from the larger sample of 140 drivers including the

sub-sample analyzed here. It was pooled from 6, 059 commuting trips out of 25, 157 total

trips. Only links with more than 5 observations before and after the new bridge’s reopening

were included. The average link speed was estimated from GPS data of all probe vehicles

passing this link during the experiment period. This map covers a high portion of the

freeway system and a fairly high portion of arterial roads, especially trunk highways and

downtown streets. Interested readers can refer to Zhu (2011) for details. Based on the speed

map, each link’s average travel time can be computed. Then estimated travel times along a

route is the sum of average travel times of all links along that route. A shortest path is

generated using the speed map between a stayer’s home and work location as his or her

new route assuming as if he or she uses the new bridge.

Remark Subjects’ commuting times are not the same, to make sure the following com-

parison is performed under the same benchmark, travel time saving proportion instead of

absolute travel time saving will be used. Denote M
ðnÞ as the travel time saving proportion

by taking the new bridge for commuter n. It is computed as M
ðnÞ ¼ C

ðnÞ
a �C

ðnÞ
b

C
ðnÞ
b

, where

C
ðnÞ
b ;CðnÞ

a are estimated travel times experienced by commuter n before and after the

reopening of the new bridge.

Table 1 summarizes the statistics of travel time saving:

We can see clearly that switchers’ travel time saving by taking the new bridge is larger

than that for stayers, showing that travel time saving is a major reason for people’s

switching to the new bridge.

Old-users and non-users

Among 78 subjects, 44 used the old I-35W bridge regularly before it collapsed and 34 were

not the regular old bridge users. Old bridge users (i.e., old-users) are pre-disposed to use

the new bridge while non-users may not use it even it could save substantial travel time.

Therefore, old-users and non-users should display different route choice behavior in

response to the addition of the new bridge. The frequency of stayers and switchers for non-

users and old-users are summarized in Table 2.

Figure 3 illustrates the boxplot of travel time saving proportion statistics for two groups

(non-user and old-user). The dots are data which are outside third quartile and represent

1174 Transportation (2017) 44:1169–1194

123



outliers. Overall the mean and the median travel time savings for switchers are higher than

those of stayers. The mean travel time savings for non-users are slightly higher than those

for old-users.

We further divide time saving ranges into 11 bins respectively. The total number of

switchers and stayers for each bin can be calculated. Figure 4 illustrates the distribution of

switchers and stayers for each bin for old-users. In Fig. 4a, bars illustrate the frequencies of

switchers (in blue) and stayers (in red) within each bin. Lines with markers represent

cumulative percentages of switchers (in blue) and stayers (in red) among all old-users. As the

time saving increases, generally speaking, the proportion of stayers gradually decreases to

zero (with only one outlier for the bin (26, 30 %). It suggests that all drivers switched to the

new bridge, apart from those with negligible time savings. Similar analysis can be applied to

non-users shown in Fig. 4b with one outlier for the bin (24, 27 %). Both patterns reflect

bounded rationality, but non-usersmay have higher thresholds to switch, because they are not

aware of the new alternative or they do not consider the new bridge a valid one.

The proportion of switchers and stayers displays opposite patterns for old-users and

non-users. For older users, there are more switchers than stayers when time saving is

greater than 5 %. When the time saving is less than 35 %, only 20 % of subjects stay while

the remaining 80 % switch to the new bridge. On the other hand, for non-users, when the

time saving is within 27, 70 % of subjects stay while only 30 % switch to the new bridge.

Worriers and no-worriers

After bridge collapse, people tend to avoid this bridge because of psychological reasons.

Therefore we also want to analyze people’s fear of using the bridge versus their route

switching behavior. Table 3 summarizes the number of observations for each category.

Table 1 Estimated time saving
statistics

Statistics Switcher Stayer Total

Distribution

Counts 47 31 78

Percentage 60.3 39.7 100.0

Average travel time (minute)

Before 16.4 19.2 17.5

After 14.5 18.2 16.0

Difference 1.9 1.0 1.5

Average travel time saving percentage (%)

Average 13.0 5.4 10.0

Minimum 2.6 0.4 0.4

Maximum 10.5 25.2 34.4

Median 34.4 3.5 7.9

Table 2 Contingency table of
subjects’ categories

Non-user (U = 0) Old-user (U = 1) Total

Stayer (y = 0) 23 8 31

Switcher (y = 1) 11 36 47

Total 34 44 78
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Figure 5 illustrates time saving versus bridge usage history and fear. We can see that

people who are worried about driving on the bridge tend to experience higher time saving

for both switchers and stayers. In other words, they only switch when the time saving is

really significant, otherwise they will stay. Worried switchers is the only exception.

Based on the above analysis, we can see that route switching behavior also depends on

other factors than travel time, such as bridge usage history and psychological fear. As a

result, people do not necessarily switch to the new bridge even though it provides a shorter

path. On the other hand, there does exist a positive threshold only beyond which people

will switch routes, which indicates bounded rationality. In the next section, thus, we will

develop methodologies for indifference band estimation.

