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Abstract Using the 2011 Swedish national travel survey data, this paper explores the

influence of weather characteristics on individuals’ home-based trip chaining complexity.

A series of panel mixed ordered Probit models are estimated to examine the influence of

individual/household social demographics, land use characteristics, and weather charac-

teristics on individuals’ home-based trip chaining complexity. A thermal index, the uni-

versal thermal climate index (UTCI), is used in this study instead of using directly

measured weather variables in order to better approximate the effects of the thermal

environment. The effects of UTCI are segmented into different seasons to account for the

seasonal difference of UTCI effects. Moreover, a spatial expansion method is applied to

allow the impacts of UTCI to vary across geographical locations, as individuals in different

regions have different weather/climate adaptions. The effects of weather are examined in

subsistence, routine, and discretionary trip chains. The results reveal that the ‘ground

covered with snow’ condition is the most influential factor on the number of trips chained

per trip chain among all other weather factors. The variation of UTCI significantly in-

fluences trip chaining complexity in autumn but not in spring and winter. The routine trip

chains are found to be most elastic towards the variation of UTCI. The marginal effects of

UTCI on the expected number of trips per routine trip chain have considerable spatial

variations, while these spatial trends of UTCI effects are found to be not consistent over

seasons.
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Introduction

Individuals’ trip chaining has grown increasingly complex as modern life becomes busier

and they become increasingly time-poor (Currie and Delbosc 2011). The growing chal-

lenge of fulfilling errands in a limited time budget leads to the growing propensity of

chaining more trips in home–home or home–work trip chains, which are defined as a series

of trips with the start and end locations both at home or at either home or the workplace,

respectively (McGuckin and Nakamoto 2004; Kitamura and Susilo 2006). Trip chaining

behaviour also increases dependency on automobiles, leading to higher car usage, and thus

to congested traffic and the expansion of urban peak hours (Ye et al. 2007; Habib et al.

2009; Yun et al. 2014). Studies have also uncovered distinct trip chaining behaviour

between workers and non-workers (Chu 2004; Bayarma et al. 2007), implying different trip

chaining mechanisms between mandatory errands and non-mandatory errands. Moreover,

land use serves as an important factor influencing trip chaining behaviour, and its impacts

show a bell shape effect. Noland and Thomas (2007) found more complex trip chaining

behaviour in lower density environments in the US while Schmöcker et al. (2010), Susilo

and Maat (2007), and Dharmowijoyo et al. (2015) found that in extremely dense areas,

such as London, Randstad, and Jakarta, higher density is associated with more complex trip

chaining.

Among all possible factors that can potentially affect trip chaining behaviour, indi-

vidual/household characteristics and land use characteristics have been studied most ex-

tensively and have been found to have significant impacts. At the same time, the impact of

the weather has rarely been examined in previous studies. Several studies have shown that

weather significantly influences the daily number of trips travelled (e.g. Sabir 2011; Liu

et al. 2014a), which is likely to also influence trip chaining behaviour. In addition, rather

than having a constant impact, weather impacts also vary across different geographical

locations in terms of various individual-level travel behaviour indicators, e.g. activity

duration, number of trips travelled, etc. (Liu et al. 2014b). It is plausible that such

heterogeneity is partly due to weather and land use interaction, as a specific weather

condition and a specific land use pattern may form a micro environment that affects an

individual’s travel choices. Additionally, travellers in a specific geographical location may

adapt their travel behaviour to the local climate, thus embodying spatial heterogeneity.

However, most previous studies have only treated weather and land use as two separate

factors and ignored their interaction. Moreover, almost all previous studies have singled

out the effects of certain weather indicators, such as temperature and/or wind speed, and

explored the relationship between the travel behaviour change and the variation of those

singled-out weather indicators. However, it is well known that different weather indicators

always co-occur and they are likely to have interrelated effects. For instance, wind in a hot

summer may not be considered unpleasant, while wind in a cold winter may be considered

very unpleasant. Thus, in this study, a meteorological thermal index, the universal thermal

climate index (UTCI), is constructed by using directly measured weather indicators, air

temperature, wind speed, and relative humidity. The use of a meteorological thermal index

provides a better approximation of the way the human body perceives weather conditions

than the use of directly measured weather indicators. In terms of travel, existing literature

has shown that the use of a meteorological thermal index can better explain an individual’s

attendances of urban recreational sites (e.g. Nikolopoulou and Lykoudis 2007).

Thus, this paper aims to systematically explore the roles of individual social demo-

graphics, household characteristics, weather characteristics, and land use characteristics
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towards an individual’s trip chaining behaviour, with an emphasis on the impacts of

weather variability and spatial heterogeneity. The study uses one-day travel diary data

from the Swedish national travel survey in 2011 and the weather record from the Swedish

Meteorological and Hydrological Institute (SMHI). UTCI is constructed to approximate

the individual’s thermal perception. The panel mixed ordered Probit model is chosen to

model the number of trips per trip chain so that the fact that several trip chains were made

by the same individual can be taken into account. The spatial expansion method is also

applied to UTCI variables so that the UTCI impacts can have heterogeneity over space.

The outcome of this study helps us not only to understand the cause of the variation in trip

chaining, especially the role of weather which has rarely been studied before, but also to

reveal how weather impacts can potentially vary in different geographical locations. The

findings would also provide several insights on the potential direction in which trip

chaining patterns could be influenced.

The next section offers a brief review of the existing knowledge of determinants that

affect trip chaining behaviour. This is then followed by a description of the data that is used

in this study. The model structure is then proposed and is followed by the model’s esti-

mation and a discussion section. The paper ends with a conclusion section.

Weather impacts on trip chaining behaviour

Although a body of studies that has examined weather impacts on travel behaviour has

recently emerged (e.g. Winters et al. 2007; Koetse and Rietveld 2009; Böcker et al. 2013a, b;

Dijst et al. 2013), the amount of existing literature exploring weather impacts on trip chaining

behaviour is still relatively limited. Thus, the impact of the weather on trip chaining com-

plexity is still largely unclear. However, some evidence has revealed that the weather has

significant impacts on the number of trips and number of trip chains travelled per day. Liu

et al. (2014b) found substantial seasonal variation of the number of trips travelled, more

cycling trips but fewer walks and public transport trips in summer compared towinter. Such a

seasonal variation, although it was affected by several non-weather factors such as summer

vacations, was found to be partially due to changes of weather conditions. In addition, trip

scheduling and the perceived stress underlying activity participation decisions were found to

be significantly affected by rain (Chen and Mahmassani 2015). For trip chains associated

with mandatory activities, this finding may indicate an increased likelihood of trip chaining

under rainy conditions, while for trip chains associated with discretionary activities, this

finding implies fewer activities scheduled on a given rainy day.

Several studies have examined the role of different weather parameters and found that

the impacts vary across different travel modes and different trip purposes. Liu et al.

