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Abstract Discrete choices are often analyzed statically. The limitations of static models

become more obvious when employing them in more long-term travel demand forecasting.

The research gap lies in a theoretical model which is dynamically formulated, and in

readily available longitudinal data sources. To address this, a heterogeneous hidden

Markov modeling approach (HMM) is proposed in this paper to model dynamic discrete

choices. Both longitudinal and cross-sectional heterogeneity are considered. The approach

is demonstrated on a travel mode choice application using ten-wave Puget Sound Transport

Panel data coupled with some other supplementary data sources. Results indicate that

travelers’ long-term life-cycle stages have an enduring impact when shifted to different

mode choice states, wherein sensitivities to travel time and cost vary. Empirical results are

put in line with static discrete choice models. The paper demonstrates that the family of

HMM models provide the best fitting model. The dynamic model has superior explanatory
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power in fitting longitudinal data and thus shall provide more accurate estimates for

planning and policy analyses. The proposed approach can be generalized to study other

short/mid-term travel behavior. The estimated model can be easily calibrated and trans-

ferred for applications elsewhere.

Keywords Dynamic mode choice � Hidden Markov � Transition matrix � Heterogeneous

Introduction

Although mode choice is obviously an important dimension in individual decision-making

process, it is usually treated as aggregate in many practices and is not part of the individual

travel demand models Pendyala (2009). One reason for this treatment is that mode decision

is constrained by factors such as vehicle ownership, availability of public transit, and

transit fare, all of which are relatively stable and unlikely to change in a short time period.

However, as concepts such as transit oriented development (TOD) and multimodal corridor

management attract increasing interests from both researchers and policy makers, there is

increasing need to internalize mode decisions and build a more comprehensive model to

support long-term policy analysis.

A number of time-varying personal/household-level factors would influence travel

mode choice. For instance, a person who previously drove to work may have to carpool in

the future if she/he gets married and the partner does not own a car. When kids reach

school age and can ride school bus on her own, family adults are likely to commute alone

more often. These examples illustrate how changes in lifecycle stage may affect individ-

uals’ mode choice preference. In the real world, many other factors may also play their

roles, e.g., occupation, salary, health status, immigration, etc. These factors are time-

varying and can no longer be accommodated by modeling methods that emphasize only the

cross-sectional variability. This research gap in modeling methodology can be filled, when

discrete choice data collected over time (e.g., multi-day/week travel diary data, annual

panel survey data, etc.) becomes available and provides sufficient empirical evidence.

Hence, the authors are motivated to:

• develop a dynamic modeling approach that is flexible enough to consider cross-

sectional observed/unobserved heterogeneity and time-dependent heterogeneity.

• empirically test the approach using longitudinal data sources and understand its

implications and sensitivity.

The organization of the remainder of the paper is as follows. The next section reviews

existing literature in modeling mode choice. Attention is paid to dynamic mode choice

models and Markov process models. Section ‘‘Modeling dynamic mode choice: a hidden

markov approach’’ presents a hidden Markov multinomial logit model and one of its direct

extensions, hidden Markov random-parameter error component model. An empirical

application on Puget Sound Travel Panel (PSTP) survey data for travel mode decision

processes is described in ‘‘Data’’ section, followed by an empirical estimation demon-

strating the model’s capability in capturing individual dynamics. Closing remarks on

theoretical/practical contributions, as well as directions for future research, are offered at

the end of the paper.
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Literature review

The majority of travel mode choice studies have been focused on econometric theory of

random utility maximization. It assumes that an individual’s choice is determined by the

indirect utility of each alternative and the individual can choose the one that maximizes

her/his utility level. For example, Koppelman (1983) used a multinomial logit model to

predict mode share changes in response to a range of transit service improvements. Later

on, a great deal of advances has been done following this line of research. Mixed logit

models have been applied to model mode choice and the underlying heterogeneity

(McFadden and Train 2000). Random parameters have been adopted to incorporate both

observed and unobserved heterogeneity (i.e., taste variation) cross observations using the

mean and the variance of random parameters. In addition to the taste variation over

travelers, a number of researchers have recognized that tastes can vary across tasks for the

same traveler and thus generalized the heterogeneity to intra-personal level (Hess and