Route switching behavior modeling

Literature review

A route contains a set of attributes: travel distance, travel time, number of intersections,

scenery, and so on. In the existing literature, three decision strategies are proposed to

describe one’s route choice decision-making process:
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(a)

(b)

Fig. 4 Travel time saving distribution for both switchers and stayers among, a old-users and b non-users
respectively

Table 3 Contingency table of
subjects’ categories

Stayers (y = 0) No-worry (W = 0) Worry (W = 1) Total

Non-user (U = 0) 20 3 23

Old-user (U = 1) 6 2 8

Total 26 5 31

Switchers (y = 1) No-worry (W = 0) Worry (W = 1) Total

Non-user (U = 0) 9 2 11

Old-user (U = 1) 31 5 36

Total 40 7 47
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1. Compensatory strategy: there exist trade-offs among attributes. In other words, the

attribute of one alternative can be compensated by another attribute. The traditional

random utility maximization framework utilizes the compensatory strategy;

2. Non-compensatory strategy: each alternative is treated as a set of attributes (i.e,

aspects). Alternatives are selected attribute-by-attribute. For one alternative, its

superior attribute cannot compensate its inferior attribute. The non-compensatory

strategy can be heuristic as only a partial set of alternatives are compared to obtain an

optimal one. It includes two strategies (Rasouli et al. 2015): conjunctive (i.e., an

alternative is selected only when all attributes meet requirements) and disjunctive (i.e.,

an alternative is selected if at least one attribute meets requirements). Satisfactory

heuristic (Simon 1955) is one example of conjunctive strategy as an alternative is

selected if it meets the minimum aspiration level on all attributes (Simon 1955).

3. Semi-compensatory strategy: the non-compensatory strategy is employed for choice

set generation (Ben-Akiva et al. 1995; Swait et al. 1987; Kaplan et al. 2010, 2012;

Swait and Joffre 2001b; Martı́nez et al. 2009) and the compensatory strategy is used to

find an optimal choice.

In all three strategies, the discrete choice model is a common tool to model people’s choice

behavior. Within the framework of discrete choice modeling, the random utility maxi-

mization model (RUM) is adopted in modeling and predicting drivers’ route choice
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behavior among a set of finite paths. Provided perception errors are Gumbel distribution,

RUM can be expressed in the form of a multinomial logit model. The logit model assumes

paths are independent of each other and has independence from irrelevant alternatives

(IIA) property. In reality, however, many paths overlap with each other and are thus not

independent. To overcome this limitation, various RUM models were proposed: C-logit

(Cascetta et al. 1996), path-size logit (Ben-Akiva et al. 1998a), nested logit (Jha et al.

1998), cross-nested logit (Vovsha et al. 1998b), multinomial probit (Cascetta 1989;

Daganzo et al. 1977; Jotisankasa et al. 2006), and mixed logit or multinomial probit with

logit kernel (Ben-Akiva et al. 1996). However, all these models assume decision-makers

are fully rational and fully informed, and most importantly, they are utility-maximizers

(Swait and Joffre 2001b). In other words, people only take the shortest paths in route

choice. Such an assumption is called ‘‘perfect rationality’’.

As opposed to ‘rationality as optimization’, Herbert Simon, in 1957, proposed that

people are boundedly rational in their decision-making processes (Simon 1957). This is

either because people lack accurate information, or they are incapable of obtaining an

optimized decision due to complexity of the situation. They tend to seek a satisfactory

choice solution instead. Since then, bounded rationality has been studied extensively in

economics and psychology.

People do not choose routes irrationally. Yet, people do not always choose the shortest

paths. Evidence from revealed route choice behavior finds after evaluating habitual routes,

only 59 % of respondents from Cambridge, Massachusetts (Bekhor et al. 2006), 30 % from

Boston (Ramming and Michael Scott 2001a), and 87 % from Turin, Italy (Prato et al.

2006) chose paths with the shortest distance or shortest travel time. In the Minneapolis-St.

Paul region, 90 % of subjects took paths one-fifth longer than average commute time (Zhu

2011; Zhu et al. 2015) based on actual GPS data while more than half commute trips were

at least 5 minutes longer than the shortest path based on TomTom GPS data (Tang et al.

2015), and a high percentage of commuting routes were found to differ considerably from

the shortest paths in Nagoya, Japan (Morikawa et al. 2005 and Lexington, Kentucky (Jan

et al. 2000). All findings above revealed that people do not usually take the shortest paths

and the utilized paths generally have higher costs than shortest ones.

The empirical evidence also argues that though travelers do not always select the

shortest travel time paths, the chosen routes are within some threshold from the shortest

ones. Zhu (2011) calculated travel time differences between the routes actually taken and

the shortest time routes from GPS data. It was found that fewer than 40 % of commuters

took the shortest paths, while 90 % of subjects took routes which were within 5 min of the

shortest paths and almost no commuter chose a route 20 minutes longer than the shortest

one.

