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Abstract The paper demonstrates a method to determine road network improvements

that also involve the use of a road toll charge, taking the perspective of the government or

authority. A general discrete network design problem with a road toll pricing scheme, to

minimize the total travel time under a budget constraint, is proposed. This approach is

taken in order to determine the appropriate level of road toll pricing whilst simultaneously

addressing the need for capacity. The proposed approach is formulated as a bi-level pro-

gramming problem. The optimal road capacity improvement and toll level scheme is

investigated with respect to the available budget levels and toll revenues.

Keywords Toll pricing � Road development � Discrete network design problem (DNDP) �
Bilevel programming � Relaxation algorithm

& Meng Xu
mengxu@bjtu.edu.cn

Guangmin Wang
wgm97@163.com

Susan Grant-Muller
s.m.grant-muller@leeds.ac.uk

Ziyou Gao
zygao@bjtu.edu.cn

1 State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, No. 3 of
Shangyuan Residence, Haidian District, Beijing 100044, China

2 School of Economics and Management, China University of Geosciences, Wuhan 430074, China

3 Institute for Transport Studies, University of Leeds, 34-40 University Road, Leeds LS2 9JT, UK

4 School of Traffic and Transportation, Beijing Jiaotong University, No. 3 of Shangyuan Residence,
Haidian District, Beijing 100044, China

123

Transportation (2017) 44:731–752
DOI 10.1007/s11116-015-9674-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s11116-015-9674-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11116-015-9674-2&amp;domain=pdf


Introduction

Road transport plays a major role in driving both economic development and social

activity. However, the presence of negative externalities such as congestion, pollution and

accidents brings increasing social and environmental stress, which has emphasized the

urgent need for an effective, efficient and socially feasible road transport system (Grant-

Muller and Xu 2014). The extraordinarily complex task of introducing developments to the

road transport system is well recognised. Efforts to advance policies incrementally or by

introducing a single policy measures often fail, leading to calls for ‘integrative’, ‘holistic’

policies that incorporate multiple policy instruments from sectors related to urban mobility.

The need for more sustainable and integrative planning processes has been widely rec-

ognized, with research including that by Givoni et al. (2013).

The future development and implementation of integrative policies in the road transport

sector depend primarily on how well understood they are by decision makers. Road

capacity investment and pricing issues have become crucial with an increased demand for

the development of new transport infrastructure and the necessity to ensure the infras-

tructure can be both financed and utilized efficiently (Adler and Proost 2010). Theoretical

developments in both the road network design problem (NDP) and road toll pricing have

received much attention over a period of time in published research. The NDP involves

optimal allocation of budget to the expansion of existing links and/or to the addition of new

candidate links so as to maximize the network performance (e.g. minimizing the total

travel time or generalized cost, maximizing the social welfare) while accounting for the

travellers’ route choice behaviour (LeBlanc 1975). The literature includes several com-

prehensive reviews of the NDP, examples being Yang and Bell (1998), and Farahani et al.

(2013). The road toll pricing problem (as an effective means of both managing road traffic

demand and raising additional revenue for road construction) has been studied extensively

by both transportation practitioners and economists. Practical implementation has pro-

gressed rapidly and electronic road pricing schemes have been proposed and tested

worldwide (Meng et al. 2012; Yang and Huang 2005; Yang et al. 2010).

Considering the literature on both NDP and the road toll pricing problem, there have

been few published studies concerned with the simultaneous determination of road toll

pricing and capacity development, despite the strong connection between them and their

importance for the transport system. In the ‘‘Literature review’’ section, a detailed sum-

mary of recent studies concerned with the problem of simultaneous determination of road

toll pricing and capacity development is provided. In an era of tightly constrained budgets,

the analysis of road tolls and capacity provides a useful framework to consider interactions

between both decision variables. This is especially the case in developing counties where

there may be long term financial constraints on road capacity improvement.

In this paper, we therefore investigate the joint decision making involved in the

development of road infrastructure (capacity) alongside introduction of a road toll and the

pricing problem. The revenue from a road toll charge is assumed to be a part of the

infrastructure financing. In contrast to the case for a build-operate-transfer (BOT)

scheme (Xu et al. 2015a), the government will consider road capacity development and

road toll pricing together, with the purpose of minimizing total travel time. However the

tolled roads established by the government are not necessarily the newly built roads that

require financing. In a departure from existing formulations for a continuous network

design problem (CNDP), we propose a discrete network design problem (DNDP) approach.
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This is considered more appropriate for a transport network, as improvements such as lane

expansions cannot be delivered in fractional quantities (Boyce and Janson 1980).

We investigate toll pricing and capacity development within a discrete network design

framework. Using this approach, different toll pricing and capacity expansion schemes can

be compared explicitly, as can variances in total travel time with respect to budget levels

and toll revenues. The research uses a new formulation for the joint road toll and capacity

DNDP, where the decision variables for toll and capacity are both integer variables. Whilst

existing mixed-integer programming formulations generally stipulate a discrete variable

for a particular link (of either the toll road or capacity expansion), and a continuous

variable for the level of the toll (or capacity quantity), the formulation used in this research

is different. It defines discrete capacity variables with respect to the number of additional

lanes for capacity expansion and an integer toll level, which lies within a pre-defined toll

range. The discrete variable design (with toll pricing and capacity expansion) is more

appropriate for use with a transport network, and results show that a road toll on the subset

of links provides an approach to the optimal solution with respect to the total travel time.