(2014b) found an increasing trend in both the number of trip chains and total number of

trips per individual per day as temperature rises, especially for non-commuters, while

Saneinejad et al. (2012) showed no significant difference in the commuter trip rate in

different temperature conditions. A rise in temperature corresponded to a decrease in daily

trips of motorised modes, but an increase of daily cycling trips (Sabir 2011) and daily

public bus trips (Arana et al. 2014). Madre et al. (2007) showed that adverse weather,

specifically snow, rain, and strong wind, is one of the main reasons for trip cancellation. By

counting traffic flows, Keay and Simmonds (2005) found a significant decrease in car flows

on rainy days compared to those on sunny days. Since non-motorised modes of transport

are less protected against adverse weather, pedestrians and cyclists are believed to be more
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strongly affected by the weather than other traveller groups. Several studies have shown

that the number of cycling trips decreases significantly in strong wind and heavy rain

conditions, especially for recreational purposes (e.g. Bergström and Magnusson 2003;

Winters et al. 2007; Gebhart and Noland 2014). On the other hand, although private cars

provide protection against adverse weather conditions, drivers are also exposed to dan-

gerous and congested road conditions and drive slowly, thus suffering longer travel times

than in normal weather conditions.

It is clear from the research presented above that weather conditions significantly in-

fluence the number of trips travelled or activities scheduled in different magnitudes de-

pending on different trip purposes and travel modes. However, it is still largely unknown

how the variation of trip chaining behaviour is affected by the variation of weather, as none

of the above-mentioned studies took into account trip chain occurrence and composition.

An increase in the number of trips does not necessarily imply a longer trip distance or a

longer travel time or a more complex trip chaining behaviour. As the weather impacts on

the number of trips vary across trip purposes, it is plausible that the weather impacts on trip

chaining behaviour may also vary across different trip purposes. While previous studies

often model weather and land use as separate factors affecting the number of trips and

travel distance, it is important to understand how the weather and land use factors interact

with each other in terms of trip chaining complexity, as both are the built environment

factors that define a specific travel environment which is perceived by the travellers. These

are the purposes of this paper. The next section will describe the data used in the study and

then the modelling method that will be used in analysing trip chaining behaviour.

Travel survey and weather datasets and variation of trip chaining
in different weather conditions

The travel survey and weather datasets

The 2011 Swedish national transport survey (NTS) dataset provided the trip and indi-

vidual/household information for this paper. The NTS data is an individual-level cross-

sectional dataset that collects respondents’ daily trips in all Swedish municipalities from all

days of the week and from every week of the year. A combined stratified sampling method

was carried out based on gender, age, and municipality. The interviewer collected travel-

related information on each trip, such as travel mode, travel purpose, departure and arrival

locations, departure and arrival times, as well as individual and household socio-demo-

graphic information (Algers 2001). In NTS, each trip corresponds to a destination/visit

where a certain errand is achieved, such as picking up children, visiting friends, etc. Note

that changing modes is not defined as an errand. All the trips a respondent took in the given

observed day were recorded. The travel survey consists of 8757 respondents, of which

49.4 % are male, 18.2 % are younger than 25, 19.9 % are older than 65, 17.9 % are single,

15.1 % are partnered with young children, 22.8 % have a household annual income less

than 150,000 SEK, and 12.1 % do not have cars in their family. Municipality-level land

use information (Swedish Statistics Database 2014) was also matched to the departure

municipality of each trip. This large-scale cross-sectional travel survey provides a com-

prehensive set of data on travel behaviour for the whole of Sweden. The trip-based travel

data was then aggregated into trip chain level, where only the home and workplace are

defined as the anchored points of a trip chain. The trip chains that were not based on home–
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work trip chains were not included in this analysis, as the behaviour of those trip chains

may be quite different from the trip chains based on home–work chains.

The weather information comes from SMHI. Several weather parameters, including

average, minimum and maximum temperatures (only average temperature is used in this

paper), precipitation amount (mm), visibility (visible distance measured in km), wind

speed (km/h), relative humidity, snow depth, and air pressure, are collected at 3 h intervals

every day SMHI (2012). Weather information was assigned to each trip by matching the

weather data from the weather station nearest to the departure point of the trip and se-

lecting the weather variable with the measured time closest to the departure time. When

trip information was aggregated into the trip chain level, the weather variables of the first

trip in the trip chain were used to represent the weather condition of the whole trip chain.

Such a procedure assumes that each individual would base his or her travel decision on the

weather condition that prevailed at the place of departure and time of the trip chain.

Although individuals may make their travel decisions based on other weather information,

such as weather forecasts, especially for some planned travel, this assumption is still

plausible as the weather at the departure time may still lead to last-minute changes in

individuals’ travel plans (Cools and Creemers 2013). It is worth noting that the average

distance from each weather station to its corresponding municipality centre is around

10 km. One should be aware of the limitation of combining two datasets: the distances

from the nearest weather station to the respondent’s place of departure vary for each trip,

raising questions about the degree to which weather conditions measured at the weather

station are the same as those at the place of departure. However, it is worth noting that

these distances are shorter for large municipalities such as Stockholm and Gothenburg

where more data were collected, while for municipalities with only a few residences, such

as some in northern Sweden, that distance is greater. In addition, since the trip-based data

were aggregated into the trip chain level, the effect of these uncertainties was reduced at

least for short distance trips.

The variation of the trip chaining measure on different trip purposes
under different seasons and weather conditions

As discussed before, the impacts of weather may potentially differ in trip chains with

different trip purposes. It would be beneficial to provide how the number of trips per trip

chain is distributed under different seasons and weather conditions by different trip chain

purposes. The main purpose of a trip chain was directly answered by each respondent

during the survey in response to the question, ‘‘What was the main purpose with the whole

trip?’’ Three types of main trip purposes are categorised (Primerano et al. 2008):

• Subsistence defined as the main purpose of a trip chain being for work or school. Such

trips usually have a frequency location and timing that are fixed. And they are essential

for providing the financial means for pursuing maintenance and discretionary activities.

• Routine defined as the main purpose of a trip chain being compulsory to some extent.

The destination is usually at a regular base, but with certain characteristics that can vary

(time, location, etc.). Examples are: child care, certain shopping types (weekly/gro-

cery), banking, pick-up/drop-off of children, and personal business.

• Discretionary defined as the main purpose of a trip chain being optional. The

destination usually varies substantially regarding location and time. Examples are:

sports, eating out, visiting friends, irregular shopping, etc.
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It is worth noting that a trip chain with a main purpose may consist of trips with more

than one trip purpose. For example, a subsistence trip chain from home to work may

consist of one routine trip/visit (dropping off a child at school) and one subsistence trip/

visit (going to a workplace). In this paper, trip chains were categorised based on the main

purposes discussed above. Thus an increase in the number of trips per subsistence trip

chain may be due to routine/discretionary trips, such as dropping off children at kinder-

garten, being chained in the subsistence trip chain. The descriptive analysis of trip chaining

in terms of the main purposes of the trip chain is shown in Table 1.

