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Abstract This paper studies the supply variables that influence the destination and route

choices of users of a bicycle sharing system in the Chilean city of Santiago. A combined

trip demand logit model is developed whose explanatory variables represent attributes

relating to the topology of the possible routes and other characteristics such as the presence

of bikeways, bus service and controlled intersections. The data for the explanatory vari-

ables and system users were collected through field surveys of the routes and interviews

conducted at the system stations. The results of the model show that proximity to stops on

the Santiago Metro and the existence of bikeways are the main factors influencing desti-

nation and route choices. Also indicated by the model estimates are gender differences, a

preference for tree-lined routes and an avoidance of routes with bus services. Finally, the

outcomes reveal considerable potential for the integration of bicycle sharing systems with

Metro transit.

Keywords Bicycle � Combined model � Route choice � Destination choice � Bikeway �
Bicycle-Metro integration

Introduction

This article attempts to determine how a set of explanatory variables relating to the supply

of routes used by bicycle traffic (i.e., the route network) influences cyclist behaviour

regarding route and destination choices. A solution approach is developed and then applied
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to the real case of the bicycle sharing (rental) system in Providencia, a municipality within

the city of Greater Santiago in Chile.

The cyclists’ demand functions are formulated as a combined destination and route

choice model with a hierarchical logit structure (De Cea et al. 2008) in which the desti-

nation choice is in the upper nest and the route choice in the lower one (Ortúzar and

Willumsen 2011). The model’s parameters are estimated using maximum likelihood.

The results of the model show that in the system studied, destination choice is strongly

influenced by Metro stop locations, indicating that a combined bicycle-Metro mode gen-

erates a strong synergy. Other interesting findings on the attributes of existing routes are

that cyclists have marked preferences for those that are tree-lined or include bikeway

segments while tending to avoid routes used by bus lines. Gender differences were also

detected, with men using bikeways less than women.

Though these results are based on just one particular bicycle sharing system, we believe

they provide valuable insights into future design features and innovations that could be

incorporated into urban bicycle rental or loan systems generally. The ultimate goal is to

enhance existing measures for encouraging the use of bicycles as a sustainable mode of

transport that offers a series of advantages in terms of economics, health, the environment

and quality of life (Ortúzar et al. 2000; Dill 2009; Pucher et al. 2010). In some urban areas,

bicycles may even offer higher trip speeds than other means of transportation. They also

have some disadvantages, however, such as the physical effort involved on longer trips,

greater accident risk and exposure to the weather (Heinen et al. 2010). Improvements to the

design of bicycle sharing systems are therefore a potential source of significant benefits.

A range of public policies have already been developed for promoting bicycles as

transport, whether in isolation or integrated with public transit modes (Martens 2007;

Pucher et al. 2010; Park et al. 2011). Many cities have opted to set up bicycle sharing

systems as a user-friendly method of boosting connectivity with other modes, reducing car

use and encouraging healthier lifestyles (Pucher et al. 2010; Dell’Olio et al. 2011; Lin and

Yang 2011; Shaheen 2011).

Sharing systems are built around stations where registered (or paid-up) users can pick

up and drop off bicycles. Payment methods, operational aspects and user information

mechanisms differ from one system to the next. Currently, more than 160 cities have some

sort of bicycle sharing scheme (Shaheen et al. 2012). In Greater Santiago, two of the city’s

37 municipalities or districts (Providencia and Vitacura) have set up systems in the last few

years. Two more (Ñuñoa and Las Condes) will soon have systems in place and the trend is

expected to continue across the metropolitan area.

The success of these setups in terms of user numbers depends on a range of factors. One

of the most important is their design characteristics, among which are the location of

pickup/drop-off stations, existing routes and connectivity (Handy et al. 2010; Castillo-

Manzano and Sánchez-Braza 2013). According to Lathia et al. (2012), there are three

stakeholder groups to be considered: cyclists (the users), urban planners (the relevant

authorities) and operators (the system concession holders). Good coordination and inter-

action between these groups will increase the chances of a system’s success.