Boundedly rational behavior may result from habit and inertia, cognitive costs, and

individual preference. As these factors can hardly be obtained from the data that is

available to researchers, a threshold parameter, named ‘‘indifference band’’, is introduced

to characterize these unobservable attributes. It can be embedded into both static and

dynamic discrete choice model to represent bounded rationality.

Static discrete choice model

Reference-dependent model Reference-dependent models play an important role in

boundedly rational behavioral modeling. People generally evaluate attributes/utilities

compared to the best value or some reference point instead of using absolute values. Such

models can be applied to both route choice and choice set generation. Accordingly the BR
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principle is reflected as elimination of alternatives whose attributes or utilities are below

certain thresholds. The behavioral mechanism includes maximization of relative advan-

tage, maximization of relative utility, minimization of regret (such as maximin, maximax,

minimax regret models). Interested readers can refer to Rasouli et al. (2015) for detailed

description of each model. Thresholds can be deterministic or stochastic. Thresholds can

also be fixed or dynamic. If there does not exist an optimal solution, thresholds can be

adjusted dynamically till an optimal solution is attained.

Indifference relation Discrete choice models assume implicitly the existence of a

preferable ordering over alternatives even if the difference in utilities is negligible.

However, psychological experiments (Guilford and Joy Paul 1954) showed that people

may be indifferent to two alternatives with similar utilities. Ridwan (2004) defined three

fuzzy preference relations for two alternatives: strict preference; indifference; incompa-

rability, and a fuzzy choice function was proposed capturing the fuzziness feature of

choices to calculate their rankings. Krishnan (1977) proposed a minimum perceivable

difference (MPD) model describing travelers’ mode choices among two alternatives with

two relations: strict preference and indifference. The MPD model can only accommodate

two alternatives. Lioukas (1984) extended it to the multinomial logit model with more than

two choices. In route choice, travelers may be indifferent to small differences in utility

values or small changes in utilities when some change happens. The utility function needs

to be modified to account for similarity of choice alternatives. Also, ‘‘alternative utility

threshold’’ is introduced to capture such indifference (Swait and Joffre 2001b).

Indifference to small changes Due to existence of inertia, people may place higher

weight on the alternative he or she regularly uses, which introduces state dependence and

serial correlation in dynamic choices. This dependence can be captured by an inertial

variable depending on the utility difference between chosen alternative and others. Cantillo

et al. (2006, 2007) further specified the threshold by introducing an inertial variable with

state dependence (due to inertias, Cantillo et al. 2006) and serial correlation (due to per-

sistence of unobservable attributes across a sequence of choices, Cantillo et al. (2007).

This model was used to describe travelers’ mode switching choice after a new mode is

added. Two sets of data were collected in Cagliari, Italy: the RP data in terms of people’s

mode choices among car, bus, and train; the SP data inquiring the choice between a new

train service and the current mode choice. Estimation results showed that a misspecified

model without inertia and serial correlation may lead to biases and errors when a newly

implemented policy has a substantial impact.

Dynamic route switching model

Mahmassani et al. (Hu and Mahmassani 1997; Jayakrishnan et al. 1994; Mahmassani and

Chang 1987; Mahmassani and Jayakrishnan 1991; Mahmassani and Liu 1999; Srinivasan

and Mahmassani 1999) have conducted a sequence of laboratory experiments where

subjects receive real-time traffic information and make pre-trip and en-route choices. These

experiments were run on an interactive simulator—DYNASMART, incorporating pre-trip

departure time, route choices and en-route path switching decisions. Subjects, as travelers,

picked departure time pre-trip based on previous days’ travel experiences and chose paths

en-route at each node based on available information. Given specifications for utility errors

of switching departure-time and routes, repeated observations of departure time and route

switching decisions can be modeled as a multinomial logit or a multinomial probit

function.
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Indifference band

The existence of a threshold in choice behavior has also long been explored in other fields.

Biologists are interested in dose-response, which explores the impact of toxic levels on an

organ or a tissue. Psychologists and economists focus on the change in decision-makers’

preferences or choices in response to the change in utilities of alternatives. The stimulus-

response model, popular in biology, psychology, and economics, provides an efficient

method of quantifying behavioral response by varying stimulus of specific intensities. The

occurrence of a response depended on the intensity of a stimulus and there existed a

threshold under which no response was manifest (Cox and Christopher 1987; Krishnan

1977). This threshold was named ‘‘just noticeable difference’’ by Weber or ‘‘minimum

perceivable difference’’ by Krishnan (1977). Numerous biological experiments (Clark

et al. 1933; Hemmingsen 1933) verified that no response occurred unless the logarithm of

stimulus exceeded some threshold. Several models, such as threshold dose-response model

(Cox and Christopher 1987), minimum perceivable difference model (Krishnan 1977), and

biological probit or logit model (Krishnan 1977), were proposed to estimate the threshold.