For the capacity expansion problem with a discrete variable for capacity (i.e. number of

additional lanes), Wang et al. (2013) provide a bi-level program formulation and a global

optimization algorithm for the DNDP. Hence, this paper can be viewed as extending the

state of the art by viewing the road toll as a discrete variable for the joint road toll and

capacity DNDP. The issues addressed and problems solved in this paper are as follows.

Firstly, the proposed modelling approach can support government decision-makers in

identifying how, and under what circumstances, to set the budget levels and the toll pricing

levels. It can also assist the public in understanding how the government measures will

benefit transport development. Secondly, to solve the proposed bi-level programming

problem (with an integer nonlinear program for the upper level problem, and a continuous

nonlinear program for the lower level problem), we reformulate it as a single-level mixed-

integer nonlinear program with nonlinear complementarity constraints. We then develop a

relaxation approach by relaxing the complementarity constraints. The SBB solver in

GAMS (2009) is employed to solve the relaxed mixed-integer nonlinear program at each

iteration step.

The organization of this paper is as follows: in the ‘‘Literature review’’ section, we

provide a brief literature review with respect to the combination/integration of urban road

transport management and modelling approaches. The ‘‘Problem formulation’’ section

presents the bi-level programming model to describe the DNDP, simultaneously opti-

mizing both road toll charging and road expansion under the fixed Origin Destination (OD)

demand case. The ‘‘Solution method’’ section presents a relaxation algorithm, using Solver

in GAMS for convenience. In the ‘‘Numerical analysis’’ section, numerical experiments are

illustrated using a simple two-node network and the Sioux-Falls network. Finally, con-

clusions are presented in the ‘‘Conclusions’’ section.

Literature review

The combination or integration of measures for road transport tends to cover certain types

of management policies, e.g., the development of sustainable urban transport strategies

(Marsden et al. 2010; May et al. 2005a, b), optimal urban transport strategies (May and

Still 2000; May et al. 2006; Shepherd et al. 2006; Kelly et al. 2008; Xu et al. 2015b), and

more recently, urban transport packages (Givoni 2014). Modelling the combination of

measures in the transport network framework is important. Although these management
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policies have been discussed, relatively few have been based on a transport network

modelling process.

Studies into the simultaneous determination of a road toll level and road capacity have

taken different approaches. The main studies have focused on investigating whether the

revenue from socially optimal pricing on a road can cover the capital cost for constructing and

maintaining the road. Mohring and Harwitz (1962) demonstrated that under certain condi-

tions revenues from optimal pricing are just sufficient to cover the cost of optimal supply of

road infrastructure. Yang andMeng (2000) considered the selection of toll and capacity for a

private highway in a general road network under a BOT scheme. They investigated prof-

itability and social welfare gain together with maximum profit and social welfare solutions in

a toll-capacity two-dimensional space. Yang and Huang (2005) dealt with the relationship

between pricing, capacity choice and financing in a general network with a single or multiple

types of vehicles under the first-best and second-best conditions. Subprasom andChen (2007)

discussed the effects of regulation on highway pricing and capacity choice of a BOT scheme.

Dimitriou et al. (2009) addressed the joint optimization of capacity investments and the toll

charges problem imposed on multi-group users in monopolistic private highways within

general road networks. They provided a game-theoretic formulation that leads to a non-

convex bi-level program. With real-application results they demonstrated the importance of

considering the spatial heterogeneity of prices, and the trade-off between investments and

pricing strategies in regulated private highways.Verhoef et al. (2010) considered second-best

cases where only a sub-set of links in a network is subject to tolling and/or capacity choice,

and for cases with andwithout a self-financing constraint. Using the ‘long-run cost functions’

for congested networks they demonstrated that, under certain assumptions, second-best long-

run cost (or actually, generalized price) functions can be derived for most cases of interest.

These can be used in an applied network model as a substitute for the conventional short-run

user cost functions. Recently, building on the works by Tan et al. (2010) and Tan and Yang

(2012), Niu and Zhang (2013) discussed the impact of demand uncertainty on the BOT

contract design by optimizing a bi-objective problem via three decisions including toll,

capacity and concession period.

Concerning development of amodelling approach to simultaneously determine the first and/

or second best pricing and road capacity, Koh et al. (2009) investigated the first and second best

jointly optimal toll and road capacity investment problems from both the policy and technical

perspectives. They emphasized that, as with optimal pricing, optimal investment in capacity

could not always be feasible, and therefore a second best optimum investment must be sought.

Previous studies to minimize the total travel time or maximize the total social welfare of

travellers in transport networks includeZhang andWee (2012), as they proposed a newbi-level

model for the implementation of congestion pricing, with a new objective function for maxi-

mizing the reserve capacity of networks. They further formulated this as a single-level opti-

mization program with equilibrium constraints to circumvent the computational difficulty.