From an implementation standpoint, Lin and Yang (2011) find that an optimal bicycle

sharing scheme design must take into account such considerations as user travel cost (in

money and time), the construction cost of stations for bicycle pickup/drop-off and storage,

and the cost of cycle facilities. With this in mind, the authors develop a non-linear pro-

gramming model that determines the optimal choices for station location, bikeway network

structure and user travel routes. However, they do not define the topological attributes or
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characteristics of a set of existing routes, the approach that will be adopted in the present

study.

Various other published works aim to identify the most important variables impacting

cyclists’ route choices. Unlike the analysis we develop, however, most of these studies

focus on bicycle owners who start their trips from home or the workplace, not users of a

sharing system. As for the variables themselves, the two that stand out for their influence

on route choice are route length and the existence of bikeways (Stinson and Bhat 2003;

Hunt and Abraham 2007; Akar and Clifton 2009; Sener et al. 2009; Broach et al. 2012).

The second factor is particularly valued by occasional users and women (DeGruyter 2003;

Garrard et al. 2008; Winters and Teschke 2010; Hood et al. 2011). It has also been

observed that users prefer routes with fewer controlled intersections (traffic lights, stop or

give way/yield signs), fewer hills, lower motor vehicle traffic volumes and more attractive

scenery (Parkin et al. 2008; Sener et al. 2009; Broach et al. 2012; Menghini et al. 2010;

Winters et al. 2011).

The remainder of this article is organized into four sections. ‘‘Bicycle sharing system’’

section describes the bicycle sharing (rental) system that is the focus of our study and the

local bikeway infrastructure; ‘‘User data’’ section reviews the data collected by our system

user survey; ‘‘Model and results’’ section develops a combined destination and route choice

model, introduces the set of possible explanatory variables, and presents and interprets the

model parameter estimates; and finally, ‘‘Conclusions’’ section sets out our main conclu-

sions and their implications for future bicycle sharing system designs.

Bicycle sharing system

The Greater Santiago municipality of Providencia covers an area of 14 km2 and is home to

125,000 residents, but due to its importance as a business, education and services centre it

has a daytime population of about 800,000. It is also Santiago’s pioneer in cycling

infrastructure, having developed a plan for connecting up the district and its parks through

a network that will eventually contain 45 kms of bikeways. About 12 kms of medium–high

grade routes with good signage already exist, most of which consists of protected cycle

lanes and greenways. Nevertheless, full connectivity between all of the municipality’s trip

generation and attraction points has not yet been achieved. Three examples of the district’s

bikeways are shown in Fig. 1.

Bikeway construction in Providencia has generally followed four main principles: (1)

use the district’s numerous thoroughfares with little or no bus service and low foot traffic to

reduce conflicts between bicycles and pedestrians or bus stops; (2) criss-cross the district

with equidistant bikeways so that cyclists can enter the network from any point; (3)

Fig. 1 Bikeways in Providencia
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facilitate connections with neighbouring districts; and (4) connect with Metro stops to

enable intermodal transfers (the municipality has 10 Metro stops on 3 lines).

To promote greater use of bicycle transport, Providencia set up Santiago’s first bicycle

sharing (rental) scheme in 2010. Operation of the scheme is outsourced to a concession-

holder at a cost to the Municipality of about US$40,000 per month. The system has 150

bicycles distributed strategically across 18 stations located around the district in highly-

frequented locations near Metro stops, squares (i.e., ‘‘plazas’’), and sports and cultural

centres. Each station has 20 bicycle docks. Operating hours are 7:30 am–8:30 pm, Monday

through Saturday. The bicycles each have a code and can be picked up at any station

subject to availability up to 30 min before closing time upon showing proof of registration

to the station attendant. The rental period is 1 hour but can be renewed for an additional

60 min. Three trucks reposition bicycles throughout the day from stations where drop-offs

have built up surpluses to stations where pickups have depleted their numbers, thus

maintaining a balanced distribution. A map of the municipality indicating the station

locations as well as the existing bikeways and the Metro lines and stops is shown in Fig. 2.