The indifference band is specified by either a constant or a random variable. For example,

(Recker et al. 1979) first assumed the tolerance is a constant and then generalized it to a

Weibull random variable.

Indifference band estimation

We believe bounded rationality is one reason for stayers not to switch to the new bridge

even it provides a shorter path. However, we should note that bounded rationality is one

just option to capture the observation. Though literature on threshold estimation is popular

in other fields, boundedly rational route choice modeling is still understudied, this paper

contributes to the state-of-arts of empirical analysis of bounded rationality by proposing

methodologies of estimating indifference band using GPS travel survey data.

When the road network is perturbed due to real-time traffic information, construction, or

disaster, peoples normal route choices are impacted or even disrupted and they may or are

forced to switch routes. Indifference bands are able to be observed from their switching

behavior. Day-to-day route switching model requires consecutive days’ observations of

departure-time, pre-route, and en-route choices. The static discrete choice model only

requires one’s route switching choices before and after a change happens. In this paper, we

develop a discrete choice model to capture people’s route switching behavior. Ideally a

day-to-day route switching model should be built to capture daily commuting route choice

variations. Then drivers’ daily commuting trajectories collected from GPS devices can be

used to calibrate the model. Our dataset, however, is insufficient to support calibration and

validation of any type of day-to-day traffic dynamical models due to the following reasons:

1. Many drivers’ day-to-day commuting trips are missing, especially during the transition

period when they were trying new routes or switching back and forth. This was mainly

because data was downloaded from subjects’ vehicles periodically and it was difficult

to monitor data quality between two data collection periods;

2. GPS data only provides us the travel time along the routes they have used. To calculate

the travel time saving by taking the new bridge for those who have never used it, we

have to estimate travel time. To achieve that goal, average travel time for each link

will be computed by averaging all observations along that link. After averaging, every

link has one static travel time without day-to-day variation.
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Therefore, instead of proposing a day-to-day route switching model, we will develop a

static discrete choice model. We assume that at the end of the study period, all drivers

settle down on their frequently used routes. Note that even after drivers stabilize their route

choices, drivers may still switch en-route at junction points or intersections, but we mainly

focus on their most frequently used route choice. We believe this is a fair assumption as

commuters generally do not switch commuting routes as frequently as they do for other

travel purpose.

Note. In reality, drivers can also adjust their departure-time in response to the addition

of the bridge. However, as we employ a static route choice behavior model, departure-time

choice is not taken into consideration. Interested readers can refer to Zhu (2011) for the

impact of rebuilding the new bridge on people’s departure-time choice.

The indifference band may vary among different origin-destination pairs and alternative

routes each traveler takes. To remove the impact of these factors, we use proportion, so that

every traveler share the same value regardless of origin-destination pairs and routes. The

indifference band can be specified in two ways:

1. Each driver’s indifference band is drawn from the same population distribution.

2. Each driver has a different indifference band, depending on travel time saving, its

perception error, bridge usage history, and other socio-demographic characteristics.

In the following, we will estimate indifference bands with these two specifications

respectively.

A population indifference band

In route choice, the indifference band represents the deviation of the actual utilized path

cost from the minimum path cost. It captures the fact that people are indifferent to a shorter

route if its time saving is within a critical value. To estimate the indifference band, we need

to find those subjects whose travel time can be saved. When the reopening of the I-35W

Bridge cannot save travelers travel time: if they stayed, that is because the new route is not

appealing, which cannot help estimate the indifference band; if they switched, other factors

than travel time (which may not be easily observed) may dominate their choices. Therefore

to estimate indifference bands, only those whose travel time saving is positive are selected.

Accordingly, indifference band should be positive as well.

Denote �� as a population indifference band. As �� [ 0 based on the aforementioned

analysis, we assume it follows lognormal distribution, whose associated normal distribu-

tion has mean �� > 0 (i.e., a deterministic constant) and variance r2 where r[ 0. It can be

specified as:

�� ¼ e�þg2 � lognormal ð��; r2Þ; ð3:1Þ

where g2 is a normal distribution with mean l ¼ 0 and standard deviation r[ 0.