Recently,Wang et al. (2014b) proposed a bi-level programmingmodel for a joint optimal link-

based tradable credit charging scheme and road capacity improvement. Their model integrates

the improvement in the urban road network according to improvements in road capacity with a

given budget constraint, and decreasing travel demand with the tradable credit scheme. They

demonstrated that the tradable credit scheme offers a better combination of cost-effectiveness,

administrative flexibility and distributional fairness compared to congestion pricing. To

understand the trade-offs between conflicting objectives and to design a financially and envi-

ronmentally sustainable transport system, Yin et al. (2014) addressed the simultaneous deter-

mination of road toll pricing and capacity investment in a congested road network in a multi-

criteria decision-making framework. They presented a goal programming approach to follow

734 Transportation (2017) 44:731–752

123



four major goals including cost recovery, service level, environmental and equity. The multi-

objective road toll pricing and capacity investment problem was formulated as a bi-level goal

programmingmodel. The numerical results demonstrated that the priority structure of the goals

can significantly affect road toll pricing and capacity investment decisions. Research that has

focused on the development of algorithms includes work on a sensitivity analysis-based

algorithm, a direct search algorithm (introduced in Yang and Huang 2005), and a constraint

cutting algorithm (givenbyKoh et al. 2009). Fan andGurmu (2014) presented a bi-level genetic

algorithm (GA)-based optimization solution methodology that can be used to determine the

optimal solution for combined congestion pricing and capacity expansion problems.

Past research into the problem of simultaneous determination of road toll pricing and

road capacity development has focused on investigating pricing and self-financing from

modelling. Road capacity has been generally assumed to be theoretically continuous,

whilst the toll is optimized under given constraints. These studies provide the theoretical

background and an important framework for further study. The approach proposed in this

paper, with a general DNDP and road toll pricing to minimize the total travel cost under a

limited budget is, however, more appropriate for application in the practical transport

planning and management contexts.

Problem formulation

Notation

In a given urban road network, we assume that the authority needs to improve the transport

network in such a way that the total travel time is minimized. However, the authority faces a

shortage of budget and therefore needs to receive revenue from road toll charges. Without

loss of generality, we assume constant returns to scale in costs of capacity expansion

(Mohring and Harwitz 1962; Strotz 1965; Keeler and Small 1977), and fixed demand in the

transport network. It is noted that network design and road pricing are both long-term

decisions that impact on demand, and it would therefore be desirable to incorporate demand

elasticity. In this study context, one can simply use social welfare instead of total travel time

as the design objective function by introducing elastic demand functions. However, incor-

porating elastic demand and changing the objective function would not fundamentally

change the proposed model formulation and the method used to find the solution.1

The following symbols are firstly defined:

Sets:

A Set of all links in the transport network

D1 Subset of links in the transport network considered for additional lanes, D1 � A

D2 Subset of links in the transport network considered for the implementation of toll

pricing, D2 � A

LAa Set of number of lanes to be added to link a 2 D1. For example, LAa = {0,1,2}

means that the transport authority determines to either add zero (do-nothing), one, or

two lanes to link a 2 D1

LTa Set of values for toll pricing (ja) imposed by the authority on link a 2 D2. For

example, LTa ¼ jajjmin � ja � jmax; jais integer; a 2 D2f g
N Set of nodes in the transport network

1 We owe this point to an anonymous referee.
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W Set of OD pairs

Rw Set of paths between OD pair w 2 W

Parameters/functions:

dwa;r A binary coefficient which equals 1 if path r 2 Rw between OD pair w 2 W

uses link a 2 A, and 0 otherwise

B Total available budget

ca(ia) Construction cost of adding i lanes to link a 2 D1, ia 2 LAa; ca(ia) = 0 if

ia = 0

dw Given travel demand for OD pair w 2 W

ta(va, ia, ja) Travel time function on link a when i lanes are added and toll pricing ja are

set on link a, ia 2 LA; ja 2 LTa, a 2 D1

T
D2

ta(va, ia) Travel time function on link a when i lanes are added on link a,

ia 2 LAa; a 2 D1

ta(va, ja) Travel time function on link a when toll pricing ja are set on link a, ja 2 LTa,

a 2 D2

ta(va) Travel time function on link a 2 A� D1

S
D2

g A parameter setting for a more flexible formulation

Decision variables:

z1iaa A binary decision variable which equals 1 if and only if ia lanes are added to link

a 2 D1, ia 2 LAa. z1 ¼ z1iaa ; ia 2 LAa; a 2 D1

� �

z2jaa A binary decision variable which equals 1 if and only if road toll pricing ja is chosen

for link a 2 D2, ja 2 LTa. z2 ¼ z2jaa ; ja 2 LTa; a 2 D2

� �

va Traffic flow on link a 2 A,v ¼ va; a 2 Af g
f wr Traffic flow on path r 2 Rw between OD pair w 2 W , f ¼ f wr ; r 2 Rw;w 2 W

� �

Modelling approach

Consider that the authority plans to construct and operate a road under a given budget

constraint B (i.e., the available public funding per unit time period). Therefore, the deficit

per unit time period for the authority is no more than the budget constraint B, that is,
X

a2D1

X

ia2LA
ca iað Þz1iaa � g

X

a2D2

X

ja2LT
vaz2

ja
a ja �B

where g is a parameter set to give a more flexible formulation, and the first term is the total

construction cost of adding lanes to the network, the second term is the total revenue of toll

pricing. Therefore, alongside congestion mitigation, road pricing could also be used for

deficit reduction in the case of a limited budget.