Train 2011; Cherchi and Guevara 2012). These studies are well suited for analyzing cross-

sectional heterogeneity relying on short-term cross-sectional data (Kitamura 1990; Pen-

dyala and Pas 2000). In addition to cross-sectional heterogeneity, the possible time-varying

heterogeneity can cause concern in travel choices from the perspective of relatively more

long-term horizon (Pendyala 2009). As discussed in the introduction section, various time-

varying factors could influence travelers’ decisions such as mode choice. Only recently,

increasing amount of research on dynamic models has been available (e.g., Cirillo and

Axhausen 2010; Pendyala et al. 2005; Walker 2001). For example, Cirillo and Axhausen

(2002) studied short-term mode choice dynamics using discrete choice method and panel

data. They further extended the method to include dynamic variables in the systematic

utility functions (Cirillo and Axhausen 2010). Srinivasan and Bhargavi investigated long-

run commute mode choice dynamics (including exogenous variable change, state-depen-

dence, user sensitivity, and unobserved factors) in India using a 5-year longitudinal dataset

(Srinivasan and Bhargavi 2007). Their model captured persistent inertia which would

hinder the immediate effects, as predicted by traditional cross-sectional models, of

improved LOS in transit services. Studies on short-term within-day (Ramadurai and

Srinivasan 2006) and day-to-day (Pas and Koppelman 1987) variability were also seen in

literature.

As an alternative, process models switch the focus from what travelers should do (i.e.,

utility maximization) to what they actually do by assuming behavior process and incor-

porating constraints, habits, learning, etc. This line of research attracts increasing research

attention. Data mining methods and artificial intelligence were typically employed to direct

behavioral process. For instance, Pendyala et al. (1998) derived decision rules based on

neural network to predict activity scheduling and mode choice. Arentze and Timmermans

developed a computational process model (ALBATROSS) to mimic travel decision-

making process (Arentze and Timmermans 2004). A number of decision trees based on

machine learning and artificial intelligence were employed to model different choices.

Xiong and Zhang (2013) developed an agent-based process to imitate travel behavior in

terms of information acquisition, learning, adaptation and decision heuristics. Markov

chain was another way to model the decision-making process. Goulias reported results

within the context of time-use and activity patterns using Markov process model and PSTP

dataset (Goulias 1999). Ben-Akiva (2010) proposed a planning-action model where the

intrinsic plan of changing modes was modeled as a Markov process. Choudhury et al.

(2010) applied the planning-action process to study more short-term dynamic plans of
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driving and route changing behavior. Xiong and Zhang (2014) proposed a travel mode

search-switching process model. It is found that travelers can be classified into different

‘‘states’’ (e.g., car-loving state v.s. transit-loving state). With changes in level-of-service

and/or socio-demographic characteristics, travelers may change their preference, which

can be identified as the state-switching using Markov chain. Vij (2013) also demonstrated

the use of Markov process more specific to mode choice and modality style based on panel

data from Santiago, Chile. He further asserted that Markovian state is a dynamic extension

to ‘‘latent class’’. Overall, these action plans, preference states, and modality styles are not

directly observable and can only be inferred from empirical data. Thus, this group of

models can be categorized as ‘‘hidden Markov models’’ (HMM). HMM has been applied in

other fields such as speech recognition, biological sequences analysis, etc. (Netzer et al.

2008; Scott 2002; Smith and Vounatsou 2003). It receives limited research attention in

transportation modeling, especially in travel behavior modeling.

In contrast to its limited applications in modeling travel behavior, HMM approach,

however, has the potential to uncover factors that contribute to the dynamics of choices. In

this paper, an HMM dynamic mode choice model is developed and estimated, wherein

hidden states are a finite set of states representing different hidden modal preferences.

There are three main contributions related to HMM mode choice modeling. In the mod-

eling part, a nonhomogeneous transition matrix is developed and thus it incorporates time-

varying covariates, such as household composition changes, income increase, personal

occupation changes, etc., to explain heterogeneity. Secondly, a hierarchical structure under

HMM is developed using random parameters and error components to account for

unobserved heterogeneity. This is not seen in most existing HMM studies. And our results

show that it greatly enhances the model goodness-of-fit. Finally, our empirical results focus

on long-term changes in modal preferences. Transitions in lifecycle stages can lead to

switching in hidden preferences. After getting married, the couple is likely to coordinate

carpooling more often. Parents will do drive-alone more often if their kids reach school age

and take school buses. Using the 1989–2002 10-wave panel survey data for the Puget

Sound region, we can empirically explain the dynamic influence of life-stage changes on

mode choice dynamics. And a number of ‘‘hidden’’ human factors, including inertia,

values, attitudes, and preference, can potentially fit in this hierarchical approach in

explaining why and how travelers are evolving and adjusting their decisions.