As shown in Table 1, there is no substantial seasonal variation of the number of trips per

subsistence trip chain. Results from a one-way ANOVA show that the mean values of the

number of trips per subsistence trip chain are not significantly different for all possible

pairs of season combinations at a 5 % significance level. This indicates that patterns of

subsistence trip chains are generally stable across seasons, even given the fact that there are

fewer subsistence trip chains in summer as fewer individuals work in summer. The number

of trips per routine trip chain in summer is on average 0.30 fewer (significant at 1 % level)

than that in spring, which is the highest of all seasons. This is likely due to the long

summer holiday when schools and some services are closed, thus relaxing some time

constraints and pressures of the travellers and subsequently reducing the number of trips

attached to the routine trip chains. The number of trips in a discretionary trip chain is fewer

in summer and autumn than that in spring and winter (significant at 1 % level), but the

difference is smaller than that in routine trip chains. Precipitation and bad visibility show

little influence on the variation of the number of trips per subsistence trip chain. The

number of trips per routine trip chain tends to be 0.1 trips fewer (significant at 5 % level) in

rain conditions compared to in conditions with no precipitation. However, leisure trip

chaining is not affected by precipitation. It is worth noting that snow significantly affects

trip chaining behaviour. The subsistence trip chains under snow conditions have on av-

erage 0.4 trips more than those without snow. That number for routine and discretionary

Table 1 Average number of trips per trip chain per individual on a given day, by season and weather
conditions

Subsistence trip chain Routine trip chain Discretionary trip chain

Season

Spring 1.258 (0.610) 2.270 (0.780) 1.873 (0.905)

Summer 1.226 (0.581) 1.966 (0.814) 1.751 (0.895)

Autumn 1.283 (0.670) 2.075 (0.874) 1.757 (0.901)

Winter 1.275 (0.654) 2.227 (0.754) 1.828 (0.868)

Weather conditions

No precipitation 1.258 (0.630) 2.150 (0.822) 1.805 (0.883)

Drizzle: precipitation\ 1 mm 1.268 (0.634) 2.143 (0.838) 1.771 (0.928)

Rain: precipitation C 1 mm 1.287 (0.660) 2.058 (0.771) 1.800 (0.905)

Visible distance up to1 km 1.270 (0.634) 2.132 (0.817) 1.791 (0.884)

Visible distance over 1 km 1.251 (0.640) 2.146 (0.823) 1.850 (0.931)

Ground without snow 1.261 (0.632) 2.130 (0.813) 1.800 (0.892)

Ground with snow 1.657 (0.845) 2.438 (1.052) 2.088 (1.047)

Note standard deviation in parentheses
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trip chains is around 0.3 and 0.28, respectively. Similar trends are further found in both

urban and rural areas. Presumably, snow-related activities are likely being chained in the

trip chains. Moreover, since the ‘‘indirect cost’’ of travel increases due to snow (with bus

delays, the inconvenience of walking and cycling, etc.), chaining errands in snow-covered

ground situations is more attractive than separating errands into different trip chains. The

descriptive results above clearly show the correlation between weather and trip chaining

behaviour. However, such correlations vary across trip chains with different main purposes

and the reasons and interactions that underlie such correlations are far from straightfor-

ward. Thus, a multivariate analysis was conducted, the detailed procedure of which is

described in the following sections.

Model specification

Similarly to previous studies (Noland and Thomas 2007; Schmöcker et al. 2010), a mul-

tivariate model was chosen to examine the impacts of socio-economic factors, land use

patterns, and weather impacts. The dependent variable is the number of trips per trip chain.

The number of trips per trip chain is equal to the number of visits (stops) per trip chain,

which was used as the dependent variable in some previous studies, plus one. The dis-

tributions of the number of trips per subsistence/routine/discretionary trip chain are pre-

sented in Table 2.

As shown in Table 2, most subsistence trip chains (81 %) are simple home–work/work–

home trip chains. 85 % of routine trip chains contain more than one trip, meaning trip

chaining behaviour, while that number for discretionary trip chains is 58 %. It is also worth

Table 2 Frequencies of the number of trips per trip chain

Number of trips Subsistence trip chain Routine trip chain Discretionary trip chain

Frequency Percentage Frequency Percentage Frequency Percentage

1 5799 81.1 554 15.1 2238 42.1

2 979 13.7 2412 65.9 2287 43.0

3 259 3.6 442 12.1 503 9.5

4 71 1.0 151 4.1 177 3.3

5 24 0.3 60 1.6 64 1.2

6 10 0.1 20 0.5 21 0.4

7 4 0.1 13 0.4 14 0.3

8 5 0.1 6 0.2 7 0.1

9 1 0.0 2 0.1 5 0.1

10 0 0.0 1 0.0 0 0.0

11 0 0.0 0 0.0 0 0.0

12 1 0.0 0 0.0 0 0.0

13 1 0.0 0 0.0 0 0.0

14 0 0.0 0 0.0 0 0.0

15 0 0.0 0 0.0 1 0.0

Total 7154 100 3661 100 5317 100
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noting that the percentages for more than four trips per chain in all three categories are very

small—0.6 % for subsistence trip chains, 2.8 % for routine trip chains, and 2.1 % for

discretionary trip chains. Poisson family models (Poisson/Negative binomial/zero inflated

Negative binomial models) or an ordered Probit model are possible model candidates for

modelling those count variables. Poisson family models and an ordered Probit model were

all tested and compared, while trip chains with more than four trips were categorised into

one category in an ordered Probit model. In all three types of trip chains, the ordered Probit

model showed a better fit. Thus, the ordered Probit model was chosen for the multivariate

modelling. Compared with the Poisson family models, the ordered Probit model has the

advantage of eliminating the impact of outliers (e.g. one trip chain had more than twenty

trips recorded) (Noland and Thomas 2007; Kim and Susilo 2013). However, the drawback

of the ordered Probit model is that the categories being aggregated are treated identically,

and thus no further inference can be derived from the ordered Probit model about the

difference between the categories being aggregated, e.g. the difference between six trips

per chain and seven trips per chain.

In addition, the fact that several trip chains were made by the same individual on a given

day was often ignored in previous studies. The variation of the number of trips per trip

chain due to unobserved attributes at the individual level is likely to be substantial. Thus, in

this paper a mixed ordered Probit model with panel data is chosen to account for the

heterogeneity at the individual level. The model has the following structure:

y�ik ¼ Xikbþ ei þ eik ð1Þ

where i refers to the individual index, k refers to the trip chain index, y�ik refers to the latent

variable associated with the observed number of trips per trip chain yik for trip chain k

made by individual i. b is the vector of coefficients of the explanatory variable sets Xik; ei is
the random error term at the individual level, and eik is the random error term at the trip

chain level. All the random error terms are assumed to be normally distributed and in-

dependent from each other. The individual-level random error term captures the unob-

served heterogeneity at the individual level after controlling for the observed

individual/household characteristics and municipality land use characteristics.