The authority aims to minimize the social travel time in the DNDP with road toll pricing

scheme z2. Thus, the upper-level problem can be formulated as

[OP: original problem]:

OP½ � min

z1; z2

X

a2A

X

ia2LA

X

ja2LT
vata va; ia; jað Þ ð1Þ

Subject to

736 Transportation (2017) 44:731–752

123



X

ia2LA
z1iaa ¼ 1; 8a 2 D1 ð2Þ

X

ja2LT
z2jaa ¼ 1; 8a 2 D2 ð3Þ

X

a2D1

X

ia2LA
ca iað Þz1iaa � g

X

a2D2

X

ja2LT
vaz2

ja
a ja �B ð4Þ

z1iaa ¼ 0; 1f g; 8a 2 A; ia 2 LAa ð5Þ

z2jaa ¼ 0; 1f g; 8a 2 A; ja 2 LTa ð6Þ

The objective function (1) represents the total travel time where va is determined by the

lower-level user equilibrium (UE) problem which will be presented in Eqs. (7)–(10).

Constraint (2) ensures that exactly one capacity level is chosen. Constraint (3) ensures that

exactly one link toll level is used on each link. Constraint (4) guarantees that the deficit per

unit time period of the authority does not exceed the total budget. Constraints (5) and (6)

define that z1ia and z2 j
a are binary decision variables separately.

In model [OP], the relation between the capacity and construction cost for each link

a 2 A can be any general function (Wang et al. 2013). For example, the cost of adding two

lanes, c2a, is not necessarily equal to twice the cost of adding one lane, c1a. This is more

reasonable than assuming the construction cost to be a linear function of capacity, as is

usually done in the CNDP (Yang and Bell 1998).

As the lower-level of the bilevel programming problem, it is assumed that travel

demand is given and fixed, and users’ route choice is characterized by the UE principle.

The UE problem with fixed demand can be formulated below (Sheffi 1985):

[UE]
min

v

X

a2D1

X

ia2LA
z1iaa r

va

0

ta x; iað Þdx

þ
X

a2D2

X

ja2LT
z2jaa r

va

0

ta x; jað Þdx

�
X

a2D1\D2

X

ia2LA

X

ja2LT
z1iaa z2

ja
a r

va

0

ta x; ia; jað Þdx

þ
X

a2A�D1[D2

r
va

0

ta xð Þdx

ð7Þ

Subject to X

r2Rw

f wr ¼ dw; 8w 2 W ð8Þ

va ¼
X

w2W

X

r2Rw

f wr d
w
a;r; 8a 2 A ð9Þ

f wr � 0; 8r 2 Rw; 8w 2 W ð10Þ

Constraint (8) defines the demand conservation condition, Constraint (9) defines the

relation between link flow and path flow and Constraint (10) requires nonnegative path

flows.
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In this study, before and after a capacity change and toll setting, it is assumed that link

travel time functions ta vað Þ; ta va; iað Þ ta va; jað Þ ta va; ia; jað Þ; are always strictly increasing

and convex with respect to link flow va a 2 Að Þ so that link flow solutions of both the UE

and system optimization (SO) traffic assignment problems are unique. With this formu-

lation, we could assume each of these new candidate links already exists by associating it

with an infinite (or extremely large) free flow travel time and no toll setting in the initial

transport network. If one (or more) lanes is added (z1iaa ; ia 2 LAa; a 2 D1), then it is

assumed that the actual free flow travel time is incorporated in the corresponding link

travel time function and that a toll scheme will be considered. Compared with the con-

ventional DNDP (that determines whether each link in a set of new candidate links should

be added to the transport network), the DNDP formulation here embraces the conventional

DNDP as a special case, and simultaneously, the road toll pricing design

(z2jaa ; ja 2 LTa; a 2 D2) is considered for a subset of the set A of all links in the transport

network. The purpose of road pricing could be for both congestion mitigation and deficit

reduction (in the case of a limited budget).

Solution method

The proposed bilevel programming model is flexible in determining extensions to road

infrastructure and the design of road toll pricing from the perspective of government or

high level policy makers. However, solving the model is challenging. Potential approaches

to solve the model could use existing algorithms to solve the DNDP, for example, the

support function method proposed by Gao et al. (2005), the active set technique presented

by Zhang et al.(2009), the linear approach technique given by Farvaresh and Sepehri

(2011), the branch and bound algorithm given by Farvaresh and Sepehri (2013), and the

global optimization recently proposed by Wang et al. (2013). Beside these existing algo-

rithms it would also be possible to reformulate the model then use software from the sector.

Here we use the general algebraic modeling system (GAMS, www.gams.com). It is noted

that the model [OP] is a mixed-integer nonlinear bilevel programming problem, in which

the upper level decision variables are all integer and the lower level decision variables are

all continuous. Existing approaches to solve a mixed-integer nonlinear bilevel program-

ming problem include work by Moore and Bard (1990), Jan and Chern (1994), Sahin and

Ciric (1998), Gümüş and Floudas (2005) and Mitsos (2010). These greatly expand the

range of decision making problems that can be modelled and solved within a bilevel

optimization framework. However, little attention is given to bilevel problems involving

discrete decisions in the bilevel programming literature. This is primarily because these

problems pose major algorithmic challenges in the development of effective solution

strategies.