Modeling dynamic mode choice: a hidden Markov approach

We define Y ¼ fyitg as a vector of all travel mode choices yit observed for individual i

during the time period t. In our application, t is defined as the time between each two waves

of the longitudinal data collection (typically 1 year). yit can take values from 1 to 5,

indicating auto drive alone, carpool, transit, walk, and bike, respectively. Some predefined

availability constraints are specified here in order to make the estimation more meaningful

(e.g., walk mode is not available for travels with excessively long distance). Heterogeneous

choice sets can be a worthy topic for future research.

At certain time period, observed travel mode choices may be governed by unobserved

states representing modal preferences, e.g., car-oriented, transit loving, etc. Between time

periods, this behavioral predisposition may evolve. And this dynamic portion of behavior is

modeled as a Markov process, using transition matrix to describe the transitions between

different preference states. The transition matrix is defined as:
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In this formulation, Pi;t�1!t is the Markov chain transition matrix expressing, in proba-

bilistic manner, the likelihood that traveler i switches hidden state. In a typical hidden

Markov model, the transition probabilities term p
ða;bÞ
it is often defined as a constant tran-

sition probability as:

p
ða;bÞ
it ¼ PrðHtþ1 ¼ bjHt ¼ aÞ ð1Þ

In this paper, this homogeneous Markov transition is further extended with observed

heterogeneity. Consider different states of travel mode choice, it highly depends on a

number of factors, which is already successfully observed from latent-class approach (Vij

2013) and latent variable approach (Paulssen et al. 2013). This paper explores the speci-

fication of a heterogeneous Markov transition by hypothesizing that the transition highly

depends on whether changes in personal/household attributes in the previous period were

strong enough to transition the traveler from one hidden preference state to another state.

For simplicity, we first assume a two-state hidden Markov model with p
ðh1;h2Þ
it denoting the

transition probability from hidden state h1 to hidden state h2 for individual i in period t. We

introduce the following parameterization for the heterogeneous Markov transitions:

p
ðh1;h2Þ
it ¼ expðZit

0kðh1;h2ÞÞ
1 þ expðZit

0kðh1;h2ÞÞ
ð2Þ

kðh1;h2Þ is the corresponding regression coefficients for the transition probability p
ðh1;h2Þ
it . Z

denotes personal/household covariates. This formulation defines a heterogeneous Markov

Chain since it allows the transition probabilities of the hidden states to depend on the set of

observed covariates (can include travel time, cost, and socio-demographic variables). This

extension is general enough to, in the future, incorporate drivers’ latent modal preferences

and their unobserved variables including familiarity, inertia, and attitudes into the

formulation.

We assume that given individual i’s true state Hit in period t, the observed process of

travel mode choices: Yit are conditionally independent of the hidden state of other time

periods. The state-dependent mode choice follows random utility maximization modeling

form. Thus, we assume that the state-dependent choice of the alternative mode m has the

utility as follows:

Vm
ðitjHitÞ ¼ Z0

i;tbðmjHitÞ þX0
m;tcðmjHitÞ þ �ðimjHitÞ ð3Þ

where b and c are the vectors of state Hit dependent fixed parameters for per-

sonal/household covariates Z and travel mode covariates X, respectively. Level-of-service

variables (i.e., travel time, cost) and various personal/household characteristics (e.g.,

gender, income level, number of vehicles) can enter the formulation of utility functions.