Persons wishing to use the system must first register either at any of the stations,

through the system’s web page or at the concession-holder’ offices. The registration fee is

US$4 a month or US$30 a year. As of July 2013 there were about 3,000 registered users,

2,500 of whom paid on a monthly basis. The trend in monthly trip demand for the system’s

bicycles between December 2011 and July 2013 is graphed in Fig. 3. For purposes of these

statistics, each pickup/drop-off pair was counted as a single trip. The growing awareness

Fig. 2 Bicycle stations and Metro lines in Providencia
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and acceptance of the system is reflected in the monthly trip numbers, which have

increased from 4,200 in December 2011 to an average of more than 17,000 in November–

December 2012. Note that the figures tend to fall in June and July as these are mid-winter

months in the Southern Hemisphere.

The number of trips generated and attracted by each of the 18 stations in the system

during March 2013 is given in Table 1. Also shown for each station are its location

(defined in terms of a nearby Metro stop line, park or other place of interest) and the total

distance travelled by users on bicycle trips originating there. According to these data, the

average trip length for the approximately 16,500 trips taken in the indicated month was

1.9 km and the origin or destination for 51 % of the trips was a station near a Metro stop.

This suggests the bicycles were used primarily as a mode of transport for either getting to

the Metro or to a final destination.

User data

Two types of data were collected for the purpose of estimating our proposed trip demand

model, introduced in the next section. The first type consisted of information on the

explanatory variables relating to supply and was gathered through a detailed field survey of

the spatial attributes of the various route alternatives used by cyclists in Providencia. These

data will be presented below along with the model.

The second type of data related to certain characteristics of the cyclists who used the

bicycle rental system. Users were surveyed at the system stations as they picked up or

dropped off bicycles, for the most part during the morning or afternoon peak hours 8 am–

10 am and 5:30 pm–7:30 pm, respectively) during November 2012 and March 2013. Some

of them chose to send in their responses later by e-mail.

The user survey design was a simple random sample and the questions were divided into

three parts. The first part collected information on individual user demographics such as

sex, age, residence (in or outside of Providencia), marital status and occupation. The

Fig. 3 Users’ monthly trip demand
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second part inquired into the details of the user’s trip: origin, destination, route used, trip

duration, reason for trip and frequency of trip (i.e., how often the user made the same trip

in a week). Finally, the third part asked about the main reason for using the system, the use

of bikeways and the transport mode alternatives available to the user.

Selected results from the survey on user demographics are summarized in Table 2. As

can be seen, 63 % of the users were male, and as with the female users, most of them were

between the ages of 20 and 39. Also, only 57 % of respondents lived in Providencia

whereas 43 % resided in neighbouring districts, a reflection of our earlier observation

regarding Providencia’s high concentration of offices, businesses, educational institutions

and other services.

Survey data on user trips are illustrated by the pie charts in Fig. 4. They indicate that for

51 % of respondents, trip duration was less than 10 min while for 43 % it was 11–20 min.

In addition, 88 % of users said they used the system more than 3 times a week and 83 % of

them did so as part of their commute to work.

When system users were asked for their opinions on the user fees, 95 % said they did

not consider the charges to be a significant factor. The data on user motives are depicted in

Fig. 5. As can be observed, 33 % of respondents declared they used the bicycle sharing

system because it was a speedy way of getting around while 22 % saw it as an opportunity

to practise a sport. Only 8 % cited economic reasons.

As for bikeways, 71 % of respondents said they used them. Among those who did not,

the overwhelming majority cited the absence of any that were convenient for their route

while relatively small numbers referred either to their frequent use by pedestrians, the fact

that the trip would take longer or some other reason (see Fig. 6).