According to the principle of bounded rationality, commuters will not switch routes

unless the logarithm of the perceived travel time saving is greater than the logarithm of the

indifference band. Denote M̂
ðnÞ as the logarithm of commuter n’s perceived travel time

saving, i.e., M̂ðnÞ ¼ logðMðnÞÞ þ g1, where g1 is a normal random variable with mean l ¼ 0

and standard deviation r[ 0. Also, g2 and g1 are independent. In other words, they are

independent and identically distributed normal. Then the hypothesis is:
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yðnÞ ¼ 1; if M̂ðnÞ [ logð��Þ;
0; if M̂ðnÞ

6 logð��Þ:

�
ð3:2Þ

The probability of switching for commuter n is then computed as:

PðyðnÞ ¼ 1j��; rÞ ¼PðM̂ðnÞ [ logð��Þj��; rÞ ¼ PðlogðMðnÞÞ þ g1 [ ��þ g2j��; rÞ
¼Pðg2 � g1\� ��þ logðMðnÞÞj��; rÞ

¼Ug2�g1

���þ logðMðnÞÞffiffiffi
2

p
r

� �
¼ Ug2�g1 b0 þ b1 logðMðnÞÞ

� �
;

ð3:3Þ

where g2 � g1 �Nð0; 2r2Þ: g2 � g1 follows a normal distribution with mean of zero and

standard deviation of 2r2. b0 ¼ � ��ffiffi
2

p
r
; b1 ¼ 1ffiffi

2
p

r
. Therefore �� ¼ � b0

b1
; r ¼ 1ffiffi

2
p

b1
.

The probit regression is performed to estimate b0 and b1 (Table 4):

To show whether the model fits the data, Hosmer and Lemeshow goodness of fit (GOF)

test is employed. Hosmer and Lemeshow GOF is used for binary outcomes regression

when sample size is small and when continuous explanatory variables are included in the

model (Hosmer et al. 2013). A high p-value indicates a good fit. We use ‘‘hoslem.test’’

function contained in the ‘‘ResourceSelection’’ package in R to conduct this test. It gives a

p-value of 0.61, meaning that we lack of evidence against a null hypothesis that the model

does not fit the data.

Then the estimates are: �̂� ¼ � b̂0
b̂1
¼ � 2:90

0:97 ¼ �2:99; r̂ ¼ 1ffiffi
2

p
b̂1
¼ 1ffiffi

2
p

�0:97
¼ 0:78.

Given �̂� and r̂, its mean and variance are computed as follows:

E ��½ � ¼ e�̂�þ
r̂2
2 ; ð3:4aÞ

Var ��½ � ¼ er̂
2 � 1

� �
e2�̂�þr̂2 : ð3:4bÞ

In summary, the population indifference band is a lognormal random variable with

mean 6:56% and variance 0:03%. Figure 6 plots its probabilistic distribution function.

Table 4 Probit regression coefficients estimation for population indifference band

Estimate SE t value Pr([ jtj)

(Intercept) 2.90 0.62 4.67 0.00***

logðMÞ 0.97 0.20 4.35 0.00***

*** Statistically significant at 1 % level

Table 5 Probit regression coefficients estimation for individual indifference bands

Estimate SE t value Pr([ jtj)

(Intercept) 2.77 0.78 3.54 0.00***

logðMÞ 1.16 0.28 4.12 0.00***

U ¼ 1 1.67 0.42 3.97 0.00***

Worry -0.89 0.52 -1.72 0.09*

* Statistically significant at 10% level

*** Statistically significant at 1 % level
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Individual indifference bands

Indifference band can vary from person to person due to different bridge usage experiences

and sociodemographic characteristics. In Appendix, Table 6 illustrate all 78 subjects’

sociodemographic characteristics and other statistics, which will be used to characterize

individual indifference band.

Denote �ðnÞ as commuter n’s indifference band, which is a random variable depending

on travel time saving, its perception error, commuter n’s bridge usage history, and other

socio-demographic information. Denote g2 as a normal distribution with mean l ¼ 0 and

standard deviation r[ 0.

�ðnÞ ¼ e
P

i
hðnÞ
i
X
ðnÞ
i

þg2 � lognormal
X
i

hiX
ðnÞ
i ; r2

 !
; ð3:5Þ

where X
ðnÞ
i is commuter n’s ith explanatory variable and hi is the coefficient before the ith

variable.

Take logarithm on both sides, the logarithm of commuter n’s indifference band is:

logð�ðnÞÞ ¼h0 þ h1 logðMðnÞÞ þ h2Un þ h3 Worry þ h4 Age þ h5 Income þ h6 Mode

þ h7 Race þ h8 Gender

¼
X8
i¼0

hiX
ðnÞ
i þ g2:

ð3:6Þ

The hypothesis then becomes:

yðnÞ ¼ 1; if M̂
ðnÞ [ logð�ðnÞÞ;

0; if M̂
ðnÞ

6 logð�ðnÞÞ:

�
ð3:7Þ

The probability of switching for commuter n is then computed as:

Indifference Band (%)
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Fig. 6 Lognormal distribution of population indifference band
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PðyðnÞ ¼ 1jHÞ ¼PðM̂ðnÞ [ logð��ÞjHÞ ¼ PðlogðMðnÞÞ þ g1 [
X8
i¼0

hiX
ðnÞ
i þ g2jHÞ

¼Pðg2 � g1\ logðMðnÞÞ �
X8
i¼0

hiX
ðnÞ
i jHÞ

¼Ug2�g1

�h0 þ ð1� h1Þ logðMðnÞÞ �
P8

i¼2 hiX
ðnÞ
iffiffiffi

2
p

r

 !
¼ Ug2�g1 �

X8
i¼0

h0iXi

 !
;

ð3:8Þ

where g2 � g1 �Nð0; 2r2Þ is the same as before. The parameter vector H ¼
h0; h1; . . .; h8; rf gT where h01 ¼ � 1�h1ffiffi

2
p

r
; h0i ¼ � hiffiffi

2
p

r
; i ¼ 0; 2; . . .; 8. Accordingly h1 ¼

1�
ffiffiffi
2

p
rh01; hi ¼ �

ffiffiffi
2

p
rh0i; i ¼ 0; 2; . . .; 8.