Therefore, the probability for individual i to choose travel mode m, conditional on the

unobserved random state Hit is given by:
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PrðYit ¼ mjHit ¼ hÞ ¼
expðZ0

itbmjh þX0
itcmjhÞP

j expðZit
0bhjj þX0

itcmjjÞ
; h ¼ 1; . . .;H ð4Þ

where Zit is the vector of covariates measured at period t for individual i, bmjh is the

corresponding regression coefficients for choosing mode m given hidden state h. One good

feature about this hierarchical modeling structure is that this model can be generalized to

allow for various forms of parameter heterogeneity following the well-established line of

random utility maximization while still retaining its dynamic nature. For instance, com-

bining random parameters and error components into the modeling structure can account

for heterogeneity across observations. This paper extends the HMM function by incor-

porating error components into state-dependent utility functions:

Vm
ðitjHitÞ ¼ Z0

i;tbðmjHitÞ þX0
m;tcðmjHitÞ þ rðmjHitÞgðimjHitÞ þ �ðimjHitÞ ð5Þ

where rðmjHitÞ is a scalar parameter specific to travel mode m and state Hit. gðimjHitÞ is a

random variable hypothesized to be i.i.d. normal (0, 1) across individual i, mode m, and

hidden state Hit. Conditionally conjugate priors that are commonly used in different

Bayesian statistical studies are employed in this paper to sample posterior distributions for

the coefficients. In terms of the empirical test in this paper which employs 10-year travel

panel survey data, we adopt non-informative conjugate priors and let the massive data

determine inferences. This is largely due to the relatively huge sample size over the years

and the fact that little evidence is known in terms of any established prior information

regarding the estimation parameters.

rm � Inverse Gammaðam; bmÞ ð6Þ

where am and bm are predefined values. An individual’s decision probabilities are corre-

lated through the common underlying path of the hidden states, because of the Markovian

properties of the model. Therefore, the joint likelihood function is given as:

Lðb; k;HitÞ ¼ PrðYi1 ¼ yi1; � � � ; YiN ¼ yiNÞ

¼
X
Hi1

X
Hi2

� � �
X
HiN

½PrðHi1Þ
YN
t¼2

PrðHitjHit�1Þ�

�
YN
t¼1

PrðYit ¼ yitjHitÞ

ð7Þ

where N denotes the total number of periods in the observations. Hi1 denotes the initial

hidden state of the individual i. Therefore, the joint likelihood can be interpreted as the

likelihood of observing a sequence of chosen travel modes. The likelihood is given by the

sum over all possible routes that this person could take over periods between the under-

lying states.

Parameters of the transition matrix and state-dependent searching are estimated using

the joint likelihood function in Eq. (7). Estimation and maximization of the likelihood is

not easy especially when the transition matrix is covariate-dependent. Here we employ

Bayesian estimation and Markov Chain Monte Carlo (MCMC) simulation to sample the

parameter distributions. This method follows Bayesian statistical inference. This paper

assumes prior distributions for the regression coefficients b and kðh1;h2Þ. The Bayesian

inference is based on the posterior distribution:
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Prðb; k;HitjYÞ ¼ Lðb; k;HitÞPrðb; k;HitÞ ð8Þ

This formulation’s left-hand side represents the posterior distribution of the coefficients.

The right-hand side is a multiplication of the joint likelihood function and the prior

distribution. To estimate the coefficients, this posterior distribution needs to be sequentially

drawn. However, the equation does not have a closed form. In Bayesian theory, if it is

possible to express each of the coefficients to be estimated as conditioned on the others,

then we can eventually reach the true joint distribution by cycling through these condi-

tional statements (Gill 2002). Thus we use MCMC simulation to sample the posterior. For

this paper, standard MCMC technique (i.e., Gibbs sampler) is coded using R and Win-

BUGS package. Starting from initial values ½b½0�; k½0�� (the superscript denotes the step), at

the jth step, the estimation method draws values from the following conditional

distributions:

b½j� �pðbjb½j�1�; k½j�1�Þ ð9Þ

k½j� �pðkjb½j�; k½j�1�Þ ð10Þ

pðb; kÞ denotes the limiting distribution of interest where b and k are the vectors of

coefficients whose posterior distributions are what we want to statistically describe.

Number of iterations j is incremented and repeated until convergence. By doing this, a

Markov chain is constructed to cycle through these conditional statements using Eqs. (9)

and (10). It moves forward and then around the true limiting distribution. Once conver-

gence is reached, a sufficient number of samples should be drawn to represent all areas of

the target posterior. Gibbs sampling requires a full set of conditional distributions which is

often not the case in hierarchical conditional relationships. The Metropolis-Hastings

algorithm can be explored in future research when the model is enhanced with a Bayesian

hierarchical structure.