Table 1 Trips by users, March 2013

Bicycle station Location Number of
trips generated

Number of
trips attracted

Average trip
length (metres)

1. Plaza Baquedano Metro line 1 and 5 1,174 804 2,298

2. Salvador Metro line 1/Park 571 512 2,029

3. Manuel Montt Metro line 1 1,113 1,112 1,618

4. Pedro De Valdivia Metro line 1 1,948 2,100 1,594

5. Lota Metro line 1 1,484 1,656 1,327

6. Hernando de Aguirre Metro line 1 and 4 1,240 1,526 2,416

7. Parque Augusto Errazuriz Metro line 4/Park 298 384 2,684

8. Parque Bustamante Metro line 5 1,039 779 1,864

9. Providencia Town Hall 1,364 1,585 1,286

10. Federico Froebel University/Park 991 901 1,793

11. Marı́n Park 709 563 1,827

12. Plaza Inés De Suarez Park 611 565 1,847

13. Pocuro Park 1,669 1,820 1,885

14. Plaza Rio Janeiro Park 578 666 2,101

15. Plaza Las Lilas Park 415 459 2,007

16. Plaza Chile España Park 465 298 3,588

17. Plaza Santa Isabel Park 617 690 2,676

18. Plaza Cardenal Park 222 88 2,327

Total 16,508 16,508 1,905
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Finally, the survey data on users’ transport mode alternatives are presented in Fig. 7.

Although 55 % of respondents owned a car, only 4 % said they would use it for the same

trip. Their preferences for other alternatives to cycling were walking (49 %), the Metro

(21 %) and the bus (17 %). Such responses no doubt reflect the fact that trip lengths were

short (consistent with the short trip durations indicated in Fig. 4), which accounted in

particular for the popularity of the walking option.

Model and results

We now set out our combined trip demand logit model (Abrahamsson and Lundqvist 1999;

Florian et al. 2002; Boyce and Bar-Gera 2003; Ham et al. 2005; Garcı́a and Marı́n 2005;

De Cea et al. 2008; Donoso et al. 2011; De Grange et al. 2013) for determining the impact

of certain variables on the destination and route choices of cyclists using the Providencia

bicycle sharing system.

Table 2 Demographic charac-
teristics of users

Sex Age Non-Resident of
Providencia (%)

Resident of
Providencia (%)

Total
(%)

Female \20 0 0 0

20–29 4 9 13

30–39 5 13 18

40–49 1 1 2

50–59 1 3 4

[=60 0 0 0

Total 10 27 37

Male \20 1 0 1

20–29 10 9 19

30–39 13 13 26

40–49 7 5 12

50–59 1 3 4

[=60 0 1 1

Total 33 30 63

Trip duration (min) Frequency of trip (times per week) Reason for trip

Fig. 4 Characteristics of user trips
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The basic hierarchical structure of the proposed formulation is shown in Fig. 8. Given

an origin, users first elect any one of the n other stations as their destination and then

choose between rm possible routes. The model can be specified using random utility theory

in analogous fashion to the combined trip distribution and mode share models developed

by Anas (1981) and Ortúzar and Willumsen (2011). The latter article interprets the

parameters in a random utility model as scale factors, but they can also be considered as the

weighting factors for the hierarchical choice decisions (De Cea et al. 2008). On this

interpretation, g and k indicate which of the two decisions dominates, that is, whether a

route is decided given a chosen destination or a destination is decided given a chosen route.

In our specification it was assumed the destination is decided first and then the route given

Fig. 5 Motives for using bicycle sharing system and significance of user fees

Fig. 6 Reason for not using bikeways
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that destination. This assumption would be confirmed if g/k\ 1, which was found to be the

case once the parameters were calibrated.

It then follows that the probability of choosing route r to travel between origin and

destination pair ij is given by

Pr
ij ¼ Pij=iPr=ij ð1Þ

where Pij=i is the probability of choosing destination zone j given that the trip originated in

zone i (destination choice model) and Pr=ij the probability of choosing route r within the ij

choice (route choice model).