Probit regression is conducted to estimate parameters hi; i ¼ 0; � � � ; 9. The estimation

results show that the coefficients before logðMÞ and U are significantly different from zero

at 5 and 0.1 % significance level respectively. However, other factors turn out not to be

significant. Therefore variable selection is needed before the correct probit regression is

conducted. An automatic method, ‘‘step’’ function in R, is used to perform variable

selection according to a more commonly used criterion, ‘‘Akaike information criterion’’

(AIC, a measure of the quality of a statistical model for a given set of data). The null model

(i.e., the one without explanatory variables) and the full model (the one with all

explanatory variables) need to be defined first. Then the forward or backward selection will

begin to examine each model. The one with the lowest AIC value will be chosen as the

final model. After variable selection, only logðMÞ;U;Worry are significant contributing

factors. Accordingly the indifference band can be rewritten in a reduced form as:

logð�ðnÞÞ ¼ h0 þ h1 logðMðnÞÞ þ h2Un þ h3 Worryn: ð3:9Þ

Then the reduced probit regression is:

Pðy ¼ 1jHÞ ¼ Ug2�g1 h00 þ h01 logðMðnÞÞ þ h02Un þ h03Worryn

� �
; ð3:10Þ

where h01 ¼ 1�h1ffiffi
2

p
r
; h0i ¼ � hiffiffi

2
p

r
; i ¼ 0; 2; 3. Then h1 ¼ 1�

ffiffiffi
2

p
rh01 and hi ¼ �

ffiffiffi
2

p
rh0i; i ¼

0; 2; 3. As r is not identifiable in this case, we set r̂ ¼ 0:73 as the same as the previous

population indifference band so that no extra variability is introduced.

The estimation coefficients using probit regression are listed in Table 5:

Similarly, a Hosmer and Lemeshow goodness of fit (GOF) test is conducted and it gives

a p-value of 0.50. Again the model is properly specified. Then ĥ1 ¼ 1�
ffiffiffi
2

p
rĥ01 ¼

1�
ffiffiffi
2

p
� 0:73� 1:16 ¼ �0:20. For i ¼ 0, ĥ0 ¼ �

ffiffiffi
2

p
rĥ00 ¼ �

ffiffiffi
2

p
� 0:73� 2:77 ¼

�2:86. Similar, ĥ2 ¼ �1:72; ĥ3 ¼ 0:92.
As the indifference band is a random variable depending on saved travel time, bridge

usage history, and being worried about driving on the bridge, its mean and variance are

computed as follows:

E ��ðMðnÞ;U;WorryÞ
h i

¼ exp ĥ0 þ ĥ1 logðMðnÞÞ þ ĥ2Un þ ĥ3 Worryn þ
r̂2

2

� �
; ð3:11aÞ
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Var ��ðMðnÞ;U;WorryÞ
h i

¼ er̂
2 � 1

� �
exp 2ðĥ0 þ ĥ1M

ðnÞÞ þ ĥ2Un þ ĥ3 Worry nÞ þ r̂2
� �

:

ð3:11bÞ

Figure 7 plots the distribution of individual indifference bands.

In Fig. 7a, given a fixed travel time saving, the indifference band for drivers who used

the bridge before and were not worried of driving on this bridge will have the lowest

Travel Time Saving (%)
0 10 20 30 40 50 60 70 80 90 100

In
di

ffe
re

nc
e 

B
an

d 
(%

)

0

5

10

15

20

25

Mean (U=1,W=1)
95% LB (U=1,W=1)
95% UB (U=1,W=1)
Mean (U=1,W=0)
95% LB (U=1,W=0)
95% UB (U=1,W=0)
Mean (U=0,W=1)
95% LB (U=0,W=1)
95% UB (U=0,W=1)
Mean (U=0,W=0)
95% LB (U=0,W=0)
95% UB (U=0,W=0)

Indifference Band (%)
0 10 20 30 40 50 60 70 80 90 100

Lo
gn

or
m

al
 p

df

0

10

20

30

40

50

60

70

U=1,W=1
U=1,W=0
U=0,W=1
U=0,W=0

(a)

(b)

Fig. 7 Population indifference band. a Mean and confidence interval. b Lognormal distribution
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indifference band (indicated in black), while those who never used the bridge before and

were afraid of being on it have the highest indifference band (indicated in blue). For those

who either never experienced this bridge or were not afraid of using it, their indifference

band are in between. However, being afraid plays a more significant role than having the

experience, therefore those who never experienced this bridge but were afraid of using it

have higher indifference band than the other way around. As travel time saving increases,

everybody’s indifference band decreases, indicating that travel time saving on the new

route is a critical contribution factor to the value of the indifference band. The value of the

indifference band ranges from as high as 19% to as low as 1% approximately. The

variance of the indifference band is higher when the mean is higher. Figure 7b displays

similar patterns of probability density functions of indifference bands for each category

given the travel time saving is fixed at 20%.