Data

The data used for this study is from the Puget Sound Transportation Panel survey data that

was collected over a 10-year period from 1989 to 2000. Stratified samples based on usual

mode choice and residence county have been contacted via telephone random digit dialing.

Recontacting participants from a previous transit survey and bus on-board letter distri-

bution have been adopted to ensure sufficient transit samples. Each wave of the panel

included some 1700 household samples and 3400 people in the Puget Sound area. Each

member of the households surveyed were asked to record a two-day travel diary along with

their personal, household, and vehicle information. Monetary incentive has been used to

maintain response rates at 60 % level.

The first wave survey started in 1989 with 1687 households. Approximately 20 % of the

samples left the panel between each two waves due to relocation and other issues. This

attrition was replaced with new panel members. The panel data is processed in the way that

any households that have stayed in the panel for six consecutive waves are included in the

data set. All the home-based work trips produced by these households are then collected for

analyzing the commute travel mode choice. A total number of 1050 samples have been

included in the analysis, which results in 6300 commute trip records in the data set.
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In addition to the two-day travel diary, personal and household characteristics have been

collected, including gender, age, occupation, education, and household-level life-cycle

stages. Meanwhile, information on household vehicles, workplace and employment has

also been structured, allowing future analysis on vehicle ownership and land use.

Descriptive statistics are summarized by Table 1. Statistics for wave 7, 8, 9, and 10 are

omitted.

One uniqueness of this data is that it provides one of the few, if any, longitudinal travel

survey datasets within United States. It is rich in long-term travel behavior adjustments.

For instance, the commute travel mode shares for the observed 10-wave panel data are

plotted in Fig. 1a. We can observe a slight increase in drive-alone percentage while transit

and walk shares shrink. On average, 14.9 % of the samples have changed travel modes

between each two waves of the survey. And over the entire survey period, 35.9 % of the

samples have changed modes at least once.

At the same time, more profound life-cycle stage and household composition changes

beyond travel behavioral changes can be captured by this dataset. Here we choose to

analyze the most representative life-cycle stages. The predefined life-cycle stages (i.e., 1:

pre-school kids; 2: school-age kids; 3: 1 adult under 35, no kids; 4: one adult 35–64, no

kids; 5: one adult above 65, no kids; 6: two? adults under 35, no kids; 7: two þ adults

Table 1 Descriptive statistics

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6
mean mean mean mean mean mean
(std. dev.) (std. dev.) (std. dev.) (std. dev.) (std. dev.) (std. dev.)

Gender (0 = Male) 0.47 (0.5) 0.48 (0.5) 0.47 (0.5) 0.47 (0.5) 0.47 (0.5) 0.47 (0.5)

Age 42.5 (16.1) 42.4 (16.2) 44.5 (16.7) 43.5 (16.6) 45.9 (16.7) 44.2 (16.8)

# of Vehicles 2.1 (1.1) 2.1 (1.1) 2.1 (1.7) 2.1 (1.1) 2.1 (1.2) 2.1 (1.2)

Household Size 2.6 (1.3) 2.6 (1.3) 2.5 (1.3) 2.5 (1.2) 2.5 (1.2) 2.6 (1.3)

Income level 5.4 (2.3) 5.7 (2.2) 5.5 (2.1) 5.4 (2.2) 5.6 (2.3) 5.8 (2.9)

Life-cycle Stage 4.5 (2.6) 4.5 (2.6) 4.7 (2.6) 4.6 (2.6) 4.8 (2.5) 4.6 (2.6)

# persons surveyed 3392 4267 3736 4081 3735 4574

# households surveyed 1712 1923 1703 2005 1902 2238

(a) (b)

Fig. 1 Commute travel mode split and household life-cycle stage changes during the survey. a Commute
travel mode ahare for the 10 wave panel. b % of households in different life-cycle stages
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35–64, no kids; 8: two þ adults above 65, no kids) is re-grouped into four categories: (1)

households with preschool kids; (2) households with school-age kids; (3) single households

no kids; (4) two þ households no kids. During the panel survey period, the proportion

changes of these four types of households can be tracked in Fig. 1b. An average of 12.0 %

of travelers have experienced changes in lifecycle stages between waves. And for the entire

survey period, this percentage for life-stage changes increases to 47.4 %.