The latent variable y�ik is associated with the observed number of trips per trip chain yijk
with the following formula:

yik ¼

1; if �1\y�ik\l1
2; if l1\y�ik\l2

� � �
m; if lm�1\y�ik\þ1

8
>>><

>>>:

ð2Þ

where lm is the threshold to be estimated. The product of the probabilities of all obser-

vations from individual i is then:

Li ¼
YK

k¼1

Lik ¼
Zþ1

�1

YKi

k¼1

Uðln � Xikb� eiÞ � Uðln�1 � Xikb� eiÞð Þf eið Þdej ð3Þ

where Ki denotes the number of observations from individual i. f eið Þ is the probability

density function of random error terms ei. U denotes the standard normal cumulative

density function. All random error terms are assumed to be normally distributed and

independent of each other, f eið Þ ¼ /ð0; riÞ, where / denotes the standard normal density
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function, ri is the standard deviation of the individual specific error terms to be estimated.

The likelihood function is then the product of Pðyik ¼ njXikÞ for observed n of each

observation. In this paper, m = 1��� 5, which represents the number of trip(s) per trip chain;

from one trip (no extra stop within the given journey, a simple trip from origin to desti-

nation) to five trips or more (having four or more extra stops within the given journey).

Similarly to other mixed models with panel data, such as the panel mixed logit model,

the one-dimensional integral in Eq. (3) can be handled by either numerical integration or

simulation techniques. In this paper, 10-point Hermite–Gauss quadrature was used to

approximate this integral. Due to the identification problem, the intercept was fixed at zero

while the standard deviation of the trip chain level error term was fixed at one. The model

was run in a routine programmed in the Matlab environment.

Various individual/household social demographic variables, weather characteristic

variables, and land use characteristic variables were included in the explanatory variable

set, as they were found from the literature review to have significant impacts on trip chain

behaviour.

The universal thermal climate index (UTCI)

In a departure from most previous studies, which directly used weather variables such as

temperature, relative humidity, etc., this study applied a thermal comfort variable con-

structed from measured weather variables. Intuitively, the use of a thermal comfort vari-

able is more appreciated, as different weather parameters contribute to the thermal

environment which is actually perceived by each individual. Only a few studies have

applied weather constructs instead of directly using measured weather parameters (Böcker

et al. 2013b). Among several possible candidates for the thermal comfort variable,

physiologically equivalent temperature (PET) and the Universal Thermal Climate Index

(UTCI) were found suitable for application in travel behaviour research (Creemers et al.

2014). Thus, in this paper UTCI values were calculated. UTCI is expressed as an

equivalent ambient temperature (�C) of a reference environment that provides the same

physiological response of a reference person as the actual environment (Blazejczyk et al.

2012). In comparison to directly measured weather parameters, the use of a thermal

indicator has the advantage of incorporating the knowledge in biometeorology and can

avoid the interrelated effects of measured weather parameters. An available programme for

calculating UTCI values can be found on the UTCI official website (UTCI 2014). Several

methodologies were applied to control for this heterogeneity to help interpret the UTCI

effects, including a seasonal segmentation to control for the seasonal difference and a

spatial expansion method to control for the potential spatial heterogeneity of UTCI per-

ception. Different UTCI values can be categorised in terms of different thermal stress

(UTCI 2014), as shown in Table 3 below.

UTCI values vary from -46.77 to 26.09 �C for all recorded trip chains in the 2011

NTS. This suggests that only cold stress was found in the sample, according to Table 3.

UTCI values were first segmented into different intervals according to the categories in

Table 3 in order to test whether UTCI values had a bell shape effect. The results suggested

a linear assumption of the effect of UTCI was valid. The coefficients of UTCI were then

segmented into different seasons to capture potentially different impacts of UTCI varia-

tions in different seasons, as the clothing type of each individual can be different in

different seasons. The detailed explanatory variable sets are shown in Table 4.

Previous studies (e.g. Liu et al. 2014a) showed that weather had different impacts on

activity–travel patterns depending on activity purposes, as work activities are less affected
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Table 3 Universal thermal cli-
mate index (UTCI) thermal stress
category

UTCI range (�C) Stress category

(?46, þ1) Extreme heat stress

(?38, ?46] Very strong heat stress

(?32, ?38] Strong heat stress

(?26, ?32] Moderate heat stress

(?9, ?26] No thermal stress

(?9, 0] Slight cold stress

(0, -13] Moderate cold stress

(-13, -27] Strong cold stress

(-27, -40] Very strong cold stress

(�1, -40] Extreme cold stress

Table 4 Explanatory variables used in the models

Explanatory variables Description

Individual socio-demographics

Gender (D) Male (reference)

Female

Age (D) Age under 25 years old

Age from 26 to 40 years old (reference)

Age from 41 to 64 years old

Age over 65 years olda

Physical disability (D) Respondent has physical disability

Household socio-demographics

Household size (D) Household member is no more than 3 (reference)

Household member is more than 3

Household type (D) Single family and has no child

Single family and has one or more children while the youngest child
is between 0 and 6 years old

Single family and has one or more children while the youngest child
is between 7 and 18 years old

Partnered family and has no child (reference)

Partnered family and has one or more children while the youngest
child is between 0 and 6 years old

Partnered family and has one or more children while the youngest
child is between 7–18 years old

Household Income (D) Household annual income is lower than 150,000 SEK (reference)

Household annual income is between 150,000 and 400,000 SEK

Household annual income is higher than 400,000 SEK

Car ownership (C) Number of cars in household

Trip chain characteristics

Trip chain departure time (D) The trip chain departure time at 7:00–9:00 morning peak

The trip chain departure time at 17:00–19:00 afternoon peak
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while non-work activities are more influenced by the weather changes. Thus, in order to

better understand the influences of weather on trip chaining behaviour, three models were

established based on the classification of the main purpose of the trip chain, which are:

subsistence, routine, and discretionary. The model estimation results are shown in Table 5.