In this paper, a relaxation algorithm is proposed to solve the mixed-integer nonlinear bi-

level programming problem. Because the objective and constraints of the lower level

problem (UE) satisfy the convexity requirements of the Karush–Kuhn–Tucker (KKT)

optimality conditions, the lower level problem can be replaced with its necessary and

sufficient KKT optimality conditions. Thus, the bi-level programming model can be

reformulated into the following single-level mixed-integer nonlinear optimization problem

(MINLP):
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[MINLP]

Z ¼ min

z1; z2; v

X

a2A

X

ia2LA

X

ja2LT
vata va; ia; jað Þ ð11Þ

Subject to
X

ia2LA
z1iaa ¼ 1; 8a 2 D1 ð12Þ

X

ja2LT
z2jaa ¼ 1; 8a 2 D2 ð13Þ

X

a2D1

X

ia2LA
ca iað Þz1iaa � g

X

a2D2

X

ja2LT
vaz2

ja
a ja �B ð14Þ

z1iaa ¼ 0; 1f g; 8a 2 A; ia 2 LAa ð15Þ

z2jaa ¼ 0; 1f g; 8a 2 A; ja 2 LTa ð16Þ
X

a2D1

X

ia2LAa

z1iaa ta va; iað Þdwa;r þ
X

a2D2

X

ja2LTa
z2jaa ta va; jað Þdwa;r

�
X

a2D1\D2

X

ia2LAa

X

ja2LTa
z1iaa z2

ja
a ta va; ia; jað Þdwa;r

þ
X

a2A�D1[D2

ta vað Þdwa;r � lw

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

f wr ¼ 0 ð17Þ

X

a2D1

X

ia2LAa

z1iaa ta va; iað Þdwa;r þ
X

a2D2

X

ja2LTa
z2jaa ta va; jað Þdwa;r

�
X

a2D1

T
D2

X

ia2LAa

X

ja2LTa
z1iaa z2

ja
a ta va; ia; jað Þdwa;r

þ
X

a2A�D1

S
D2

ta vað Þdwa;r � lw

� 0 ð18Þ

f wr � 0; 8r 2 Rw; 8w 2 W ð19Þ

Unfortunately, MINLP is non-convex because of the complementarity constraints (17)–

(19) (Chen and Florian 1995; Luo et al. 1996; Scheel and Scholtes 2000). To address this

difficulty, some algorithmic approaches have been focused on avoiding this formulation

(Ban et al. 2006; Bouza and Still 2007; Leyffer 2003). The basic idea of these relaxation

schemes is to get rid of the complicated complementarity constraints by replacing these

conditions in a suitable way. There are different types of relaxation scheme, for example,

Hoheisel et al. (2013) discussed five kinds of relaxation schemes including the global

relaxation scheme by Scholtes (2001), the local relaxation scheme by Steffensen and

Ulbrich (2010) and the relaxation scheme by Lin and Fukushima (2005), Kadrani et al.

(2009), and Kanzow and Schwartz (2010).In this paper, a relaxation algorithm will be

adopted to iteratively tackle this MINLP. The main idea of this relaxation algorithm is as

follows. The relaxation algorithm presented here introduces auxiliary parameters hw for

each OD pair 2 W , which can then be used to define relaxed complementarity slackness
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conditions, rather than the exact ones. We relax the complementarity slackness constraints

(17) as follows:

X

a2D1

X

ia2LAa

z1iaa ta va; iað Þdwa;r þ
X

a2D2

X

ja2LTa
z2jaa ta va; jað Þdwa;r

�
X

a2D1

T
D2

X

ia2LAa

X

ja2LTa
z1iaa z2

ja
a ta va; ia; jað Þdwa;r

þ
X

a2A�D1

S
D2

ta vað Þdwa;r � lw

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

f wr � hw ð20Þ

The MINLP can then become a relaxed MINLP problem (RMINLP, relaxed mixed-integer

nonlinear optimization problem) by replacing Eq. (17) with Eq. (20). In this case, the

RMINLP is non-convex and the MFCQ holds (Luo et al. 1996). Consequently, existing

MINLP solution algorithms can be adopted to solve the RMINLP. The standard MINLP

solver SBB is a GAMS solver for mixed integer nonlinear programming models, based on

a combination of the standard Branch and Bound method from Mixed Integer Linear

Programming and some of the standard NLP solvers already supported by GAMS (2009).

It performs well on models that have difficult nonlinearities and possibly also on models

that are fairly non-convex, more details about the SBB solver can refer to http://www.

gams.com/dd/docs/solvers/sbb/index.html.

We use SBB to solve the RMINLP. The iterative algorithm can be summarized as

follows:

Step 1 Initialization Choose an initial auxiliary parameter hw0 for the complementarity

slackness constraint. Set e � 0, updating factor 0\k\1, and iteration

number = 0.

Step 2 Major iteration By setting hwk as the auxiliary parameter for each complemen-

tarity condition in (20), solve the current RMINLP by using the SBB solver in

GAMS (2009).

Step 3 Stop condition If hwk � e, stop and go to Step 4; otherwise set hwkþ1 ¼ khwk , go to

Step 2.

Step 4 Report solution The optimal solution is achieved from the last run of Step 2.

The relaxation algorithm presented here is straightforward and easily implemented. In

particular, many existing solution techniques for the MINLP can be used in Step 2 to tackle

RMINLP. Suitable convergence results for the global relaxation scheme have already been

known from the discussion given by Hoheisel et al. (2013). The fundamental approach of

the relaxation scheme for mixed-integer nonlinear bi-level programming is to replace

MINLP by a sequence of the parameterized RMINLP, which is similar to the relaxation

method proposed in Scholtes (2001), but extends it to the mixed-integer case.