Within the over 10 years of the survey, the percentage of households with kids dropped

to around 30 %. Significant decrease in the percentage of households with preschool-age

kids is observed. On the contrary, the percentage of single households without kids has

increased, while the percentage of 2-adult families remain in a stable level. While this

paper’s main purpose is to propose and demonstrate the dynamic mode choice model, the

changes in household composition and life-cycle stages can be an important factor in

explaining the dynamics and thus can introduce interesting empirical finding if we

incorporate this in the model.

Figure 2 plots commute travel mode share in different waves for travelers in different

life-cycle stages. While the mode share for travelers in life-cycle stage 4 (plotted in

Fig. 2d) is generally stable during the plotted six time periods, travelers in other stages tend

to behave differently among different time periods. For instance, growing carpool share

and diminishing transit share are observed among individuals in lifecycle stage 2.

(a) (b)

(c) (d)

Fig. 2 Commute travel mode share for different lifecycle stages. a Lifecycle stage 1: family with preschool
age kids. b Lifecycle stage 2: family with school age kids. c Lifecycle stage 3: single-adult family no kids.
d Lifecycle stage 4: double-adult family no kids
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Estimation results

The HMM family of models are compared with their benchmarks to reach a conclusion of

which model fits the data best. Five alternative model specifications are considered: a

standard multinomial logit model (MNL), which has a single homogeneous component and

fixed parameters across all observations; a latent classes model; a mixture model of latent

classes and error components; a two-state homogeneous-chain hidden Markov multinomial

logit model; and a two-state heterogeneous-chain hidden Markov model with error com-

ponents. Following Vij et al. (2013)’s formulation, we specify our state/class-dependent

systematic utility functions as follows:

Vauto ¼ b0;auto þ b1 � tauto þ b4 � cauto þ b5 � highinc � cauto þ b6 � numveh=hhsize
Vcarp ¼ b0;carp þ b1 � tcarp þ b4 � ccarp þ b5 � highinc � ccarp þ b7 � numveh=hhsize
Vtransit ¼ b0;transit þ b1 � ttransit þ b2 � taccess þ b4 � ctransit þ b10 � buspass
Vwalk ¼ b0;walk þ b2 � twalk þ b8 � male
Vbike ¼ b0;bike þ b3 � tbike þ b9 � male

8>>>>>>><
>>>>>>>:

ð11Þ

where t denotes travel time; c denotes travel cost; highinc is a dummy variable for higher

income population (with household annual income higher than $50K); numveh denotes the

number of vehicles in household; hhsize denotes the household size; buspass is a dummy

variable for holding a bus pass; male is a dummy variable for male travelers.

Various performance measures of these five models are compared in Table 2. The

estimated parameters from the MNL model are set up as a group of initial values to the

Bayesian estimation of the hidden Markov models. The details about the estimation results

of the benchmark model are not included in the interest of paper length but can be obtained

from the authors. The same utility functions specified in MNL are used in modeling the

class-dependent choice (latent classes models) and state-dependent choice (hidden Markov

models). From Table 2, it is worth noting that static latent classes models do not fit the data

very well. Even with 42 parameters specified in a latent-classes model with error com-

ponents, the Pseudo q2 statistic is only improved from 0.673 to 0.737. This is due to the

fact that a typical static latent-classes model cannot consider the dependencies between

time periods. Hidden Markov models can capture time-varying heterogeneity with the

transition probabilities. A homogeneous-chain HMM model (i.e., transition probabilities

are not related to personal/household covariates) with 40 parameters outperforms latent-

classes model with pseudo q2 ¼ 0:798. And the extension to a heterogeneous chain (i.e., a

transition model rather than probabilities) can further enhance the goodness-of-fit. This

demonstrates the superiority of HMM models in modeling dynamic data.