Model estimation results

Variable effects

As shown in Table 5, females tend to chain more trips in subsistence and routine trip

chains than male travellers. This echoes a previous study (McGuckin and Murakami 1999)

Table 4 continued

Explanatory variables Description

Main travel mode of the trip chain
(D)

Walk and cycling (reference)

Private car

Public transport

Average link speed (C) (trip chain
distance/travel time)

Average link speed for private car mode

Average link speed for public transport mode

Weather characteristics

Universal thermal climate index (C) UTCI in springb

UTCI in summer

UTCI in autumn

UTCI in winter

Precipitation (D) No precipitation (reference)

Drizzle: precipitation\ 1 mm

Rain: precipitation C 1 mm

Visibility (D) Visible distance up to1 km

Visible distance over 1 km (reference)

Snow covered (D) Ground without snow covered (reference)

Ground with snow covered

Land use characteristics

Population density (C) Population density of the municipality (100 residences per km2)

Commuters in (C) The number of gainfully employed who live in other municipalities
while working at the given municipality (per 100,000 employees)

Commuters out (C) The number of gainfully employed who live at the given
municipality while working at other municipalities (per 100,000
employees)

Car possession (C) The number of cars registered per 1000 residences in the
municipality

Note C in the parenthesis denotes it is a continuous variable while D in the parenthesis denotes it is a dummy
variable
a 65 is the official retirement age of Swedish people
b Spring includes March, April and May. Summer includes June, July and August. Autumn includes
September, October and November. Winter includes December, January and February
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Table 5 Estimation results for subsistence/routine/discretionary trip chains

Explanatory variables Subsistence trip
chains

Routine trip chains Discretionary trip
chains

Estimates T value Estimates T value Estimates T value

Intercept 0 fixed 0 fixed 0 fixed

Individual socio-demographics

Male Ref – Ref – Ref –

Female 0.108 1.900 0.198 2.795 0.076 1.423

Age\ 25 20.669 26.822 -0.128 -0.900 0.172 1.754

Age 26–40 Ref – Ref – Ref –

Age 41–64 20.190 22.572 -0.108 -0.954 20.258 22.991

Age[ 65 20.559 22.202 20.298 22.298 20.294 23.035

Physical disability 0.082 0.528 0.180 1.040 -0.010 -0.064

Household characteristics

Household member[ 3 -0.089 -1.080 0.028 0.242 -0.093 -0.993

Single family no child 20.211 21.894 0.071 0.665 0.264 3.261

Single family child 0–6 old 0.579 2.382 0.424 1.738 0.429 1.471

Single family child 7–18 old 0.158 1.037 0.385 1.839 0.092 0.571

Partnered family no child Ref – Ref – Ref –

Partnered family child 0–6 old 0.507 4.861 -0.013 -0.085 0.136 1.173

Partnered family child 7–18 old 0.186 1.959 0.040 0.304 0.157 1.505

Low income (\150,000 SEK) Ref – Ref – Ref –

Medium income (150,000 to 400,000
SEK)

-0.037 -0.344 0.295 2.883 0.179 2.268

High income ([400,000 SEK) 0.064 0.790 0.366 3.717 0.284 3.850

Number of cars in household 0.099 2.460 0.006 0.112 20.121 23.077

Trip chain characteristics

Departure at morning peak 20.310 25.812 0.184 1.984 20.198 22.310

Departure at afternoon peak -0.099 -1.319 20.424 24.838 20.219 23.705

Main mode is walk and cycling Ref – Ref – Ref –

Main mode is private car 2.705 22.53 1.577 15.89 2.861 27.90

Main mode is public transport 1.488 11.31 1.213 6.494 2.430 18.54

Average link speed for car mode 20.050 254.73 20.044 216.18 20.040 216.31

Average link speed for public transport
mode

20.053 29.65 20.036 23.937 20.029 24.204

Land use characteristics

Population density 0.010 2.146 -0.002 -0.236 20.021 22.711

Commuters in municipality 0.015 0.656 0.064 2.264 0.050 2.322

Commuters out municipality 0.088 1.301 -0.042 -0.528 0.017 0.277

Municipality car ownership 0.027 3.015 0.004 0.409 0.001 0.052

Weather characteristics

UTCI_spring 0.006 0.991 -0.011 -1.361 0.0002 0.027

UTCI_summer -0.005 -0.943 20.029 25.069 -0.004 -0.861

UTCI_autumn 0.014 1.927 20.015 21.718 20.018 22.72

UTCI_winter 0.002 0.425 -0.003 -0.415 0.0005 0.092

No rain Ref – Ref – Ref –
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which found that females tend to make more complex trip chains than males. However, no

gender difference can be found in terms of leisure trip chaining. In comparison to adult

travellers (age 26–40), young travellers (age\ 25) chain fewer trips in subsistence trip

chains but more trips in discretionary trip chains, which also corresponds to a previous

study (Ye et al. 2007). However, no significant difference was found between young

travellers and adult travellers in terms of routine. Old adult travellers (age 41–64) have

simpler subsistence and discretionary trip chaining than adult travellers. Elderly people

(age C 65) have simpler trip chaining than adult travellers in all types of trip chains.

Presumably, elderly people have limited physical travel ability, which hinders them from

doing complex trip chaining. In addition, the elderly people are also likely to have more

flexible time–space constraints and thus do not need to conduct several errands in one trip

chain (Andrews et al. 2012). Surprisingly, physical disability shows no significant impact

on trip chaining behaviour. One plausible reason for this could be the well-established

social welfare system in Sweden that provides home services for those physically disabled

persons.

In terms of household characteristics, travellers from households with more than three

members show no significant difference in the trip chaining pattern compared to those from

households with no more than three members. Travellers from single families without

children have more complex discretionary trip chains but simpler subsistence trip chains

compared with travellers from partnered families without children. Travellers from single

families with young children have more complex subsistence and routine trip chains than

Table 5 continued

Explanatory variables Subsistence trip
chains

Routine trip chains Discretionary trip
chains

Estimates T value Estimates T value Estimates T value

Precipitation\ 1 mm -0.037 -0.581 -0.026 -0.295 -0.046 -0.677

Precipitation C 1 mm 0.062 0.851 20.178 21.793 -0.014 -0.174

Visible distance B 1 km 20.112 21.863 -0.076 -0.956 0.031 0.478

Ground with snow 1.125 4.889 0.809 3.107 0.787 3.602

Estimated standard error

Individual level 0.982 18.36 1.274 18.98 1.093 18.10

Trip chain level 1 Fixed 1 Fixed 1 Fixed

Thresholds

l1 2.953 7.291 21.185 22.384 0.663 1.643

l2 4.209 10.249 2.529 5.050 3.272 7.916

l3 5.042 12.089 3.541 6.984 4.220 10.057

l4 5.579 13.170 4.254 8.277 4.908 11.520

Model fit

Number of observations 7154 3661 5317

Number of individuals 3871 2888 3990

Log-likelihood at zero 211186.4 26265.3 211243.4

Log-likelihood at final 23803.7 23227.2 24682.4

Log-likelihood of model without panel 23915.2 23463.0 24816.0

Note estimates in the bold values are significant at 10 % level
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those from partnered families without children. Some children-related trips, such as

picking up/dropping off children at kindergarten, are often chained in subsistence/routine

trip chains, thus contributing to trip chaining complexity. As children grow older, the effect

of children-related trips becomes weaker. These findings are in line with the results from

Susilo and Avineri (2014). Moreover, the effect of having children tends to be stronger for

travellers from single families than travellers from partnered families, as travellers from

partnered families are more flexible in arranging children-related trips. Travellers from

medium- and high-income families are more likely to have complex routine and discre-

tionary trip chains than those from low-income families, which corresponds to previous

studies (Golob and Hensher 2007; Noland and Thomas 2007), presumably because trav-

ellers from medium- and high-income families conceptually can afford more discretionary

activities in commercial areas, such as eating out or luxury shopping; thus, they are more

likely to do trip chaining in routine and discretionary trip chains. However, the difference

between medium- and high-income groups is low. Moreover, household income level

shows no explanatory power in subsistence trip chaining behaviour. The effects of the

number of cars surprisingly do not correspond to the effects of household income level.