It is noted that, besides the relaxation methods, there are other ways to deal with the

complementarity constraints, for example, dispensing with the complementarity constraints

through the introduction of binary variables and a penalty method. All of these approaches

have positive and negative features, and none is optimum for all problems. As an example,

the binary variables can be used to remove the complementarity constraints as presented in

Fortuny-Amat and McCarl (1981) (i.e., rewriting the complementary slackness condition

by introducing binary variables and a large positive constant). This transforms the linear bi-

level programming problem into a large mixed-integer programming problem. However, it

is limited by computational speed due to the large size of the augmented problem (Wen
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and Hsu, 1991). The penalty method is another important class of algorithms to solve

nonlinear bi-level programming problem, however they are generally limited to computing

stationary points and local minima (Colson et al. 2005).

Numerical analysis

A two link network

We firstly consider a simple two-link network as shown in Fig. 1, consisting of two nodes:

node 1 and node 2 and two links: link a1 and link a2. The travel demand d1 ¼ 100. The

travel time functions for both links are given by:

ta vað Þ ¼ t0a � 1þ 0:15 	 va

Ta

� �

; a 2 a1; a2f g;

t0a1 ¼ 20 Ta1 ¼ 1:5; t0a2 ¼ 70 Ta2 ¼ 10:5;

where Ta is the current capacity of link a 2 a1; a2f g (i.e. ta va1ð Þ ¼ 20þ 2 	 va1 ; ta va2ð Þ ¼
70þ va2 ).

We assume the transport authority considers whether there is a need to add 0, 1 or 2

lanes to each link. The binary variables z1
ia1
a1 and z1

ia2
a2 , ia1 ; ia2 2 0; 1; 2f g can then be used

to indicate the multiple capacity level network design decisions. We assume that capacity

per lane is 2, that is, c1a ¼ 2, the total budget B ¼ 7000 and we set the parameter g ¼ 1.

Concerning the construction cost function, we consider two cases:

(i) The construction cost is a linear function of capacity, i.e. ca1 ia1ð Þ ¼
2000ia1 ca2 ia2ð Þ ¼ 3000ia2 ia1 ; ia2 2 0; 1; 2f g;

(ii) The construction cost is a nonlinear function of capacity, i.e. ca1 ia1ð Þ ¼
2000i1=2a1

ca2 ia2ð Þ ¼ 3000i1=3a2
ia1 ; ia2 2 0; 1; 2f g:

We can also determine the toll level to make the two-link network reach SO.

We now present a comparison of optimal solutions under different models. For the

convenience of comparison and demonstration, we firstly present the traffic pattern under

different models including: the UE and SO solutions with a traffic assignment problem

(TAP) (Sheffi 1985), the first-best toll pricing problem (FBTP) (Hearn and Ramana 1998;

Yang and Huang 2005), and DNDP (LeBlanc 1975). The TAP under UE and SO condi-

tions (which determines the UE and SO flow patterns in the transport network with fixed

origin–destination demand), demonstrates firstly the traffic situation under the UE

assumption that all users minimize their own individual travel costs on transport networks.

Secondly it demonstrates the SO assumption that all users cooperate to minimize the total

network cost. The UE and SO are two central concepts pertaining to the road pricing, the

a1

a2

Fig. 1 A two-link network
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DNDP and combined DNDP and pricing problems. The FBTP2 is solved to demonstrate

the best performance under the road pricing scheme. The DNDP is solved to illustrate the

optimal effect of increasing road infrastructure under given budget constraints. Finally, the

results of our proposed model, which combines road toll pricing and capacity development

from the perspective of government or high level decision makers, are presented. The

comparisons are focused on the optimal traffic pattern and the objective function values.

To avoid any bias during the process comparison, the objective function values of different

models are obtained again by the relaxation algorithm given in the ‘‘Solution method’’

section. The results are given in Table 1.

Table 1 shows the link flow patterns under UE, SO, FBTP, DNDP and a combination of

toll and DNDP. With the FBTP, the toll on link a1 (ja1 ¼ 25) changes the traffic flow from

UE to SO and the system total travel time decreases from Z ¼ 12000 to Z ¼ 11791. Under

a budget constraint, B ¼ 7000 with a linear construction cost (case i), the optimal road

development pattern arising from the DNDP is to add two lanes for link a1 and one lane for

link a2, in which case the system total travel time will decrease to Z ¼ 7275:59.
We can further construct the combined first best toll pricing and capacity improvement

model (FBTP ? DNDP) with the first best toll pricing in the DNDP, as shown in the

‘‘Modelling approach’’ section. The upper level objective function still aims to minimize the

total travel time under a budget constraint. With a policy of combined road toll pricing and

capacity development, we can set the toll on link a1 (ja1 ¼ 36) and on link a2 (ja2 ¼ 11), and

add two lanes for both link a1 and link a2: The system total travel time will decrease to

Z ¼ 6766:975. Under this case, the total construction cost is ca1 ia1ð Þ þ ca2
ia2ð Þ ¼ 2000 	 2þ 3000 	 2 ¼ 10000, the toll revenue on both links is va1 	 ja1þ
va2 	 ja2 ¼ 76:728 	 36þ 23:272 	 11 ¼ 3018:2, therefore the total available budget is