The route choice model is therefore stochastic. It also explicitly incorporates the cor-

relation between the alternative routes by including a path size attribute in the utility

function (Ben-Akiva and Bierlaire 1999) to correct for the existence of routes that have

Fig. 7 Alternative transport modes available to users

Fig. 8 Hierarchical tree structure of the model
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overlapping links, while maintaining a multinomial logit model structure Thus, Pr=ij is

formulated as

Pr=ij ¼
eV

r
ijþw�lnPSrij

P
r2Rij e

Vr
ij
þw�lnPSr

ij

ð2Þ

where Vr
ij ¼

P
k b

kxkrij is a linear combination of explanatory variables representing the

attributes of each available route for O–D pair ij, and bk are the corresponding parameters.

The PSrij term is the path size correction factor for routes with overlapping links and w is a

calibration parameter. The functional form proposed for the path size term (Ben-Akiva and

Bierlaire 1999) is

PSrij ¼
X

a2r

la

Lr
� 1
P

r2Rij dar

� �

ð3Þ

where la is the length of a link a, Lr is the length of route r, dar is equal to 1 if link

a belongs to route r and 0 otherwise, and finally, Rij is the set of possible routes connecting

pair ij.

The path size correction is applied to the routes as follows. A route that has no links

overlapping those of any other route needs no correction and therefore PSrij ¼ 1. At the

other extreme, if there are J routes that completely duplicate one other (i.e., their respective

links totally overlap), then PSrij ¼ 1=J for each route. Finally, if a route partially overlaps

another route, the size of the PSrij factor depends on the lengths of the overlapping links.

Each such link is appropriately weighted according to some criterion, which in the present

case is the proportion of the route length the link accounts for. Other specifications of the

correction factor PSrij may be found in Bovy et al. (2008).

For each of the 157 O–D different pairs observed in the survey, the choice set of route

alternatives (Rij) connecting it is defined as the union of two sets of routes generated using

different criteria (excluding routes common to both). The first set includes all the different

routes to have been chosen by users for each pair in the system (Raveau et al. 2011) while

the second set consists of the four shortest routes for each of the 157 pairs as determined by

the K-shortest path algorithm (Van der Zijpp and Fiorenzo Catalano 2005; Prato 2012),

assuming all route links in the network are bidirectional. Upon generating the choice set,

the average number of alternatives for each O–D pair was found to be 4.2. All trips with the

same origin and destination stations were eliminated from the collected data.

The destination choice model, on the other hand, has the following functional form:

Pij=i ¼
e/LijþZj

P
j e

/LijþZj
ð4Þ

where Lij ¼ � ln
P

r2Rij e
Vr
ij
þw�lnPSr

ij
, / ¼ g

k

� �
and Zj ¼

P
m amxmj is a linear combination of

m explanatory variables representing the attributes of destination j and its corresponding

parameters am. Thus, Lm can be interpreted simply as the expected maximum utility (EMU)

of route ij. Note that in this model, the choice set for each origin considered only the

destinations observed in the survey, which numbered approximately 8.

The combined destination and route choice model is then given by
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Pr
ij ¼

e/LijþZj

P
j e

/LijþZj

eV
r
ijþw�lnPSrij

P
r2Rij e

Vr
ij
þw�lnPSr

ij

ð5Þ

As explained above, in addition to user characteristics the spatial attributes of the

various route alternatives were also surveyed. The relevant data, gathered through field

visits and Google street view (https://www.google.cl/maps), were employed to determine

and quantify the main topological factors influencing user route choice (Raveau et al.

2011). The corresponding variables are displayed in Table 3 together with two variables

from the user survey (Age, Freq), a series of dummy variables representing specific user

and route choice characteristics, and, for the non-binaries, their respective means and

standard deviations.