Table 2 Performance Measures for Choosing the Number of Hidden States

Models Number of
parameters

Log-likelihood Pseudo q2

Standard multinomial logit model 14 -3246.7 0.673

Latent classes model 32 -3126.04 0.689

Latent classes with error components 42 -2667.65 0.737

Homogeneous-chain HMM error components 40 -2053.0 0.798

Heterogeneous-chain HMM error components 46 -1670.0 0.854
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We report the estimation results for the HMM models in Table 3. The standard errors of

the estimated parameters are reported in the brackets. Insignificant parameters at the 90 %

confidence level are denoted as italic in Table 3.

Once in a specific state, holding certain preferences on different travel modes for

commuting travel, travelers exhibit certain levels of inertia in changing the state. This is

validated by the negative and significant estimates for the Markov transition probabilities,

which also indicates the stickiness of the two states (stickiness indicates that the probability

of staying in the state is greater than the probability of switching out). Secondly, the

heterogeneous chain estimates suggest significantly negative results for long-term life-

cycle stages. This finding indicates that compared to travelers in a 2-adult household,

single individuals and individuals with kids in general have higher inertia in switching

hidden states (except that single-family individuals are more likely to switch from state 1

to state 2). We found this finding interesting. While further evidence needs to be drawn to

validate the true impact from life-cycle stages on transitions between different states, the

empirical results suggest that this modeling framework can serve as a useful test-bed

wherein various empirical assumptions on choice dynamics, not limited to travel mode

choice, can be tested. For instance, more general assumptions on inertia, modal preference,

and attitudes can be incorporated in modeling this state transition.

From the empirical test, HMM model finds factors that significantly influence travelers’

commute mode choice. The HMM model with heterogeneous chain and error components

(denoted as EC in Table 3) demonstrated a superior goodness-of-fit by accounting for both

the cross-sectional unobserved heterogeneity and time-varying observed heterogeneity. The

EC effects for different alternatives are all positive and significant, indicating strong

alternative-specific taste variation. State-1 individuals tend to have the highest variation in

bike utilities, while the variation is high for auto, transit, and bike modes for state-2 indi-

viduals. In terms of our posterior estimates, we find that State 1 tends to be a ‘‘time/cost-

sensitive state’’ which has the highest elasticity of demand with respect to travel times and

costs. In this state, individuals tend to have higher commute value-of-time (reported in

Table 6) and evaluate their options mainly based on travel times/costs of each travel mode.

Higher numbers of vehicles per person are likely to trigger individuals in this state to choose

driving. Possessing a metro card does not necessarily increase the propensity to use transit

significantly. On the contrary, State 2 is more likely to be an ‘‘auto-loving’’ state, judging by

the alternative specific constant (ASC) statistics. Individuals in this state have strong

preferences towards driving-alone mode and their sensitivities to level-of-service variables

are less intense when compared with State 1. Marginal disutilities from travel time and costs

are estimated one tenth of the scale of the disutilities observed for State 1. Different states

are likely to be related to individuals on certain life-cycle stages. Conforming to the findings

obtained from the heterogeneous Markov transitions, Individuals on life stage 2 and 3 are

more likely to stay in State 2. Especially for life stage 3 individuals (single adult with no

kids), the positive estimate on the transition probability from State 1 to State 2 is 1.128,

Table 4 Sensitivity of the heterogeneous Markov transition covariates

In State 1 Car Carpool Transit Walk Bike

Life stage 1 (preschool age kids) -21.87 9.93 -4.22 0.06 -0.97 -4.80

Life stage 2 (school age kids) 13.32 -6.21 2.52 -0.05 0.77 2.96

Life stage 3 (one adult no kids) -4.86 2.33 -1.24 0.07 0.04 -1.20

Life stage 4 (two adults no kids) 21.49 -9.98 3.89 -0.08 1.20 4.98
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which suggests that they have a much higher possibility to switch state in the short-term if

they are currently in State 1. This coefficient for life stage 1 individuals (adults with

preschool-age kids) is �1.674 and �0.916 for the two transitions, respectively. It indicates

that while in general reluctant to any change, preschool kids parents are more likely to stay

in ‘‘time/cost sensitive state’’. Similar interpretation can be done to life stage 3 individuals.

If considering the case when an individual makes life-stage change from stage 1 to 2, for

example, this individual have a much higher chance to stop being a time/cost sensitive

parent and embrace the ‘‘car-loving’’ state.