Discussions

Indifference band values

In the existing literature, the values of indifference bands vary among different studies

using distinct dataset. The absolute indifference band is 23 for mode switch (from car to

high speed line between Lindenwold and Philadelphia) (Krishnan 1977) or 0.67 for inertial

mean (Cantillo et al. 2006, 2007); the absolute indifference band for departure-time

switching is 1 min (Mahmassani et al. 1999). in fractions, the relative indifference band

ranges is 19 % for the pre-trip route decision and 18 % for the en-route decision (Mah-

massani et al. 1999).

In this paper, we assume indifference band follows lognormal distribution and present

two ways for parameter specification. The first model assumes everyone’s indifference

band is drawn from a population indifference band with mean of 6:56% and standard

deviation of 0:17%, while the second one specifies each individual’s indifference band

depending on their bridge related experiences. These two specifications do not differ

substantially except that the first one has mean as a constant while the second one has mean

as a function of individual parameters. The variance of the indifference band in these two

specifications remain the same. In other words, the second specification does not introduce

any extra parameter regarding variability within individual drivers.

In the context of the collapse and reopening of the I-35W Bridge, people’s bridge

related experiences matter a lot to their route switching choices. Thus we recommend the

second specification. However, we do not want to judge which model fits better and it

really depends on the context and the purpose of a study. For example, if an urban network

planner is mainly interested in predicting future traffic distribution considering boundedly

rational behavior, then the first specification will be sufficient to estimate a population

indifference band.

Note Limited by the sample size, the indifference band in this paper does not show any

dependence on people’s demographic information. However, readers should keep in mind

that it can be individual-specific for different socio-demographic (e.g., age, gender,

income) groups.
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Indifference band applications

The indifference band plays a critical role in boundedly rational route choice models. Its

introduction describes people’s behavioral deviation from traditional perfectly rational

model. The traffic assignment using boundedly rational assumption can exhibit signifi-

cantly different results from the regular traffic assignment. Several studies have shown that

transportation planning models with indifference bands manifest different properties in

equilibrium traffic flow set (Di et al. 2013), Braess paradox occurrence (Di et al. 2014b),

dynamic evolution of traffic flow distributions (Guo and Liu 2011; Di et al. 2015), and

network design (Di et al. 2016). Therefore indifference band should be incorporated into

four-stage transportation demand modeling for more realistic network performance.

Interested readers can refer to Di et al. (2016) for a comprehensive review of boundedly

rational route choice models and their impact on transportation planning.

Rather than simply inspecting its values, it will be more meaningful to discuss under

which conditions an indifference band can be used. Due to inclusion of the extra parameter,

i.e., indifference band, boundedly rational models are quite sensitive to relevant parame-

ters. The misspecified models can result in even worse prediction than perfect rational

models. Thus the calibration of indifference bands or cognitive processes is critical in

determining the prediction accuracy of models. They can be individual-specific or the same

across the entire population. Individual specific parameters require more data and more

complicated models to estimate. By far there do not exist sufficient empirical studies on

estimation processes due to lack of large amounts of individual route choice data.

Therefore we should be cautious when using boundedly rational models for the policy-

making purpose.

Even a well-specified boundedly rational model is calibrated by data collected from one

area, a more critical question is, whether such a model can easily be transferred to another

area, context, or time period. So far there exists only one study which touched upon the

issue of transferability from a laboratory experiment to the real-world scenario in route

choice study. By comparing commuter departure time and route choice switch behavior in

laboratory experiments with field surveys in Dallas and Austin, Texas, Mahmassani and

Jou (2000) showed that boundedly rational route choice modeling observed from experi-

ments provided a valid description of actual commuter daily behavior. Such a claim is

quite conservative and whether laboratory experimental experiences can truly represent

actual commuter daily behavior still remains unclear. Overall, this parameter can be

individual-specific or context-dependent and may not be able to transfer to a different

population or a new context.

Contributions

People’s response to changes in road networks will determine congestion levels. A network

design or transportation planning problem with inaccurate travel behavior models will lead

to traffic prediction deviating from reality and consequently wrong planning policies. Thus,

understanding such behavioral change will facilitate optimal network design and network

performance evaluation. People’s boundedly rational route choice behavior provides a

more realistic model of route choice behavioral change in response to changes in networks.