Bþ va1 	 ja1 ¼ 10018:2.
Under a budget constraint, B ¼ 5000 with a nonlinear construction cost (case ii), as shown

in Table 2, the optimal road development pattern arising from the DNDP is to add two lanes

on link a1, and the system total travel time will decrease to Z ¼ 7275:59. With a government

policy of combined road toll pricing and capacity development, we can set the toll on link a1
(ja1 ¼ 25) and add two lanes for both link a1 and link a2. In this case the system total travel

time will decrease to 6766.975, the total construction cost is ca1 ia1ð Þ þ ca2 ia2ð Þ ¼ 2000 	
ffiffiffi
22

p
þ 3000 	

ffiffiffi
23

p
¼ 6608:2, the toll revenue on link a1 is va1 	 ja1 ¼ 76:728 	 25 ¼ 1918:2,

therefore the total available budget is Bþ va1 	 ja1 ¼ 6918:2.
Comparing combined road toll pricing and capacity development with other approaches

(DNDP, FBTP, UE, and SO) we find that under the extension of both links, more travellers

(va1 ¼ 76:728) choose link a1: With a fixed travel demand assumption, the new links added

can reduce the total travel time and improve the level of transport service.

The Sioux-Falls network

The Sioux-Falls network, as shown in Fig. 2, consists of 24 nodes, 76 links and 528 OD

pairs, the parameters can be obtained from http://www.bgu.ac.il/*bargera/tntp/.

Although it is possible to discuss the first-best toll (as shown for the simple network), it

is not necessary for the purposes of the numerical demonstration here. To save space, we

2 Note that with the definition of first-best toll based on economic theory as the difference between marginal
cost and average cost of traffic on a link; this is not integer by definition. Since we restrict the toll to an
integer value in this paper, this will be a second best toll by definition. However, we still refer to it as the
FBTP here as it has the same effect as a first-best toll.

742 Transportation (2017) 44:731–752

123

http://www.bgu.ac.il/%7ebargera/tntp/


T
a
b
le

1
C
o
m
p
ar
is
o
n
o
f
o
p
ti
m
al

so
lu
ti
o
n
s
u
n
d
er

d
if
fe
re
n
t
m
o
d
el
s

M
o
d
el

U
E

S
O

F
B
T
P

D
N
D
P

F
B
T
P
?

D
N
D
P

v a
t a

v a
t a

v a
t a

j a
v a

t a
i a

v a
t a

j a
i a

a
1

5
0

1
2
0

4
1
.6
6
7

1
0
3
.3
3

4
1
.6
7

1
0
3
.3
3

2
5

9
6
.7
1
9

7
2
.7
5
6

2
7
6
.7
2
8

6
1
.8
5
2

3
6

2

a
2

5
0

1
2
0

5
8
.3
3
3

1
2
8
.3
3

5
8
.3
3

1
2
8
.3
3

0
3
.2
8
1

7
2
.7
5
6

1
2
3
.2
7
2

8
6
.8
5
2

1
1

2

Z
1
2
,0
0
0

1
1
,7
9
1

1
1
,7
9
1

7
2
7
5
.5
9
0

6
7
6
6
.9
7
5

Transportation (2017) 44:731–752 743

123



use a section of the links as the link toll set and the toll pricing problem therefore becomes

a second-best road pricing problem. According to the UE assignment (Wang, et al. 2013;

Wang et al. 2014a), we choose the following 10 links: (link 16, 17, 19, 20, 25, 26, 29, 39,

Table 2 optimal solutions under
a nonlinear construction cost

Model DNDP Toll ? DNDP

va ta ia va ta ja ia

a1 97.059 72.941 2 76.728 61.852 25 2

a2 2.941 72.941 0 23.272 86.852 0 2

Z 7275.590 6766.975

Fig. 2 The Sioux-Falls network
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48, 74) as they are the most congested links in terms of the ratio of link flow to capacity.

These 10 links are shown by dotted lines in Fig. 2.

We assume the transport authority considers whether it needs to add 0, 1 or 2 lanes to

these 10 links and that the capacity is 5 per lane. The budget is B = 5000. Without loss of

generality, we assume a linear construction cost function, i.e., ca iað Þ ¼ coa 	 ia. The

coefficients coa for the 10 links are given in Table 3.

We use the SBB to solve the RMINLP in the relaxation algorithm. It performs well on

models that have difficult nonlinearities and possibly also on models that are fairly non-

convex. The computation time is less than 3 min.

Comparison of optimal solutions under different models

Table 4 presents the link flow pattern (va), link cost(ta) and toll ja on different links, and

link capacity extension (ia) under different models (UE, SO, Second-best toll, DNDP and

DNDP ? toll). To avoid any bias in the comparisons, the objective function values of

different models are obtained again using the relaxation algorithm proposed in this paper.

As previously shown, the set of toll links and road capacity links in DNDP are not

necessarily the same. It can be seen that in comparison to the UE case (Z = 10062.743),

the second-best road pricing brings a reduction in total travel time (Z = 10025.801),

however this is still not as low as the SO case (Z = 9826.453). Under the budget

(B ¼ 5000) and DNDP, Table 4 presents the optimal road expansion with a linear con-

struction cost function given in Table 3 and illustrates the total travel time reducing to a

level Z = 7728.312. A toll revenue 332.441 can be achieved with the optimal toll pricing

scheme ja (as shown in Table 4), and with a combination of toll pricing and DNDP the

total travel time can reduce to 7029.808.