More cars in a household indicate simpler discretionary trip chaining. A possible expla-

nation could be that travellers from families with several cars do not need to share cars, and

are thus more flexible in terms of trips chaining.

In terms of trip chain characteristics, subsistence trip chains during the morning peak

hours, which usually refer to commuter trips (averaging 1.21 trips per chain), are simpler

than those at non-peak hours (averaging 1.28 trips per chain), indicating morning con-

gestion and time constraints limit commuters’ options of achieving multiple errands during

the morning peak hours. However, routine trip chains tend to be more complex when the

departure time is in the morning peak hours, while they tend to be less complex when the

departure time is in the afternoon peak hours. In terms of discretionary trip chaining,

departure in the morning and afternoon peak hours correspond to simple trip chaining

behaviour. Presumably, few discretionary activity spots, such as shopping malls, are open

in the morning peak hours while most are closed during and after the afternoon peak hours,

thus leaving fewer options for chaining discretionary activities. Compared to slow modes,

trip chains with the main travel mode being car or public transport unsurprisingly have

more trips per chain, which corresponds to the findings of previous studies (Ye et al. 2007;

Schmöcker et al. 2010). The effects of ‘‘average link speed’’ were also included. ‘‘Average

link speed’’ was defined as the total travel time of a trip chain in minutes divided by the trip

chain distance in km. An increase in average link speed is associated with a decrease in the

number of trips per chain, when the main mode of the trip chain is either by car or public

transport. This is in line with Schmöcker et al. (2010), who showed a negative correlation

between average link speed and trip chaining in home–home trip chains within 30 min of

dwelling time. An increase of average link speed may indicate fewer percentages of slow

modes used in the trip chains with the main mode being car or public transport, and a trip

chain with a multimodal may often imply more than one activity/visit in this trip chain.

For land use characteristics, a denser population corresponds to an increase in the

number of trips per subsistence trip chain, but a decrease in the number of trips per

discretionary trip chain. Compared with the findings of Noland and Thomas (2007) and

Farber et al. (2012) in the US, this finding indicates different population density effects on

the trip chains with different main purposes, thus highlights the importance of segregating

trip chains according to their different main purposes. Travellers in a municipality with

more job positions, which refers to more commuters travelling in the municipality, have

more complex routines and discretionary trip chains. This partially echoes a previous study
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(Currie and Delbosc 2011) which showed that trip chains by cars in a central business

district (CBD) were more complex than those outside a CBD.

In terms of weather impacts, the effects of UTCI are not consistent across seasons and

trip chains of different purposes, which rejects the hypothesis of uniform effects of UTCI.

For subsistence trip chains, an increase of UTCI corresponds to more trips chained in

autumn, while the variations of UTCI show no significant influence on the number of trips

in subsistence trip chains in the other three seasons. However, an increase of UTCI was

associated with fewer numbers of trips in routine trip chains in summer and autumn.

Similarly to routine trip chains, fewer numbers of trips in discretionary trip chains were

found as UTCI increased, but only in autumn. The finding seems to contradict the

common sense that more trips may be chained in routine and discretionary trip chains in

warmer conditions, as the demand of routine and discretionary activities increases in

warm weather conditions (Liu et al. 2014b). The results seem to show that the increased

demand in warm conditions may not be chained in the existing routine and discretionary

trip chains, but rather form new trip chains. Further sub-models, results not reported due

to the space limitation, which apply to the sub-sample of season–mode combination,

suggest that those increased demands in warm conditions are more substantial in trip

chains with cars as the main mode than those with more main modes. Thus, the number of

trips per trip chain may decrease even as the total number of trips per day increases. Rain

(precipitation C1 mm) only negatively affects the trip chaining in routine trip chains,

especially in trip chains with slow modes as the main modes. This can be due to the

decreasing demand of routine and discretionary out-of-home activities in rain conditions

(Liu et al. 2014a). Subsistence trip chains tend to be simpler in bad visibility situations

compared to normal situations. However, no significant influences of bad visibility were

found in routine and discretionary trip chaining. Travellers tend to do more trip chaining

in all types of trip chains when the ground is covered with snow. This trend appears in trip

chains with all modes. Trips that are connected with snow-related activities may con-

tribute to the trip chaining behaviour. Moreover, as the ‘‘indirect cost’’ of travel increases

due to snow (with the bus delays, the inconvenience of walking and cycling, etc.),

separating errands into several trip chains becomes less attractive, which leads to the trip

chaining decision.

The estimation results also indicate that the variations at the individual level are sub-

stantial after controlling for the observed individual characteristics and municipality land

use characteristics. The variations due to unobserved attributes at the individual level are

even larger than those in the trip chain level for routine and discretionary trip chains. By

comparing the estimation results of the mixed ordered Probit model with panel data and the

pooled ordered Probit model (results not shown in the paper), the difference between the

corresponding estimates can reach 30 %. Several significant/insignificant variables in the

pooled ordered Probit model become insignificant/significant. This result confirms that

results from the one-level ordered Probit model which was used in most previous studies

can be potentially biased, even with individual-level explanatory variables.

Marginal effects

Although the above-mentioned variable effects show the trends of different factors that

influence the trip chaining behaviour in trip chains of different main purposes, those

variable effects do not directly present the magnitude of those variable effects on the

expected changes to the number of trips per chain. More importantly, it would also be

interesting to see whether the inclusion of weather variables affects the interpretation of the
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other variables compared with a model without weather variables. Therefore, the marginal

effect of each variable on the expected number of trips per chain for three types of trip

chain is presented in Table 6. The marginal effect of variable i on the probability of

observation (trip chain) k being in the n-th category of the number of trips per chain is

calculated as:

Mi
k;n ¼ r

þ1

�1
�b̂i / ln � Xkb̂� ek

� �
� / ln�1 � Xkb̂� ek

� �h i
� r̂k/ðekÞdek ð4Þ

where wb̂i is the estimated parameter for variable i. The integral in Eq. (5) is evaluated

with simulation techniques, which draw from the distribution of ek, /ð0; r̂kÞ, where þ is

the estimated standard deviation of ek. Thus the marginal effect on the expected number of

trips per chain for observation (trip chain) k is then:

Ei
k ¼

X5

n¼1

Mi
k;n � n ð5Þ

where Ei
k can be interpreted, in general, as the change of the expected number of trips per

chain for observation k due to a one unit increase of variable i. For example, the first

number in Table 6, 0.029, as the marginal effect of being female, means that increasing

this variable by one unite (being female) would lead to an increase of the expected number

of trips per subsistence trip chain by 0.029 trips, and its corresponding t test is 1.90. The

marginal effects provide some insights. First, gender plays a stronger role in influencing

trip chaining behaviour in routine trip chains than in subsistence and discretionary trip

chains. Being elderly people, aged[ 65, substantially changes the trip chaining behaviour

compared with that change due to being in age groups other than the reference age group,

aged 26–40. Second, family status, being single/partnered, or having/not having children

influences subsistence trip chaining behaviour more substantially than family income.