These variables constitute the set of possible explanatory variables for the combined

model. Several subsets of these variables were estimated. The parameter coefficients for

Table 3 Explanatory variables

Variable Description Mean SD

Length Route length (m) 1,828.27 813.96

Bikeway Proportion of route with any type of bikeway 0.31 0.28

Nlights Number of traffic lights along route 4.45 3.05

Nsignals Number of stop or give way/yield signs along route 0.48 1.41

Width Width of pavements/sidewalks along route (m) 2.60 0.94

Nlane Average number of motor vehicle lanes along route (both directions) 2.45 0.54

Ntree Number of trees per 50 metres of route 1.45 0.41

Tpub Proportion of route served by public transit 0.48 0.35

PS Path size measure 0.32 0.26

Freq Frequency of trip (no. of times per week) 3.07 1.25

Age Age of user (years) 36.67 10.33

Tree Dummy variable equal to 1 if there is at least 1 tree per 50 metres
along 60 % of route*

59.1 % n/a

SexBway Result of multiplying value of Bikeway variable by value of dummy
variable equal to 1 if user is male**

63.1 % n/a

DFreqBway Result of multiplying value of Bikeway variable by value of dummy
variable equal to 1 if user makes trip more than 3 times a week**

88.3 % n/a

YoungLength Result of multiplying value of Length variable by value of dummy
variable equal to 1 if user is under 35 years of age**

61.4 % n/a

Office Area occupied by offices within a 700-metre radius of a Metro station 94,438 42,647

Services Area occupied by service sector businesses within a 700-metre radius
of a Metro station

44,088 39,388

Metro Dummy variable equal to 1 if there is a Metro stop less than 700
metres from destination bicycle station**

53.7 % n/a

MetroL1 Dummy variable equal to 1 if there is a Line 1 Metro stop within a
700-metre radius of destination bicycle station**

46.7 % n/a

MetroL5 Dummy variable equal to 1 if there is a Line 5 Metro stop within a
700-metre radius of destination bicycle station**

9.6 % n/a

* Figure for mean is the average over all alternative routes and all users in the sample

** Figure for mean is the average value of the dummy variable over all users before multiplying by the
indicated continuous variable
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what we considered to be the ‘‘best’’ subset are given in Table 4 together with their t test

values; the results for two other subsets are shown in Appendix Table 5. The estimation

itself was by maximum likelihood using the GAUSS 7.0 software program.

All of the parameter values had the expected sign andwere statistically significant at the 95 %

confidence level except for the value ofbSexBway, whichwas significant at the 91.8 % level. The

negative sign for the route length parameter confirms that the users were rational in choosing

shorter routes. An increase of 100 metres in the trip distance of a given route with all other

routes held constant results in a drop of 18 % in the probability that route will be chosen.

These results also lead to the conclusion that bikeways induce greater user flows given that the

associated parameter value (bBikeway ¼ 2:92) is positive and statistically strong. Thus, users

prefer routes with longer bikeway segments. Indeed, this attribute has the greatest statistical

significance of any characteristic relating to available routes except destination attributes. An

increase of 1 % in the bikeway portion of a route leads to a 3 % rise in the probability users

will choose it. Also evident from the results is that women value the existence of bikeways 4

times more than men do in their route choices more than men in their route choices.

The parameters for the presence of trees (bTree) and public transit service (bTpub), as well
as being statistically significant, are signed positive and negative respectively. This sug-

gests that users prefer to travel along routes that are tree-lined (making the trip more

scenic) and served by fewer buses (making the route safer and quieter). It follows that

potential routes can be made more attractive to cyclists by placing more trees along them

and locating bikeways on streets not served by surface transit.

As regards destination variables, the presence of a nearby Metro stop clearly influenced

positively the choice of a drop-off station, corroborating the well-established assumption that the

bicycle sharing system was being used as an alternative for connecting to the Metro. Similarly,

stations with high concentrations of offices and services in the immediate vicinity (measured in

terms of area they occupy within a 700-metre radius) also attracted more bicycle trips.