Relationship between budget, toll pricing and total travel time

To continue the comparison of optimal solutions under different models, we examine the

relationship between budget, toll pricing and total network travel time. For the case of the

Sioux-Falls network we find that the maximum total investment (i.e., all links given in

Table 3 with a two-lane expansion) is 6920, as shown in Table 5. That is, if the govern-

ment budget is greater than 6920, there is no need for toll pricing and the total travel time

will be Z = 6881.759. Table 5 also illustrates the toll revenue and corresponding total

travel time (Z) under different budget levels. Generally, the lower the budget level, the

Table 3 construction cost func-
tion coefficients

Node–Node Link coa

6–8 16 260

7–8 17 400

8–6 19 260

8–7 20 400

9-10 25 250

10–9 26 250

10–16 29 480

13–24 39 340

16–10 48 480

24–13 74 340
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higher the toll revenue and the lower the total travel time. However this is not the case

when the budget is 5000, where the optimal toll pricing scheme generates 332.441 total

revenue. This is higher than the toll revenue of 145.344 with a budget level of 4000.

Figure 3 illustrates the rate of reduction in total travel time with respect to the budget level,

with the rate of reduction in total travel time declining as the budget level increases.

Figure 4 indicates changes in toll revenue with respect to the budget and in contrast, a

more erratic rate of decrease is seen as the budget level increases.

Conclusions

Research into (and applications of) packages of measures for transport development and

management have received increasing recognition recently. In the context of the devel-

opment and implementation of integrative measures in an urban road transport equilibrium

network, this paper has presented research into the modelling of joint road toll pricing and

capacity development, taking the perspective of government or highway authorities. The

main contributions of this paper to the state of the art in the literature are as follows:

• The proposed formulation differs from existing mixed-integer programming formula-

tions which apply where the model decision variables for selected links are discrete for

Table 5 Total travel time and toll revenue under different budget levels for the Sioux-Falls network

Budget (B) 1000 2000 3000 4000 5000 6000 � 6920

Toll Revenue 1168.888 676.197 657.551 145.344 332.441 133.318 91.143*

Total travel time (Z)** 7994.253 7613.050 7351.769 7152.049 7029.808 6891.008 6881.759

* Here the toll revenue is 91.143 and is not zero, as the toll is applied to reduce the total travel time

** The maximum total investment cost, i.e., all links given in Table 3 with a two-lane expansion, is 6920.
The effect is the same when total budget B is greater than 6920, given the subset D1

Fig. 3 Total travel time vs budget constraint for the Sioux-Falls network
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either toll road or capacity expansion, and continuous for the level of toll or capacity. In

contrast, the formulation proposed in this paper defines discrete variables for capacity

(i.e. the number of additional lanes for capacity expansion) and for the toll level (i.e. an

integer toll level within a pre-defined toll range). In the modelling approach described

the two sets of links are, in fact, separated so that it is not necessary for D1 and D2 to

coincide. This allows flexibility according to the policy being designed, allowing, for

example, for the revenues from tolling in one part of the network to be used to finance

infrastructure improvements elsewhere in the network.

• To solve the bi-level program (with an integer nonlinear program for the upper level

problem and a continuous nonlinear program for the lower level problem), we have first

transformed it into a single-level mixed-integer nonlinear program with nonlinear

complementarity constraints. A relaxation approach has then been developed to relax

the complementarity constraints. At each iteration step, the SBB solver in GAMS was

used to solve the relaxed mixed-integer nonlinear program. An existing business

software (rather than bespoke software) was used to solve the complex mathematical

programming problem, demonstrating that an application of the approach by transport

planners/policymakers is practical.

This study further differs from existing analyses in two main aspects. Firstly, the toll

pricing and capacity development in a discrete network design framework where different

toll pricing and capacity expansion schemes can be compared explicitly. Secondly, the

variances in total travel time with respect to the budget level and toll revenues are

investigated explicitly. The discrete variable design with toll pricing and capacity

expansion is more appropriate for a transport network. The proposed modelling approach

can support government decision-makers to identify how, and under what circumstances,

to set the budget level and the toll pricing level. It can also help in improving public

Fig. 4 Toll revenue vs budget level for the Sioux-Falls network
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understanding of how different transport policies can benefit the development of the

transport network. Finally, the proposed model can be solved conveniently using existing

optimal solvers, making it accessible in principle to the wider transport community and

policy makers.

Some other key issues for further study are:

• Complex behaviour investigation. From the lower model (7–10), given the fixed travel

demand, the link toll level and capacity level determined by the upper level, we use the

UE principle to investigate the traveler’s route choice behavior. However, network

design and road pricing are long-term decisions and thus affect demand. They will also

result in optimization of other ways, e.g., departure rates and individual travel mode

choice, with the case of regular choices (Xu and Gao 2009). Further model

development along these lines is a topic for further study.

• A multi-modal modelling approach for the additional complexities of the real world.

With the proposed model framework, a further additional degree of complexity, i.e.

public transport can be integrated. In a modern urban context, a policy that is only

designed for cars, without taking public transport into account is largely unthinkable.

Integrated transport planning and policy, especially in presence of pricing policies,

requires multi-modal thinking.
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