However, it is the other way around for routine and discretionary trip chaining behaviour.

Third, mode choice plays vital roles in influencing trip chaining behaviour, especially for

discretionary trip chains. The marginal effect of using a private car on discretionary trip

chaining, 1.186, is twice as that for subsistence trip chaining, 0.556, and routine trip

chaining, 0.606. This indicates a strong positive correlation between trip chaining and

mode choice, as complex trip chains are more likely to be associated with car use. Thus,

policies aimed at decreasing car share would also indirectly be accompanied by less trip

chaining, especially in discretionary activities, which indicates less efficient trip

scheduling. In terms of weather characteristics, snow-covered ground is the most important

factor among the weather variables, and its marginal effects have even larger magnitudes

than most individual and household social demographic variables. Additionally, the mar-

ginal effect of snow has a similar magnitude as the marginal effect of increasing 10,000

residences per km2. It suggests a substantial increase of trip chaining complexity in snow-

covered ground situations for all types of trip chains.

Furthermore, there are clear differences in the marginal effects between the model with

weather variables and the model without weather variables. Such differences in the effects

of individual and household social demographic variables are more substantial than those

in the effects of trip chain and land use characteristic variables, especially for subsistence

trip chains. It is also worth noting that the difference in the marginal effects can reach 50 %

and even higher, e.g. the marginal effect of ‘‘Female’’ in the model with weather variables

for subsistence trip chains is 0.029, while that number in the model without weather
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variables is 0.046 (59 % higher). Overall, the results suggest that including weather in the

model provides more accurate marginal effects, and thus provides more reliable

interpretation.

Spatial distributions of utci effects

Previous studies have shown clear regional differences in terms of weather impacts on the

number of trips travelled (e.g. Liu et al. 2014a, b), but few studies have explored the spatial

heterogeneity of weather effects on trip chaining behaviour. Given that only a few studies

have used a thermal index in weather–travel behaviour research, the exploration of spatial

heterogeneity in the effects of a thermal index is limited. Thus, as an extension of the

current analysis, a spatial expansion method is applied to assess the spatial heterogeneity of

UTCI effects while the seasonal difference of UTCI effects is also considered. The spatial

expansion method applies spatial-based variables to detect the systematic spatial trend on

the given variable effect. In the transport field, the spatial expansion method has been used

to explore spatial variations of the accessibility measure and the distance travelled (e.g.

Morency et al. 2011; Farber et al. 2012).

In general, the spatial expansion method works on the principle of expanding the

coefficients of a non-expanded model as functions of expansion variables, usually location-

or social group-based variables, which are meant to capture variations at those levels. In

this study, the coefficients of UTCI in the model shown in Table 4 are expanded as a

function of the coordinates of a municipality and the corresponding land use

characteristics.

bUTCI;i ¼ a0;i þ a1;ixþ a2;iyþ a3;ixyþ a4;ix
2 þ a5;iy

2

þ a6;ip densityþ a7;icomin þ a8;icomout þ a9;icar
ð6Þ

In Eq. (6), the coefficients of the UTCI variables were further developed by means of a

second order polynomial expansion of the municipality coordinates and a linear combi-

nation of its land use variables. x and y refer to the longitude and latitude of a given

municipality. p density, comin, comout, and car refer to the municipality land use variables

shown in Table 4. an;i refers to the corresponding coefficients being estimated, where i

refers to the season index, and i 2 {spring, summer, autumn, winter}. Such a spatial

expansion of the coefficient indicates that the marginal effects of UTCI on the number of

trips per trip chain are spatially distributed as a function of the land use characteristics and

the geographical location. These spatially expanded coefficients can also be interpreted in

essence as the interaction between the effects of thermal condition and spatial location. A

coefficient with significant expansion components indicates that a specific geographical

location/attribute affects the role of the thermal perception condition and leads to a con-

textual relationship between location variations.

The coefficients of UTCI for the model of routine trip chains are spatially expanded, as

the corresponding non-expanded coefficients of summer and autumn are statistically sig-

nificant and the corresponding marginal effects are considerable compared with those in

the models of other trip chain categories. The estimation results showed that the spatially

expanded coefficients of UTCI in spring and winter are all insignificant, as the corre-

sponding non-expanded coefficients are insignificant (see Table 5). Thus, only the coef-

ficients of UTCI in summer and autumn are chosen to be spatially expanded. The estimated
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spatially expanded coefficients of the model for routine trip chains are then shown in

Table 7.

The likelihood ratio test shows the spatially expanded model is superior to the non-

expanded model as the p value is less than 0.01. In terms of the spatial trend of UTCI

effects in summer, the coefficient of longitude x is significant and negative (-4.659).

This indicates that travellers on the east coast of Sweden tend to have simpler routine

trip chains than those on the west coast of Sweden when UTCI rises. The coefficient of

the interaction effect xy is significant and positive (0.759). However, land use charac-

teristics do not contribute to the spatial trend of the UTCI effect in summer. On the

contrary, the land use characteristics affect the spatial trend of the UTCI effect in autumn

instead of the location coordinates. The number of commuters travelling in/out of the

municipality plays an important role in affecting the spatial trend in autumn. Mu-

nicipalities with more commuters travelling in (CBD) have a higher UTCI effect, while

municipalities with more commuters travelling out (residential areas) have a lower UTCI

effect.

As stated above, those spatial trends of the UTCI effects differ between seasons.

Plotting the spatial trends provides valuable insights into understanding the geographical

variation of UTCI effects and demonstrates the differences of magnitude between mu-

nicipalities of interest. In this paper, the marginal effects of UTCI on the expected values

Table 7 The spatially expanded
coefficients of the model for
routine trip chains

Note estimates in the bold values
are significant at 10 % level. The
likelihood ratio test tests whether
a spatially expanded model is
superior to the corresponding
non-expanded model

Expanded UTCI coefficients Routine trip chains

Estimates T value

UTCI for summer

Intercept 4.711 1.193

x 24.659 22.156

y -0.342 -0.248

xy 0.759 2.520

x2 -0.117 -0.627

y2 -0.063 -0.496

Population density -0.002 -1.061

Commuters in municipality 0.005 0.714

Commuters out municipality -0.008 -0.490

Municipality car ownership 0.0004 0.112

UTCI for Autumn

Intercept -2.336 -0.275

x 0.812 0.263

y 0.594 0.197

xy -0.237 -0.512

x2 0.284 1.115

y2 -0.021 -0.078

Population density -0.001 -0.728

Commuters in municipality 0.022 2.282

Commuters out municipality 20.073 22.906

Municipality car ownership -0.003 -1.149

P value of the likelihood ratio test 0.000
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of outcomes (the number of trips per routine trip chain) are plotted. The marginal effect of