The results (including those of the other models presented in the Appendix Table 5)

showed no evidence that either the number of controlled intersections along a route, the

Table 4 ‘‘Best’’ model estima-
tion results

Parameter (by variable name) Estimation results

Coefficient t test value

bLength -1.67 -2.34

bBikeway 2.92 2.41

bSexBway -1.55 -1.74

bTree 1.08 1.97

bTpub -0.82 -2.16

wPS 2.39 2.47

aMetro 0.14 4.31

aOffice 0.62 7.97

aServices 0.15 5.78

/ 0.19 6.08

No. of observations 304

�q2 0.324

Log-likelihood -109.01

Null Log-likelihood -176.14
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width of the pavements/sidewalks or the number of lanes significantly influenced the

choice of one route over another.

Finally, if the model is used for forecasting, the choice set should be defined exogenously.

An alternative is to use the K-shortest path algorithm criteria (Van der Zijpp and Fiorenzo

Catalano 2005; Prato 2012). Additional criteria are presented and analyzed in Bekhor et al.

(2006), where different criteria for estimating a Path Size Logit Model in large networks are

compared; these criteria are exogenous and allow use the model for forecasting.

Conclusions

This study developed a combined trip demand logit model for determining the supply

attributes that most influence the destination and route choices of users of a bicycle sharing

(rental) system in a single district within the Chilean city of Santiago. The parameters of

the model were estimated using maximum likelihood.

The data collected for the study found that most persons who used the bicycle sharing

system did so as a way of connecting to the Santiago Metro for commuting to work, and

used the system more than 3 times a week. Most trips were short (less than 20 min). Users

did not necessarily live in the district and the majority did not consider the rental fees to be

significant factor.

The results of the demand model indicated that for the system studied, choice of

destination was strongly determined by the socioeconomic characteristics of the immediate

vicinity of the system’s pickup/drop-off stations as well as the nearby presence of a Metro

stop. The latter finding reveals the existence of a marked synergy between the two modes

of transport. This is a particularly valuable conclusion as it implies that the integration of

the two modes should be an important design consideration for future loan- or rental-based

bicycle sharing systems in cities with a Metro.

Another interesting result relating to the attributes of existing bicycle routes was that

cyclists strongly preferred those that include bikeway segments, suggesting users might see

them as safer options. This conclusion is supported by the additional finding that cyclists

tended to avoid routes served by buses.

It was also found that users of the bicycle sharing system preferred tree-lined routes,

probably due to their scenic value though it is also possible the presence of the trees

created a sensation of greater safety. Finally, the model results confirmed a statistically

significant gender difference in that men tended to use bikeways less than women.

Taken together, these various findings provide a number of insights into design con-

siderations for both bicycle sharing systems and cycle paths, and point to certain design

and operating attributes that would induce greater use of the system, thus strengthening the

effectiveness of public policies aimed at offering more sustainable transport alternatives in

urban areas.
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Appendix

The parameter values for two additional models containing different subsets of the set of

possible explanatory variables are presented here together with the values for the ‘‘best’’

set discussed in the main text (See Table 5).
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Ortúzar, J., De, D., Willumsen, L.G.: Modeling Transport. Wiley, Chichester (2011)
Park, H., Lee, Y.J., Shin, H.C., Sohn, K.: Analyzing the time frame for the transition from leisure-cyclist to

commuter-cyclist. Transportation 38(2), 305–319 (2011)

422 Transportation (2016) 43:407–423

123



Parkin, J., Wardman, M., Page, M.: Estimation of the determinants of bicycle mode share for the journey to
work using census data. Transportation 35(1), 93–109 (2008)

Prato, C.G.: Meta-analysis of choice set generation effects on route choice model estimates and predictions.
Transport 27(3), 286–298 (2012)

Pucher, J., Dill, J., Handy, S.: Infrastructure, programs, and policies to increase bicycling: an international
review. Prev. Med. 50, S106–S125 (2010)
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