The model predicts a Markov transition with small transition probabilities (negative

coefficients from Table 3). We further test the model’s sensitivities to Markov transition

covariates and state-dependent choice covariates. Sensitivity statistics are reported in

Tables 4 and 5. Life-stage status significantly influences the share of individuals in dif-

ferent hidden states. In terms of sensitivities to different modes, life stage 2 and 4 indi-

viduals exhibit similar patterns in increasing the percentages of carpool and low-speed

modes. The marginal effects from one minute increase in different travel times and from

one dollar increase in different travel costs are presented in Table 5. For example, one

minute increase in car travel time will lead to a 3.93 % decrease in car mode share among

State 1 travelers. This number is much smaller for State 2 as State 2 individuals are

predicted to be less sensitive to time and costs.

Finally, the estimation with regards to commute value of travel times is presented in

Table 6. Value of travel times can be calculated for both states and for both the low-income

group and the high-income group. Monetary terms are transferred to dollars in year 2013

using consumer price index in order to make results comparable to findings in most recent

research. State-1 individuals all tend to have a higher value of time, compared to State-2

individuals. The difference between low-income and high-income people is found much

smaller in State 1, While in State 2, high-income group has a much higher value of time.

Conclusions

The objective of this paper is to explore the dynamic nature of travel mode choice. To

accomplish this goal, the choice has been formulated as a hidden Markov model. Bayesian

estimation with MCMC sampling procedure has been used to estimate the HMM model

and to account for observed heterogeneity. This method is believed to embed time-varying

heterogeneity in modeling mode choice. This extension helps relieve the limitation of time-

constant assumptions of traditional methods, which can be potentially problematic if

models employ longitudinal data. The model further extends the HMM to include hier-

archical random parameters and error components in order to better consider unobserved

heterogeneity. Most importantly, the model includes a heterogeneous transition matrix to

Table 6 Value of time estimates (in 2013 $)

State 1 State 2

Low-income High-income Low-income High-income

In-vehicle time ($/hr) 37.8 39.6 15.5 33.2

Walk time ($/hr) 18.9 19.7 9.89 21.2

Bike time ($/hr) 18.1 18.9 11.4 24.5
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incorporate observable dynamics. This is innovative and can be potentially significant

since it provide a hierarchical framework wherein a great deal of empirical assumptions

and model formulation can be tested.

Practical highlights of the paper include an empirical experiment conducted using a

10-wave PSTP data. The data for the analysis is limited to the subjects that appear in at least

six waves of the survey. In order to obtain supplementary data on alternative modes, Seattle

region’s planning model is obtained and executed to collect 24-h origin-destination skim-

ming matrix information. The paper has found that the HMM family of models produces the

best data fitting when compared with static discrete choice models such as MNL and latent-

classes. Two hidden states have been specified and the model statistics suggest a clear

evidence that individuals’ long-term life-cycle changes significantly influence their state

switching. Other factors, such as mode-specific level-of-service variables, household

characteristics (household size, number of vehicles), and personal characteristics were

found to have an effect on commute mode choice in a dynamic context.

This paper remains as a first research effort that uses panel dataset to estimate a model

with sensitivity to time/cost changes and various personal/household changes. It is fully

acknowledged that limitations are there for us to address in the future. First of all, all travel

modes are assumed available to decision-makers. This assumption needs to be relaxed as

modality availability is more variant especially in modeling long-term behavior. Another

limitation lies in the way we specify the HMM transition matrix. We demonstrate the

formulation of transition matrix using two hidden states and the life-cycle stage variables.

We may try to capture other modality styles (Vij 2013), e.g., inveterate drivers, car

commuters, multimodals, etc. And other socio-demographic variables could influence the

state specification, the number of states, and initial state distribution. These aspects can and

should be incorporated in a more comprehensive model formulation.

Future work can also focus on the theoretical part, e.g., taking into account the indi-

vidual unobserved heterogeneity in the HMM model. Random-effect parameters can be

incorporated into the transition matrix and estimated with a hierarchical Bayesian struc-

ture, allowing for unobserved heterogeneity in the stickiness to different states. Another

promising direction can explore practical applications of this model. The authors see a

potential integration of the HMM and a one-day traffic simulation model to simulate day-

to-day behavior changes (Xiong et al. 2015). Interesting results on multimodal behavior

responses can be captured.
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