UTCI for travellers at municipality j having n trips per routine trip chain in season i is then

the mean of the marginal effects for all observations which take place in season i in the

given municipality j:

Ej;i ¼
1

Nj;i

X

k2Nj;i

Ek ð7Þ

where Nj;i is the number of observations that belong to municipality j in season i. The value

of Ej;i can be interpreted as the change in the expected value of the outcome for travellers

at municipality j having n trips per routine trip chain due to a 1 �C rise in the UTCI. Note

that not all municipalities have observations (observed routine trip chains) in all seasons,

and thus only marginal effects in the municipalities which have no less than five obser-

vations in a given season are plotted (Nj;i � 5). Only the marginal effects for summer and

autumn are shown in Fig. 1, as the coefficients of UTCI in spring and winter are not

spatially expanded. Three municipalities in Sweden—Stockholm, Gothenburg, and

Malmö—and their adjacent municipalities are zoomed out.

As shown in Fig. 1, the marginal effects of UTCI on the expected number of trips per

routine trip chain range from -0.045 trips to 0.040 trips in summer and autumn, while the

non-expanded model yields the corresponding marginal effects as -0.011 and -0.006 for

summer and autumn (see Table 6). Thus, the marginal effects of UTCI show a consider-

able inter-municipality variation. As the marginal effect of UTCI on the expected number

of trips per routine trip chain is calculated with the spatially expanded coefficients, the

Fig. 1 The spatial distributions of the marginal effects of UTCI on the expected number of trips per routine
trip chain. a Marginal effect in summer. b Marginal effect in autumn
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interpretations of those spatially expanded coefficients are also applicable to the spatial

distribution on the expected number of trips per routine trip chain. The expected number of

trips per routine trip chain tends to increase by between 0.015 and 0.035 trips in northeast

coast cities such as Luleå and Umeå when UTCI increases by 1 �C in summer, while that

expected number tends to decrease by between 0.01 and 0.02 trips in Gothenburg and

between 0.02 and 0.035 trips in southern municipalities close to Stockholm. In autumn, the

marginal effect of UTCI in Stockholm is between -0.03 and -0.045 trips, but the mar-

ginal effect in its adjacent municipalities is between 0 and 0.02 trips. This reflects the

spatial heterogeneity of UTCI effects due to the difference in land use characteristics.

Similarly, the marginal effect of UTCI in Gothenburg is around -0.01 trips, but the

marginal effect in its southern adjacent municipality, Kungsbacka, which is a major

residential area near Gothenburg, is -0.04 trips, as the spatial trend for the marginal effect

of UTCI in autumn is significantly lower in residential areas (-0.073 in Table 7).

Conclusions

Using the 2011 NTS datasets, this paper investigates the variability of trip chaining be-

haviour. The roles of an individual’s social demographics, household characteristics, trip

chain characteristics, weather characteristics, and land use characteristics were examined

through panel mixed ordered Probit models, and trip chains of different main purposes

were analysed accordingly. Instead of using directly measured weather variables, which

were the case for most previous studies, a thermal index, UTCI, was used. Moreover,

spatial heterogeneity, which has usually been ignored in previous studies, is also taken into

account by using a spatial expansion method.

The effects of individual/household social demographics, trip chain characteristics, and

land use characteristics found in this paper in general correspond to the findings from

previous studies. Household structure (having children, single, or partnered) significantly

influences the trip chaining pattern, especially in subsistence trip chains. Household in-

come level strongly affects the trip chaining pattern in subsistence and routine trip chains.

Population density is negatively associated with the number of trips per subsistence trip

chain, but the opposite is true for discretionary trip chains.

In terms of weather effects, the effects of UTCI are not consistent across seasons and

trip chains of different purposes. UTCI has a significant effect on the number of trips per

trip chain, especially in autumn. Increasing UTCI is associated with an increasing number

of trips chained in subsistence trip chains in autumn, while the opposite is true for routine

and discretionary trip chains. Rain (precipitation C1 mm) only negatively affects routine

trip chaining. Fewer numbers of trips are chained in subsistence trip chains in bad visibility

situations compared with normal situations. Snow-covered ground is found to be the most

influential factor affecting trip chaining behaviour. Travellers tend to do more trip chaining

in all types of trip chains when the ground is covered with snow, which is also applicable to

trip chains with all modes. These significant effects of weather variables suggest different

trip chaining behaviour due to the change of weather and such differences are not unique

over seasons and activity purposes. This has an important implication for transport policy,

as traffic management efforts then must not only cope with the seasonal pattern of trip

chaining behaviour, but also consider local weather. For instance, complex subsistence trip

chaining behaviour is expected in a warm autumn, while single trip chains are more

common for routine and leisure purposes in a warm autumn. Therefore, more congestion in
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rush hour is expected during this period. Appropriate congestion mitigation measurements

and car parking management need to be adjusted to cope with this change of trip chaining

behaviour. More car trips with complex trip chains are also expected on snowy days;

therefore, it is important to provide reliable road access to the main activity locations to

cope with the increasing demand of these complex trip chains.

The results from spatial expansion present the spatial distributions of the marginal

effects of UTCI on the expected number of trips per routine trip chain. Distinct spatial

trends are observed in summer and autumn. Spatial location variables (latitude and lon-

gitude) are found to be significant in influencing the spatial trend of the UTCI effect in

summer, while municipality-level land use characteristics show little explanatory power.

However, it is the other way around in autumn. The marginal effects of UTCI on the

expected number of trips per routine trip chain range from -0.045 trips to 0.040 trips in

summer and autumn, which indicates substantial spatial variations. These findings also

indicate that transport policies aimed at trip chaining behaviour must also be localised to

incorporate the local climate.

It is worth noting that this study uses national-level data and the municipality-level land

use information is only a rough proxy for accessibility. Although focusing on a relatively

small area and using detailed land use information may help provide more accurate land

use impacts and allow for a more advanced modelling approach—e.g. spatial dependen-

cy—such an analysis may not provide a comprehensive understanding of weather impacts

due to the lack of weather variation given a specific geographical location. Moreover, using

longitudinal data would also help better understand the variation of the trip chain com-

plexity measure given the fact that activity travel behaviour evolves over time (Susilo and

Kitamura 2008). Further segregating models by travel modes also yields more detailed

variable effects, as those variable effects are not necessarily consistent across trip chains

with different main modes. Finally, using subjective weather perception is appreciated, as

it is the perceived weather condition rather than objective weather condition that is in-

volved in the travel decision making process, and thus influences travel behaviour. This

weather perception may not only be affected by thermal conditions but also by other

psychological factors. These topics are plausible directions for future research.
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