This paper models boundedly rational route choice behavior after the I-35W Bridge was
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rebuilt and provides implication for network design. Transportation engineers, network

planners, and decision-makers will all benefit from this study.

Previous studies mainly focused on estimating indifference bands from laboratory

experiment data. For example, Mahmassani and Chang (1987) estimated indifference

bands by utilizing laboratory experiment data. By comparing commuter departure time and

route choice switch behavior in laboratory experiments with field surveys in Dallas and

Austin, Texas, Mahmassani and Jou (2000) showed that boundedly rational route choice

modeling observed from experiments provided a valid description of actual commuter

daily behavior. However, whether laboratory experimental experiences can represent

actual commuter daily behavior still remains unclear. Other studies incorporated given

values of the thresholds into their route choice models, such as 20% of the mean travel

time (Zhu et al. 2012), 0.5 times the mean travel time of certain previous trips (Carrion

et al. 2012), or 10% of shortest travel time (Guo and Liu 2011). These thresholds were

obtained from experience or assumptions and served as inputs of specific route choice

behavior models (Carrion et al. 2012; Yanmaz-Tuzel et al. 2009; Zhu et al. 2012). These

thresholds were assumed or obtained using engineering judgment, which may not be valid

and may provide misleading results when served as inputs of specific route choice behavior

models. Our study offers empirical insights into bounded rationality parameters estimation

from real-world GPS data and provide one explanation for the underutilization of the

I-35W replacement bridge.

Limitations of this paper

Though this paper provides one approach of calibrating bounded rationality using GPS

studies, it is subject to several limitations and shortcomings:

1. The number of drivers used for this study (i.e., 78) is relatively small. Accordingly,

there are fewer observations for each category (especially for worry or no-worry) and

it may affect the goodness-of-fit of the proposed models;

2. The consecutive longitudinal observations are missing, which forces us to use the

static discrete choice approach to model route switching instead of day-to-day learning

models. Accordingly, departure-time choice cannot be modeled.

To overcome these shortcomings, we propose the following remedies which will facilitate

research along this direction in future:

1. A precautions experimental design is needed to collect effective and sufficient panel

data. As people manifest heterogeneous behavior, a large sample size covering a wide

range of socio-demographic characteristics for a continuous period will likely support

more complicated models, such as day-to-day route switching or even latent variable

models.

2. A comparative study across multiple cities or metropolitan areas should be conducted

to make boundedly rational travel behavior more comparable across geographically

different areas.

Though there exist several studies which utilize travel survey data to estimate bounded

rationality parameters, they are mainly restricted to laboratory data. Nowadays, not only

aggregated detector data at fixed locations, but also mobile sensor data from GPS or smart-

phones for individual travelers are available. With travel behavioral data from various

sources in place, empirical verification of bounded rationality should continue and bounded
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rationality parameters need to be estimated for various scales of regions. For example, New

York taxi data can be one source to analyze taxi drivers’ route choices before and after

Hurricane Sandy in 2012.

Conclusions and future research directions

This paper proposes a boundedly rational route switching model to explain the observation

that fewer commuters use the new I-35W bridge in Minneapolis. The boundedly rational

route switching model assumes that commuters will not switch to the new bridge unless the

time saving by taking the new bridge is higher than an indifference band. The route choice

behavioral data collected from a GPS travel survey is used to estimate the indifference

band parameter. Two specifications of indifference bands are proposed. The first one

assumes everybody’s indifference band is drawn from a population indifference band with

lognormal distribution. The second one assumes individuals’ indifference bands are a

function of their bridge related experiences and demographic characteristics. Probit

regression is used to estimate parameters. In face of a restored bridge, the estimation results

show that travelers’ route switching behavior depends on time saving by taking the new

bridge, bridge usage history, and being worried for driving on the bridge. Demographic

information is not significant in route switching.

This study provides the insight into the route choice behavior in the Minneapolis-St.

Paul region and is the first empirical study using GPS field data to estimate bounded

rationality parameter. However, it needs also to be generalized as follows. Travelers

behave heterogeneously in route choice. Travel time, usage history, and fear may not be

the only factors affecting route choices and other factors play important roles. To capture

such heterogeneity, a larger-scale experiment with more samples are needed. Moreover,

each driver’s indifference band may also vary as time progresses, which may also

depends on their departure-time. To capture drivers’ day-to-day route switching behavior,

repeated consecutive observations of each driver are needed. Then a hierarchical model

with random effects will be more useful to capture their day-to-day variability. Last, the

collapse and reopening of bridges are fortunately rare events and travelers’ route

switching behavior may depend on some factors such as fear which are not observed in

other scenarios. To further study route changes in response to the change in road net-

works, road closures for construction may be good substitutes because they are more

frequent and common. Route choice data should be collected from these events to extend

the findings of this paper.
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